×
13.12.2018
218.016.a5c7

Результат интеллектуальной деятельности: СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА

Вид РИД

Изобретение

Аннотация: Использование: для технической диагностики композиционных материалов на основе углепластиков акустико-эмиссионным методом. Сущность изобретения заключается в том, что сначала осуществляют акустико-эмиссионный контроль при ступенчатом статическом нагружении образцов из углепластика с одинаковым концентратором напряжений до их полного разрушения, определяют времена прихода каждого зарегистрированного сигнала на акустические преобразователи и по разности времен прихода рассчитывают их координаты, фиксируют на каждой ступени нагружения значения медианы амплитуд сигналов из области концентратора и их структурных коэффициентов и рассчитывают пороговые значения для данных параметров, затем осуществляют статическое нагружение испытываемой конструкции из углепластика, фиксируют значения медианы амплитуд сигналов и структурных коэффициентов, сравнивают их с пороговыми значениями. При одновременном снижении структурного коэффициента и увеличении медианы амплитуды данной группы сигналов судят о наличии дефекта и его координатах. Технический результат: обеспечение возможности повышения надежности диагностики изделий из композиционных материалов на основе углепластика в реальном времени за счет определения момента начала разрушения материала композита. 7 ил.

Изобретение относится к неразрушающему контролю и технической диагностике композиционных материалов на основе углепластиков акустико-эмиссионным методом и может быть использовано для их контроля во время испытаний и эксплуатации конструкций.

Известен акустико-эмиссионный способ диагностирования изделий из композиционных материалов на основе углепластика, включающий установку на изделие акустических преобразователей, работающих в режиме приема и излучения, калибровку, прием, регистрацию и оценку сигналов акустической эмиссии, оцифровку сигналов, их предварительную обработку, фильтрацию помех, определение временных интервалов между приходом каждого сигнала на акустические преобразователи, определение по разности времен прихода координат источников сигналов акустической эмиссии. Кроме того, в зоне контроля устанавливают пьезоантенну из преобразователей, разбивают зону на секторы, в которые последовательно устанавливают акустический преобразователь имитатора сигналов по дуге окружности радиусом не менее половины минимального расстояния между акустическими преобразователями, задают минимальную амплитуду генератора имитатора, определяют времена прихода сигналов акустической эмиссии для построения годографа скоростей, после чего по годографу строят матрицу разностей времен прихода, рассчитывают погрешности локации сигналов имитатора Δux, Δuy в соответствии с выражениями

где xлок, yлок - координаты калибровочных сигналов акустической эмиссии, рассчитанные по матрице разностей времен прихода;

xp, yp - реальные координаты места установки акустического преобразователя имитатора,

причем при превышении погрешности допустимой величины увеличивают амплитуду сигналов генератора имитатора до тех пор, пока погрешность локации не будет находиться в пределах допустимой величины, затем по зарегистрированной амплитуде сигналов акустической эмиссии в каждом канале устанавливают их пороги селекции, после чего объект контроля нагружают, зарегистрированные при этом времена прихода сигналов акустической эмиссии сравнивают с матричными значениями и по наиболее близким из них судят о координатах источников дефектов (Пат. РФ №2599327, МПК G01N 29/14, БИ №28, 2016, приоритет от 09.06.2016) принятый за аналог.

К недостаткам способа относится отсутствие методики определения момента начала разрушения композиционной конструкции по параметрам сигналов акустической эмиссии. При использовании данного способа осуществляется анализ времен прихода сигналов акустической эмиссии с учетом направления прихода для выполнения более точной локации источников. При этом по мере увеличения нагрузки не производится оценка изменения основных информативных параметров сигналов акустической эмиссии, которые характеризуют процесс разрушения композиционного объекта. Кроме того, отсутствует автоматическая в режиме реального времени оценка степени разрушения конструкции.

Наиболее близким к данному способу является способ акустико-эмиссионного контроля дефектов в образцах из углепластика на ранней стадии их развития, состоящий в том, что в процессе статического нагружения со ступенчатым изменением нагрузки, через установленный интервал осуществляется локация сигналов акустической эмиссии в области концентратора напряжений, нагружение останавливают при нагрузке, соответствующей появлению устойчивой локации, после чего рассчитывают значение структурного коэффициента и определяют его зависимость от нагрузки, выполняют фрактографический анализ материала в области локации, следующий образец нагружают до нагрузки, превышающей значение первой на (25-30)%, выполняют локацию сигналов, останавливают испытания, разгружают образец, определяют значение структурного коэффициента на каждой ступени нагружения и его зависимость от нагрузки, затем отправляют на фрактографию, третий образец нагружают до нагрузки, составляющей (65-70)% от разрушающего значения и выполняют аналогичные расчеты, о связи изменения структуры сигналов акустической эмиссией с процессом разрушения судят, исходя из сравнительного анализа зависимостей структурного коэффициента от нагрузки и результатов фрактографии (Степанова Л.Н., Батаев В.А., Чернова В.В. Исследование разрушения образцов из углепластика при статическом нагружении с использованием методов акустической эмиссии и фрактографии // Дефектоскопия, 2017, №6, с. 26-33), принятый за прототип.

Недостатком данного способа является отсутствие критериев, определяемых в автоматическом режиме, которые свидетельствуют о начале разрушения композиционного материала. При использовании данного способа после каждого этапа нагружения образцы разгружаются, и для подтверждения наличия разрушений применяется фрактографический анализ, который связан с разрушением материала исследуемого объекта, изготовлением микрошлифов, в результате чего дальнейшая эксплуатация материала при мониторинге или испытании в процессе неразрушающего контроля невозможны. Кроме того, проведение фрактографии делает невозможным автоматизацию процесса диагностики изделий из композиционных материалов на основе углепластика.

При разработке заявляемого способа акустико-эмиссионного контроля дефектов в композиционных конструкциях на основе углепластика была поставлена задача повышения надежности диагностики изделий из композиционных материалов на основе углепластика в реальном времени за счет определения момента начала разрушения материала композита.

Поставленная задача решается за счет того, что в предполагаемом способе акустико-эмиссионного контроля дефектов в композиционных конструкциях на основе углепластика, включающем установку на образец акустических преобразователей, работающих в режиме приема и излучения, калибровку, статическое нагружение нескольких образцов со ступенчатым изменением нагрузки через установленный интервал, определение времен прихода каждого сигнала на акустические преобразователи, расчет по разности времен прихода координат всех зарегистрированных сигналов акустической эмиссии, локация источников сигналов акустической эмиссии, первоначально осуществляют ступенчатое статическое нагружение нескольких образцов из углепластика с одинаковым концентратором напряжений до их полного разрушения, фиксируют на каждой ступени нагружения значения медианы амплитуд сигналов и структурных коэффициентов и рассчитывают пороговые значения для данных параметров по формулам:

где РD(ƒ)max, РD(ƒ)min - соответственно максимальные и минимальные значения структурных коэффициентов при минимальной и максимальной нагрузке, определяемые по формуле:

где m - число зарегистрированных сигналов при i-ом интервале нагружения; D2, D3 - наборы коэффициентов вейвлет-разложения 2-го и 3-го уровней детализации, полученные при частоте дискретизации исходного сигнала f=2 МГц;

SMed=[Med(a)max-Med(a)min]⋅0,1, где Med(a)max, Med(a)min - максимальное и минимальное значение медианы амплитуды сигналов акустической эмиссии при максимальной и минимальной нагрузке, определяемое по формуле:

Med {a1, a2am}, где a1, а2аm - амплитуда сигналов акустической эмиссии, зарегистрированных при нагружении образца, затем осуществляют статическое нагружение композиционной конструкции из углепластика, фиксируют значения структурных коэффициентов и медианы амплитуд сигналов акустической эмиссии, сравнивают их с пороговыми значениями и при одновременном снижении структурного коэффициента и увеличении медианы амплитуды данной группы сигналов судят о наличии дефекта и его координатах.

На фиг. 1 показана локация сигналов акустической эмиссии, зарегистрированных при статическом нагружении образца из углепластика Т700. На фиг. 2 показана зависимость изменения медианы амплитуды сигналов акустической эмиссии от нагрузки и порог данного параметра при испытании образца. На фиг. 3 показана зависимость изменения структурного коэффициента сигналов акустической эмиссии от нагрузки и порог данного параметра при испытании образца. На фиг. 4 приведена локация сигналов акустической эмиссии на лонжероне горизонтального оперения самолета, выполненного из углепластика Т700. На фиг. 5 показана зависимость изменения медианы амплитуды сигналов акустической эмиссии от нагрузки и порог данного параметра при испытании лонжерона. На фиг. 6 показана зависимость изменения структурного коэффициента сигналов акустической эмиссии от нагрузки и порог данного параметра при испытании лонжерона. На фиг. 7 показана зависимость деформации материала в области разрушения от времени.

Способ реализуется следующим образом.

Сначала определяют пороговые значения для медианы амплитуды сигналов акустической эмиссии и структурного коэффициента. Для этого контролируемый композиционный образец из углепластика, из которого выполнена конструкция, с концентратором напряжений устанавливают в нагружающую машину и на нем размещают четыре акустических преобразователя, работающие в режиме приема и образующие локационную антенну. Затем проводится калибровка образца с целью определения скорости звука в объекте контроля во всех направлениях. Для этого каждый преобразователь последовательно переключают в режим излучения, а остальные акустические преобразователи работают в режиме приема и регистрируют сигналы акустической эмиссии от преобразователя, работающего в режиме обратного пьезоэффекта. По временам прихода и расстояниям между преобразователями рассчитывается скорость звука. Калибровочные данные заносятся в программу. При нагружении в режиме реального времени выполняют регистрацию и локацию сигналов акустической эмиссии. Для этого определяют времена прихода каждого сигнала на акустические преобразователи и по разности времен прихода рассчитывают координаты сигналов акустической эмиссии. Затем осуществляется статическое нагружение контролируемого образца со ступенчатым изменением нагрузки на величину , где Pmax максимальная нагрузка; n - число этапов нагружения. На каждой ступени нагружения образец выдерживают в течение промежутка времени Δt. Для зарегистрированных из области концентратора напряжений сигналов акустической эмиссии определяют координату источника (Степанова Л.Н., Чернова В.В., Рамазанов И.С. Методика локации сигналов акустической эмиссии при статических испытаниях образцов из углепластика // Дефектоскопия, 2015, №4, С. 53-62). Для полученного источника рассчитывают медиану амплитуды и структурный коэффициент сигналов. Амплитуда сигналов акустической эмиссии определяется по их оцифрованной форме. Затем рассчитывается медиана амплитуды сигналов, зарегистрированных в заданном интервале нагрузки. Для расчета структурного коэффициента выполняется разложение сигнала акустической эмиссии по алгоритму быстрого вейвлет-преобразования (алгоритм Мала). Определяют коэффициенты детализации вейвлет-разложения и вычисляют их максимальные значения для второго и третьего уровней. При частоте дискретизации исходного сигнала ƒ=2 МГц второму уровню вейвлет-разложения соответствует диапазон частот (500-250) кГц, третьему уровню - диапазон частот (125-250) кГц (Степанова Л.Н., Рамазанов И.С., Чернова В.В. Вейвлет-анализ структуры сигналов акустической эмиссии при прочностных испытаниях образцов из углепластика // Контроль. Диагностика, 2015, №7, С. 54-62.). Структурный коэффициент одного сигнала находится из отношения:

, где D2, D3 - наборы коэффициентов вейвлет-разложения 2-го и 3-го уровней детализации, полученные при частоте дискретизации исходного сигнала ƒ=2 МГц. При большом числе сигналов акустической эмиссии рассчитывается среднее значение для каждого интервала нагрузки в виде:

. где m - число зарегистрированных сигналов при i-ом интервале нагружения. Затем выполняют увеличение нагрузки на величину ΔР, регистрируют и локализуют сигналы акустической эмиссии и выполняют расчет медианы амплитуды и структурного коэффициента. Строят зависимость изменения данных параметров от нагрузки. Пороговое значение структурного коэффициента определяется по формуле:

где PD(ƒ)mах, PD(f)min - соответственно максимальное и минимальное значения структурных коэффициентов при минимальной и максимальной нагрузке, а порог медианы амплитуды сигналов акустической эмиссии определяется как:

где Med(a)max, Med(a)min - соответственно максимальное и минимальное значение медианы амплитуды сигналов акустической эмиссии при минимальной и максимальной нагрузке. Затем на контролируемую композиционную конструкцию устанавливают преобразователи акустической эмиссии, выполняют калибровку, и ее данные заносят в программу. Осуществляют статическое нагружение со ступенчатым изменением нагрузки с одновременной регистрацией и локацией сигналов акустической эмиссии. На каждой ступени нагружения контролируемый объект выдерживают в течение промежутка времени Δt. При этом выполняют кластеризацию зарегистрированных сигналов акустической эмиссии и определяют координату центра кластера, которую принимают за координату источника (Степанова Л.Н, Рамазанов И.С., Кабанов С.И. и др. Кластеризация источников сигналов акустической эмиссии по скорости нарастания переднего фронта // Дефектоскопия, 2009. №10, С. 27-35).

Для каждого источника рассчитывают медиану амплитуды и структурный коэффициент сигналов и строят зависимость данных параметров от нагрузки и затем сравнивают с полученными пороговыми значениями. О моменте разрушения судят по одновременному превышению порогового значения медианы амплитуды сигналов акустической эмиссии и уменьшению структурного коэффициента.

Пример 1. Осуществляли контроль дефектов образца из углепластика 7700 с концентратором напряжений в виде отверстия диаметром d=14 мм. В соответствии с ГОСТ 33375-2015 «Композиты полимерные. Метод испытания на растяжение образцов с открытым отверстием» отверстие должно быть не более, чем 1/6 ширины образца. Размер отверстия составлял 1/7 ширины образца, что не противоречило требованиям ГОСТа и позволяло осуществлять устойчивую локацию сигналов акустической эмиссии, зарегистрированных при его статическом нагружении (фиг. 1). Акустико-эмиссионный контроль выполнялся с использованием диагностической акустико-эмиссионной системы СЦАД-16.10 с «плавающими» порогами селекции (свидетельство RU.C.27.007.A №40707, зарегистрирована в Государственном реестре средств измерений под номером 45154-10). На образцы устанавливалась пьезоантенна из четырех ПАЭ типа ПК-01-07 с полосой пропускания (100…700) кГц.

Нагружение выполнялось ступенчато через интервал ΔР=10 кН. Локация сигналов акустической эмиссии в области отверстия образца началась при нагрузке Р=40 кН (источник 1 на фиг. 1). Кроме того, при превышении нагрузки значения Р=110 кН был локализован источник 2 (фиг. 1). Для источника 1 были рассчитаны значения медианы амплитуды сигналов и структурные коэффициенты на каждой ступени нагружения и построены зависимости данных параметров от нагрузки (фиг. 2, фиг. 3).

По формулам (1), (2) были определены пороговые значения для медианы амплитуды сигналов (фиг. 2) и структурного коэффициента (фиг. 3), равные SMed=425 мB, .

Затем был проведен акустико-эмиссионный контроль дефектов при прочностных испытаниях лонжерона горизонтального оперения самолета из углепластика Т700 длиной 3 м. Пьезоантенна с геометрическими размерами 300×150 мм устанавливалась в области предполагаемого разрушения, в зоне крепления имитатора подкоса к верхней полке лонжерона. Выполнено статическое нагружение со ступенчатым изменением нагрузки на ΔР=1 кН. На фиг. 4 показана локация зарегистрированных сигналов акустической эмиссии в области разрушения испытываемой конструкции. Зарегистрированные сигналы кластеризовали. Сигналы кластера 1 с геометрическими размерами 70×50 мм были локализованы в зоне крепления имитатора подкоса. Для кластера 1 выполнили расчет медианы амплитуды сигналов (фиг. 5) и структурные коэффициенты (фиг. 6) на каждой ступени нагружения и построены зависимости данных параметров от нагрузки. Анализ показал, что при нагрузке Р=15 кН медиана амплитуды составила 447 мВ, а структурный коэффициент после превышения нагрузкой значения Р=15 кН равнялся 2,94.

Одновременно выполнялось измерение напряженно-деформированного состояния материала с использованием многоканальной микропроцессорной тен-зометрической системы ММТС-64.01 (свидетельство RU.C.34. 007.А №44412) класса точности 0,2. В соответствии с расчетными данными тензодатчики 1 и 2 типа ПКС (свидетельство RU.C.28.007.A №30935) сопротивлением R=200 Ом, базой L=12 мм, коэффициентом тензочувствительности К=2,12 были наклеены в области предполагаемого разрушения на верхнюю полку лонжерона соответственно с внешней и внутренней сторон. В процессе нагружения тензодатчик 2 испытывал деформацию сжатия, а показания тензодатчика 1 до нагрузки Р=15 кН (t=290 с) практически не изменялись (фиг. 7). При превышении нагрузкой данного значения материал углепластика в области наклейки тензодатчика 1 начал растягиваться, чему соответствовало увеличение деформации тензодатчика 1 (фиг. 7). Дальнейший рост нагрузки привел к разрушению конструкции лонжерона в контролируемой тензосистемой области. Таким образом, проведенное тензометрирование подтвердило область разрушения, полученную при расчете конструкции. При этом с применением предложенного способа акустико-эмиссионного контроля были определены координаты дефекта конструкции и момент его появления.

Предложенный способ по сравнению с аналогами позволяет определять момент начала разрушения композиционных конструкций на основе углепластика за счет введения критерия одновременного учета изменения двух основных информативных параметров сигналов акустической эмиссии: медианы амплитуды и структурного коэффициента. При этом критерием появления дефекта является совпадение момента времени снижения структурного коэффициента и увеличения медианы амплитуды относительно вычисленных порогов.


СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ ДЕФЕКТОВ В КОМПОЗИЦИОННЫХ КОНСТРУКЦИЯХ НА ОСНОВЕ УГЛЕПЛАСТИКА
Источник поступления информации: Роспатент

Showing 11-20 of 40 items.
11.04.2019
№219.017.0b40

Способ определения координат источников сигналов акустической эмиссии и устройство для его осуществления

Изобретение относится к неразрушающему контролю металлических конструкций с использованием метода акустической эмиссии. Способ включает установку n акустических преобразователей, образующих пьезоантенну, калибровку конструкции, регистрацию сигналов акустической эмиссии каждым измерительным...
Тип: Изобретение
Номер охранного документа: 0002684443
Дата охранного документа: 09.04.2019
02.05.2019
№219.017.4868

Способ получения электрической энергии во время движения железнодорожных объектов и автономный источник электропитания электрических приборов наземных объектов железнодорожного транспорта

Группа изобретений относится к путевым устройствам, взаимодействующим с поездом. Способ получения электрической энергии во время движения железнодорожных объектов заключается в следующем. Под рельсом располагают П-образный магнитопровод, снабженный вставкой из постоянного магнита и генерирующей...
Тип: Изобретение
Номер охранного документа: 0002686775
Дата охранного документа: 30.04.2019
24.05.2019
№219.017.5dd1

Способ регенерации моющих и обезжиривающих растворов

Изобретение относится к области очистки воды, в частности к способу регенерации моющих и обезжиривающих растворов. Способ включает отстаивание с отделением масла от водной фазы с последующей обработкой последней химическим реагентом и фильтрацией. Водную фазу на стадии обработки химическим...
Тип: Изобретение
Номер охранного документа: 0002688855
Дата охранного документа: 22.05.2019
23.07.2019
№219.017.b6ee

Машина для испытания на трение и изнашивание

Изобретение относится к испытательной технике, а именно к испытаниям на трение и изнашивание, и может быть использовано для испытания абразивных инструментов и обрабатываемости различных материалов, в частности к испытаниям абразивных кругов, применяемых для шлифования рельсов в пути. Машина...
Тип: Изобретение
Номер охранного документа: 0002695042
Дата охранного документа: 18.07.2019
31.07.2019
№219.017.ba9c

Способ виброобработки конструкции для изменения напряженно-деформированного и структурного состояния материала

Изобретение относится к области мостостроения, в частности к стабилизации геометрических размеров сварных конструкций путем виброрезонансного нагружения, и может быть использовано для снятия остаточных напряжений в сварных главных и продольных балках проезжей части пролетных строений мостов....
Тип: Изобретение
Номер охранного документа: 0002695912
Дата охранного документа: 29.07.2019
12.08.2019
№219.017.be44

Способ изготовления спеченного изделия

Изобретение относится к области производства изделий из порошковых материалов, а именно к изготовлению изделий методом горячего прессования преимущественно карбидной керамики, и может быть использовано в производстве абразивного инструмента, конструкционной керамики, бронекерамики. В способе...
Тип: Изобретение
Номер охранного документа: 0002697063
Дата охранного документа: 09.08.2019
02.10.2019
№219.017.d0bc

Способ усиления имеющего трещину в сварном шве металлического элемента пролетного строения моста

Изобретение относится к области мостостроения и может быть использовано для усиления элементов, имеющих трещину в сварных швах прикрепления ребер жесткости к стенке балки, а также для предотвращения развития трещин в сварных швах. Способ включает установку элемента усиления на расстоянии от...
Тип: Изобретение
Номер охранного документа: 0002700133
Дата охранного документа: 12.09.2019
24.10.2019
№219.017.d9e8

Способ автоматического контроля качества уплотнения балластного слоя рельсового пути и устройство для его осуществления

Изобретение относится к железнодорожному транспорту, а именно к технологии ремонта железнодорожного пути, а именно для контроля качества уплотнения балластного слоя. Способ заключается в том, что осуществляют синхронное измерение пространственных координат точек, одна из которых расположена на...
Тип: Изобретение
Номер охранного документа: 0002703819
Дата охранного документа: 22.10.2019
26.10.2019
№219.017.dae8

Способ измерения нагрузок на рельсы при воздействии колес железнодорожного подвижного состава

Изобретение относится к области метрологии и предназначено для определения нагрузок (вертикальных и боковых сил), воздействующих на поверхность катания и боковую грань головки рельса при его контактном взаимодействии с колесом подвижного состав. Сущность: осуществляют установку в четырех зонах...
Тип: Изобретение
Номер охранного документа: 0002704141
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.daeb

Акустико-эмиссионный способ определения дефектов структуры образца из углепластика

Использование: для определения дефектов структуры образца из углепластика. Сущность изобретения заключается в том, что сначала зона контроля образца из углепластика разбивается на квадратные ячейки, в каждой из которых осуществляется регистрация сигналов акустической эмиссии от имитатора, их...
Тип: Изобретение
Номер охранного документа: 0002704144
Дата охранного документа: 24.10.2019
Showing 11-20 of 21 items.
19.01.2018
№218.016.0df6

Способ определения координат источников сигналов акустической эмиссии

Использование: для неразрушающего контроля металлических конструкций с использованием метода акустической эмиссии. Сущность изобретения заключается в том, что выполняют установку акустических преобразователей на конструкцию с образованием пьезоантенны и акустического преобразователя имитатора в...
Тип: Изобретение
Номер охранного документа: 0002633002
Дата охранного документа: 11.10.2017
19.01.2018
№218.016.0e19

Стенд испытаний боковых рам тележек железнодорожного подвижного состава

Изобретение относится к измерительной технике, в частности к стендам для испытания боковых рам тележек. Стенд содержит систему акустико-эмиссионного контроля с подсоединяемыми к ней датчиками, нагружающее устройство, содержащее основание, на котором смонтированы стойка со средствами для...
Тип: Изобретение
Номер охранного документа: 0002633001
Дата охранного документа: 11.10.2017
09.06.2018
№218.016.5c81

Ультразвуковой способ определения внутренних механических напряжений

Использование: для определения внутренних напряжений в рельсах бесстыкового пути. Сущность изобретения заключается в том, что в нагруженный исследуемый объект и ненагруженный его аналог вводят импульсы ультразвуковых колебаний продольных и поперечных волн, принимают прошедшие через объект...
Тип: Изобретение
Номер охранного документа: 0002655993
Дата охранного документа: 30.05.2018
25.08.2018
№218.016.7f05

Многоканальная акустико-эмиссионная система диагностики конструкций

Многоканальная акустико-эмиссионная система предназначена для проведения технической диагностики и неразрушающего контроля крупногабаритных конструкций при проведении прочностных испытаний. Содержит акустический преобразователь (1), предварительный усилитель (2), управляющее устройство канала...
Тип: Изобретение
Номер охранного документа: 0002664795
Дата охранного документа: 22.08.2018
29.12.2018
№218.016.ace8

Акустико-эмиссионный способ определения типа дефекта структуры образца из углепластика

Использование: для неразрушающего контроля и технической диагностики композиционных материалов на основе углепластиков акустико-эмиссионным методом. Сущность изобретения заключается в том, что сначала на образец из углепластика в область концентратора напряжений устанавливают тензодатчики и...
Тип: Изобретение
Номер охранного документа: 0002676209
Дата охранного документа: 26.12.2018
11.04.2019
№219.017.0b40

Способ определения координат источников сигналов акустической эмиссии и устройство для его осуществления

Изобретение относится к неразрушающему контролю металлических конструкций с использованием метода акустической эмиссии. Способ включает установку n акустических преобразователей, образующих пьезоантенну, калибровку конструкции, регистрацию сигналов акустической эмиссии каждым измерительным...
Тип: Изобретение
Номер охранного документа: 0002684443
Дата охранного документа: 09.04.2019
26.10.2019
№219.017.daeb

Акустико-эмиссионный способ определения дефектов структуры образца из углепластика

Использование: для определения дефектов структуры образца из углепластика. Сущность изобретения заключается в том, что сначала зона контроля образца из углепластика разбивается на квадратные ячейки, в каждой из которых осуществляется регистрация сигналов акустической эмиссии от имитатора, их...
Тип: Изобретение
Номер охранного документа: 0002704144
Дата охранного документа: 24.10.2019
04.02.2020
№220.017.fd8b

Способ акустико-эмиссионного контроля качества кольцевого сварного шва в процессе многопроходной сварки

Использование: для акустико-эмиссионного контроля качества кольцевого сварного шва. Сущность изобретения заключается в том, что устанавливаются по контуру шва широкополосные преобразователи, осуществляют калибровку объекта контроля, устанавливают пороги селекции выше уровня шумов и осуществляют...
Тип: Изобретение
Номер охранного документа: 0002712659
Дата охранного документа: 31.01.2020
13.06.2020
№220.018.26cc

Ультразвуковой способ определения механических напряжений в рельсах

Использование: для определения механических напряжений в рельсах. Сущность изобретения заключается в том, что в рельс излучающим и приемным пьезоэлектрическими преобразователями, оси которых ориентированы навстречу друг другу, вводят импульсы ультразвуковых колебаний продольных и поперечных...
Тип: Изобретение
Номер охранного документа: 0002723148
Дата охранного документа: 09.06.2020
14.06.2020
№220.018.26dc

Ультразвуковой способ определения механических напряжений в рельсах и устройство для его осуществления

Использование: для определения напряженного состояния рельсовых плетей. Сущность изобретения заключается в том, что излучающим пьезоэлектрическим преобразователем в нагруженный рельс и ненагруженный его аналог вводят импульсы ультразвуковых продольных и поперечных волн, принимают приемными...
Тип: Изобретение
Номер охранного документа: 0002723146
Дата охранного документа: 09.06.2020
+ добавить свой РИД