×
09.11.2018
218.016.9b5b

Результат интеллектуальной деятельности: Способ испытания на трещиностойкость образцов полимерных композиционных материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытаний на трещиностойкость, а именно к способам испытания на трещиностойкость образцов полимерных композиционных материалов. Сущность: размещают на контрастном фоне образец материала с предварительно выполненной на его конце трещиной, прикладывают к упомянутому концу образца материала растягивающее усилие, в процессе приложения растягивающего усилия освещают образец, измеряют прикладываемое усилие и формируют временную последовательность цифровых изображений образца в отраженном свете, на каждом цифровом изображении образца определяют положение вершины трещины и вычисляют ее длину, и на основании вычисленных значений длины трещины и измеренного значения прикладываемого усилия определяют характеристику трещиностойкости образца, причем положение вершины трещины определяют посредством измерения интенсивности пикселей вдоль линии трещины на каждом цифровом изображении образца, для вычисления длины трещины на одном из цифровых изображений задают контрольный сегмент в окрестности характерной точки, в качестве последней выбирают точку, положение которой остается неизменным относительно точки отсчета начала длины трещины в процессе испытания, на каждом цифровом изображении образца определяют положение контрольного сегмента посредством сравнения цифровых изображений, вычисляют смещение точки отсчета начала длины трещины относительно контрольного сегмента и по результатам вычисления определяют положение точки отсчета начала длины трещины, а длину трещины вычисляют как длину кривой между вершиной трещины и точкой отсчета начала длины трещины на соответствующем изображении. Технический результат: повышение точности определения характеристик трещиностойкости образцов полимерных композиционных материалов за счет более точного измерения длины трещины в процессе их испытания. 12 ил.

Изобретение относится к области исследований прочностных свойств материалов, а именно к способам испытания на трещиностойкость образцов полимерных композиционных материалов.

Испытания на трещиностойкость (определение вязкости разрушения) полимерных композиционных материалов проводятся для оценки сопротивления материалов росту трещины и определению константы GIC (критическая работа расслоения).

Одной из основных задач при проведении испытаний на трещиностойкость является измерение длины трещины как во время испытания, так и при последующей обработке результатов.

Существует ряд стандартов, определяющих перечень требований к проведению испытаний на трещиностойкость, например, ASTM 5528 (Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) и его российская адаптация ГОСТ 56815-2015 (Композиты полимерные. Метод определения удельной работы расслоения в условиях отрыва GIC).

Согласно этим стандартам, для определения длины трещины должен использоваться оптический микроскоп.

Известен способ испытания на трещиностойкость образцов композиционных материалов (RU 2267767, 2006), включающий нагружение растягивающим усилием образцов с предварительно выполненной трещиной и определение трещиностойкости на основании обработки результатов измерений длины трещины. Недостатком данного способа является отсутствие информации о методах измерения длины трещины, что исключает возможность автоматической обработки результатов измерения с заданной достоверностью.

Известен способ испытания на трещиностойкость образцов материалов (US 8094922, 2012), в котором прикладывают к образцу материала в виде бруса с предварительно выполненной трещиной усилие, в процессе приложения усилия освещают образец и формируют временную последовательность цифровых изображений образца в отраженном свете, на каждом цифровом изображении образца определяют положение вершины трещины и вычисляют ее длину, причем положение вершины трещины определяют посредством измерения интенсивности пикселей вдоль линии трещины на каждом цифровом изображении образца.

Известный способ не применим к проведению испытаний образцов полимерных композиционных материалов в виде бруса, поскольку в отличие от последних трещина в известном решении выполняется в середине длины образца, а не на его конце, что исключает применение методики расчета длины трещины по указанным выше стандартам.

Наиболее близким аналогом заявленного изобретения является способ испытания на трещиностойкость образцов полимерных композиционных материалов (US 9528945, 2016) в виде бруса, в котором размещают на контрастном фоне образец материала с предварительно выполненной на его конце трещиной, прикладывают к образцу материала растягивающее усилие, в процессе приложения растягивающего усилия освещают образец, измеряют прикладываемое усилие и формируют временную последовательность цифровых изображений образца в отраженном свете, на каждом цифровом изображении образца определяют положение вершины трещины и вычисляют ее длину, и на основании вычисленных значений длины трещины и измеренного значения прикладываемого усилия определяют характеристику трещиностойкости образца, причем положение вершины трещины определяют посредством измерения интенсивности пикселей вдоль линии трещины на каждом цифровом изображении образца.

В известном способе исследуют трещиностойкость образцов полимерных композиционных материалов с формой, близкой к квадратной, причем растягивающее усилие прикладывают к середине образца. Данный способ не учитывает случай использования образцов с формой, соответствующей ГОСТ 56815-2015, согласно которому образцы должны иметь форму бруса с длиной, превышающей ширину более чем в 5 раз, а растягивающее усилие должно прикладываться к концу образца с трещиной.

Кроме того, начало трещины согласно указанным стандартам отсчитывается от точки, положение которой остается неизменным относительно захватов, растягивающих противоположные поверхности конца образца. Указанная точка в процессе испытания будет значительно смещаться вдоль направления развития трещины из-за соответствующего смещения поверхностей конца образца (см. фиг. 1). Без учета данных смещений невозможно корректно определить длину трещины, что в свою очередь существенно снижает точность проведения испытаний на трещиностойкость образцов полимерных композиционных материалов.

Техническая проблема, на решение которой направлено заявленное изобретение, заключается в создании способа испытания на трещиностойкость образцов полимерных композиционных материалов в форме бруса, при котором возможно корректное измерение длины трещины в автоматическом режиме.

Техническим результатом, достигаемым заявленным изобретением, является повышение точности определения характеристик трещиностойкости образцов полимерных композиционных материалов за счет более точного измерения длины трещины в процессе их испытания.

Указанный технический результат достигается за счет того, что в способе испытания на трещиностойкость образцов полимерных композиционных материалов в виде бруса размещают на контрастном фоне образец материала с предварительно выполненной на его конце трещиной, прикладывают к образцу материала растягивающее усилие, в процессе приложения растягивающего усилия освещают образец, измеряют прикладываемое усилие и формируют временную последовательность цифровых изображений образца в отраженном свете, на каждом цифровом изображении образца определяют положение вершины трещины и вычисляют ее длину, и на основании вычисленных значений длины трещины и измеренного значения прикладываемого усилия определяют характеристику трещиностойкости образца, причем положение вершины трещины определяют посредством измерения интенсивности пикселей вдоль линии трещины на каждом цифровом изображении образца, для вычисления длины трещины на одном из цифровых изображений задают контрольный сегмент в окрестности характерной точки, в качестве последней выбирают точку, положение которой остается неизменным относительно точки отсчета начала длины трещины в процессе испытания, на каждом цифровом изображении образца определяют положение контрольного сегмента посредством сравнения цифровых изображений, вычисляют смещение точки отсчета начала длины трещины относительно контрольного сегмента и по результатам вычисления определяют положение точки отсчета начала длины трещины, а длину трещины вычисляют как длину кривой между вершиной трещины и точкой отсчета начала длины трещины на соответствующем изображении, причем растягивающее усилие прикладывают к упомянутому концу образца.

Существенность отличительных признаков подтверждается тем, что только совокупность всех действий и операций, описывающая изобретение позволяет решить поставленную техническую проблему с достижением заявленного технического результата, так как определение положения точки отсчета начала длины трещины относительно контрольного сегмента в окрестности характерной точки на каждом цифровом изображении с последующим вычислением длины трещины как длины кривой между вершиной трещины и точкой отсчета начала длины трещины с приложением растягивающего усилия к концу образца позволяет учитывать смещение точки поверхности конца образца, от которой отсчитывается начало длины трещины в процессе испытания образца полимерного композиционного материала, и за счет этого более точно измерять ее длину, повышая тем самым точность определения характеристик трещиностойкости данного образца.

Дополнительным техническим результатом, достигаемым заявленным изобретением, является повышение скорости обработки данных.

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами.

На фиг. 1 представлено цифровое изображение образца в процессе испытания;

на фиг. 2 представлены графики распределения интенсивности пикселей вдоль линий 1 и 2 на фиг. 1;

на фиг. 3 представлен график распределения интенсивности пикселей с уровнями интенсивности и зоной нечувствительности трещины;

на фиг. 4 представлено цифровое изображение образца в процессе испытания с множеством линий, вдоль которых анализируется распределение интенсивности пикселей;

на фиг. 5 представлено укрупненное изображение начала трещины в процессе испытания с отслеживанием перемещения точки отсчета начала трещины;

на фиг. 6 представлено цифровое изображение образца с определением длины трещины;

на фиг. 7 представлен интерфейс программы для выполнения способа по настоящему изобретению с загруженными данными;

на фиг. 8 представлен интерфейс программы с функцией калибровки изображения;

на фиг. 9 представлен интерфейс программы с функцией задания контрольных сегментов;

на фиг. 10 представлен интерфейс программы с областью расчета трещины;

на фиг. 11 представлен вид графиков распределения интенсивности пикселей в программе;

на фиг. 12 представлен вид таблицы данных, получаемых в программе по результатам испытания.

Способ испытания на трещиностойкость образцов полимерных композиционных материалов осуществляется следующим образом.

На этапе (1) размещают на контрастном фоне образец материала в виде бруса с предварительно выполненной на его конце трещиной.

Для создания контраста между поверхностью образца и фоном, в частном случае, торцевая поверхность образца, вдоль которой будет развиваться трещина, может быть покрыта тонким слоем белой матовой алкидной краски.

В соответствии с ГОСТ 56815-2015, длина бруса может более чем в 5 раз превышать его ширину, при этом трещина создается по центру ширины образца.

На этапе (2) прикладывают к образцу материала растягивающее усилие, в процессе приложения растягивающего усилия освещают образец, измеряют прикладываемое усилие и формируют временную последовательность цифровых изображений образца в отраженном свете (фиг. 1).

Данный этап может быть осуществлен на различных установках, например, могут быть использованы испытательные машины Instron 5985 и УТС 110-МН, для каждой из которых разрабатывается своя процедура импорта данных. В результате каждая из процедур дает на выходе однотипный двумерный массив данных, столбцами которого являются время и приложенное усилие.

Растягивающее усилие согласно заявленному изобретению прикладывается к упомянутому концу образца, на котором выполнена трещина. Для этого могут использоваться два захвата, устанавливаемые на противоположных поверхностях конца образца, и передающие на них растягивающее усилие в процессе испытания, в результате чего указанные поверхности смещаются, как показано на фиг. 1. В качестве захватов, по ГОСТ 56815-2015, могут быть использованы петли, блоки нагружения или вилки.

В качестве средства для формирования временной последовательности цифровых изображений образца может быть использована фотокамера, видеокамера или оптический микроскоп с функцией съемки в автоматическом режиме.

При испытании на установке УТС 110-МН используется программное обеспечение VIC Snap, входящее в оптический измерительный комплекс VIC-3D. Результатом работы приложения является последовательность изображений образца с трещиной в формате TIFF с заданным интервалом времени в процессе испытания.

В случае использования испытательной машины Instron 5985 видеокамера подключается непосредственно к управляющему компьютеру. Программное обеспечение BlueHill, используемое на установке Instron 5985, позволяет получать изображения с видеокамеры, записывая в ходе эксперимента видеофайл формата AVI, который далее экспортируется в серию TIFF изображений.

На этапе (3) на каждом цифровом изображении образца определяют положение вершины Т трещины и вычисляют ее длину.

Согласно изобретению, данный этап делится на несколько подэтапов.

На подэтапе (3.1) положение вершины Т трещины определяют посредством измерения интенсивности пикселей вдоль линии трещины на каждом цифровом изображении образца.

В частном случае, на данном подэтапе для каждого цифрового изображения строят графики интенсивности пикселей вдоль линий, перпендикулярных направлению развития трещины.

В качестве примера, на фиг. 1 показаны две линии, вдоль которых может быть осуществлено построение указанных графиков интенсивности, представленных на фиг. 2а) (линия 1) и б) (линия 2).

Анализируя данные графики, можно определить параметры, характеризующие уровни интенсивностей пикселей изображения: пороговое значение Ут уровня интенсивности пикселей, соответствующих трещине на цифровых изображениях образца, и уровень границы образца (Уг) (фиг. 3).

Поскольку интенсивность поверхности образца существенно выше интенсивности фона (в частности, в случае покраски поверхности образца на этапе (1)), по результатам анализа цифровых изображений можно легко определить границы образца и установить уровень границы образца. В частном случае, в качестве уровня границ образца устанавливают максимальное значение интенсивности пикселей за пределами видимых границ образца на одном из изображений, умноженное на экспериментально установленный коэффициент, характеризующий допустимые отклонения в уровне интенсивности пикселей вне границ образца в ходе испытания. Например, указанный коэффициент может составлять одиннадцать десятых.

Для определения порогового значения уровня интенсивности пикселей, соответствующих трещине на цифровых изображениях образца, на нескольких цифровых изображениях выделяют зону нечувствительности, в которой затруднено определение трещины. Зона нечувствительности выделена на фиг. 3 серым цветом.

На фиг. 2 видна принципиальная разница между участком образца без трещины и участком образца, имеющим трещину. На графике б) интенсивности пикселей, соответствующем участку образца с трещиной, образуется спад. В случае расположения трещины по центру ширины образца, отклонение данного спада от центра толщины должно составлять не более чем 15-20%.

В то же время, оба представленных графика имеют зону интенсивности, характеризующуюся относительно высоким и неравномерным уровнем интенсивности, которую принимают за зону нечувствительности. По результатам анализа указанной зоны на нескольких изображениях, устанавливают пороговое значение уровня интенсивности пикселей, соответствующих трещине на цифровых изображениях образца. В частности, в качестве порогового значения уровня интенсивности трещины устанавливают минимальное значение интенсивности пикселей в зоне нечувствительности, умноженное на экспериментально установленный коэффициент, характеризующий допустимые отклонения в уровне интенсивности пикселей в зоне нечувствительности в ходе испытания. Например, указанный коэффициент может составлять девять десятых.

Величина зоны нечувствительности зависит от качества покраски образца, качества измерительной камеры, качества освещения, нанесенных на образец меток, методов обработки изображений.

После определения указанных параметров на каждом графике находят границы образца и выбирают среди них график, в котором пороговое значение уровня интенсивности превышает минимальное значение интенсивности пикселей в пределах границ образца, а расстояние от указанного конца образца с трещиной до линии, вдоль которой построен график, является минимальным, и точку с указанным минимальным значением интенсивности пикселей в пределах границ образца на выбранном графике принимают в качестве положения вершины Т трещины.

Например, на фиг. 4 пунктирными показаны линии, у которых соответствующий график интенсивности имеет спад, подобный представленному на фиг. 2, б), а сплошными показаны линии, у которых соответствующий график интенсивности не имеет спада подобно графику, представленному на фиг. 2, а). В качестве вершины Т на фиг. 4 выбрана точка, соответствующая спаду на графике интенсивности последней по направлению развития трещины пунктирной линии. Посредством увеличения числа линий, по которым строятся соответствующие графики, можно дополнительно повысить точность определения вершины трещины.

На подэтапе (3.2) на одном из цифровых изображений задают контрольный сегмент в окрестности характерной точки, в качестве последней выбирают точку, положение которой остается неизменным относительно точки отсчета начала длины трещины в процессе испытания, на каждом цифровом изображении образца определяют положение контрольного сегмента посредством сравнения цифровых изображений, вычисляют смещение точки отсчета начала длины трещины относительно контрольного сегмента и по результатам вычисления определяют положение точки отсчета начала длины трещины.

Под «характерной точкой» в рамках настоящей заявки понимается точка, положение которой наиболее точно идентифицируется на каждом цифровом изображении образца.

В частном случае, в качестве контрольного сегмента задают сегмент в окрестности болтов одного из захватов, растягивающих образец (см. фиг. 5) размера, достаточного для идентификации его положения на каждом цифровом изображении образца.

Точка S отсчета начала длины трещины задается стандартом ГОСТ 56815-2015 как точка, расположенная между опорами захватов, растягивающих образец.

По первому изображению (фиг.5, а) в последовательности цифровых изображений можно определить смещение контрольного сегмента относительно точки S отсчета начала длины трещины, а на последующих изображениях (фиг.5, б) по данному смещению можно вычислить положение точки S' отсчета начала длины трещины.

Данный подэтап применим для определения положения точки отсчета начала длины трещины на каждой из двух сторон трещины.

На подэтапе (3.3) вычисляют длину трещины как длину кривой между вершиной Т трещины и точкой S' отсчета начала длины трещины на соответствующем изображении (фиг. 6).

Длина трещины может определяться как длина ветви параболы с вершиной в точке Т, что соответствует линии деформирования при консольном изгибе образца.

Поскольку в процессе приложения растягивающего усилия точка S отсчета начала длины трещины смещается в продольном и поперечном направлениях, как показано на фиг. 5, 6, вычисление длины трещины как длины кривой между вершиной Т трещины и точкой S' с учетом ее смещения позволяет более точно измерять длину трещины в процессе испытания.

На завершающем этапе (4) на основании вычисленных значений длины трещины и измеренного значения прикладываемого усилия определяют характеристику трещиностойкости образца.

В частном случае, для определения характеристики трещиностойкости образца материала могут быть вычислены значения критической работы расслоения GIC по формуле согласно ГОСТ 56815-2015:

где

Р - прикладываемое усилие;

а - длина трещины в процессе испытания;

b - ширина образца;

Е - модуль Юнга;

L - длина образца.

В данном случае, для сопоставления значений измеренной длины трещины и приложенной нагрузки может быть осуществлена синхронизация данных прикладываемого усилия с испытательной машины и длины трещины на каждом изображении по временным меткам, фиксируемым испытательной машиной.

Этапы (3) и (4) могут быть реализованы с помощью программы для ЭВМ, интерфейс которой с загруженными данными представлен на фиг. 7.

Слева вводятся основные параметры обработки, такие как место расположения файла данных с испытательной машины, папки с фотографиями, длина образца, алгоритм обработки изображения и его переменные, параметры калибровки изображения и алгоритмов технического зрения.

В середине располагаются данные эксперимента и изображения, по которым будет определяться длина трещины.

Справа располагаются расчетные параметры эксперимента, а также графики интенсивности изображения.

С целью обработки и для повышения контрастности изображения в программе могут использоваться различные таблицы отображения яркости (LUT), например, степенная, логарифмическая и другие. По сравнению с базовым изображением на изображении становится более ясно видно образец с установленными на нем зажимами. Для дальнейшего примера использовалось логарифмическое преобразование.

Для перевода длины отрезка из пикселей в миллиметры используется функция калибровки изображения (фиг. 8). На одном из изображений строится отрезок по предмету с известной длиной (в данном случае - по испытываемому образцу с нанесенными метками), при этом длина отрезка автоматически рассчитывается в соответствующей ячейке, а оператор задает реальную длину отрезка. При нажатии кнопки «Рассчитать» производится подсчет коэффициента пересчета длины отрезка.

После калибровки с помощью вспомогательной панели инструментов выделяются два контрольных сегмента, по которым будет рассчитываться точка отсчета начала длины трещины, в данном случае болты захватов (фиг. 9). При нажатии кнопок «Шаблон 1» или «Шаблон 2» шаблоны сохраняются в память. Уровень соответствия на последующих изображениях задается соответствующим коэффициентом.

Для определения длины трещины выделяется область, показанная на фиг. 10. Область разбивается на 20 линий (количество может регулироваться).

Вдоль указанных линий строятся графики интенсивности, некоторые из которых показаны на фиг. 11 (а-в). Прямоугольный пик связан с пересечением одной из указанных выше линий поверхности образца. На фиг. 11, а) показано распределение интенсивности вдоль линии 1 (фиг. 10). На фиг. 11, в) показано распределение интенсивности вдоль линии 15. На последнем графике видно падение интенсивности изображения в центре прямоугольного пика, что говорит о наличии трещины на поверхности образца. Четкости определения трещины может помешать плохая контрастность образца, как, например, вдоль линии 4 (фиг. 11, б). Видно «дробление» сигнала в начальной области образца, что связано с нанесенными на поверхность образца метками. Данную проблему можно устранить более аккуратной подготовкой образца на этапе (1).

Расчет длины трещины происходит автоматически (фиг. 7). Программа определяет по графикам интенсивности изображения вершину трещины, затем по заданным контрольным сегментам рассчитывается точка отсчета начала длины трещины. Между этими двумя точками определяется расстояние в пикселях, а потом с помощью калибровочного коэффициента оно пересчитывается в миллиметры. При этом оператор может отказаться от автоматического определения трещины и перейти в автоматизированный режим. Тогда длина трещины определяется по отрезку, указанному оператором.

График нагрузки и маркеры (в центре сверху на фиг. 7) позволяют оператору совместить данные с испытательной установки и изображения с камеры. В итоге в правом верхнем углу строится таблица данных (фиг. 12), включающая измеренные значения длины трещины и соответствующие значения GIC по выбранным оператором временным точкам.

Использование данной программы позволяет сократить время обработки результатов испытания с одного часа до 5-10 минут.

Способ испытания на трещиностойкость образцов полимерных композиционных материалов в виде бруса, в котором размещают на контрастном фоне образец материала с предварительно выполненной на его конце трещиной, прикладывают к образцу материала растягивающее усилие, в процессе приложения растягивающего усилия освещают образец, измеряют прикладываемое усилие и формируют временную последовательность цифровых изображений образца в отраженном свете, на каждом цифровом изображении образца определяют положение вершины трещины и вычисляют ее длину и на основании вычисленных значений длины трещины и измеренного значения прикладываемого усилия определяют характеристику трещиностойкости образца, причем положение вершины трещины определяют посредством измерения интенсивности пикселей вдоль линии трещины на каждом цифровом изображении образца, отличающийся тем, что для вычисления длины трещины на одном из цифровых изображений задают контрольный сегмент в окрестности характерной точки, в качестве последней выбирают точку, положение которой остается неизменным относительно точки отсчета начала длины трещины в процессе испытания, на каждом цифровом изображении образца определяют положение контрольного сегмента посредством сравнения цифровых изображений, вычисляют смещение точки отсчета начала длины трещины относительно контрольного сегмента и по результатам вычисления определяют положение точки отсчета начала длины трещины, а длину трещины вычисляют как длину кривой между вершиной трещины и точкой отсчета начала длины трещины на соответствующем изображении, причем растягивающее усилие прикладывают к упомянутому концу образца.
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Способ испытания на трещиностойкость образцов полимерных композиционных материалов
Источник поступления информации: Роспатент

Showing 21-30 of 204 items.
10.08.2014
№216.012.e771

Энергетическая установка

Изобретение относится к энергетике. Установка содержит источник водорода высокого давления, две герметичные капсулы, газодинамически связанные между собой, с входным и выходными патрубками, два турбодетандера, два потребителя мощности, основной потребитель водорода и краны, потребитель...
Тип: Изобретение
Номер охранного документа: 0002525042
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.ef08

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия содержит цилиндрический корпус с конусообразным диффузором на входе, установленное на стенке камеры устройство зажигания топливовоздушной смеси и пристыкованную соосно к диффузору на входе горелку. Горелка включает системы подачи жидкого и газообразного...
Тип: Изобретение
Номер охранного документа: 0002527011
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f6de

Нанокомпонентная энергетическая добавка и жидкое углеводородное топливо

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором. Также описывается...
Тип: Изобретение
Номер охранного документа: 0002529035
Дата охранного документа: 27.09.2014
10.11.2014
№216.013.04bb

Способ и устройство для исследования температуропроводности материала

Группа изобретений относится к области измерительной техники и может быть использована для исследования температуропроводности материалов. Подготовленный для исследования образец подвергают воздействию тепловой и механической нагрузке, в форме осевого одноосного механического растяжения и...
Тип: Изобретение
Номер охранного документа: 0002532609
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0d11

Плазменный двигатель на наночастицах металлов или металлоидов

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для...
Тип: Изобретение
Номер охранного документа: 0002534762
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.222f

Электроприводной насос

Электроприводной насос для газотурбинного двигателя (ГТД) содержит насос подачи рабочей среды и электропривод, включающий в себя электродвигатель и блок управления частотой его вращения, связанный с электродвигателем, датчиками и системой управления высшего уровня. Электроприводной насос также...
Тип: Изобретение
Номер охранного документа: 0002540204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22e5

Способ и газотурбинная установка для утилизации попутных нефтяных газов

Изобретение относится к нефтяной и газовой промышленности, а более конкретно к способу и установке для утилизации попутных нефтяных газов. Способ утилизации попутных нефтяных газов, содержащих сероводород, заключается в сжигании газов в камере сгорания и преобразовании выделяющейся тепловой...
Тип: Изобретение
Номер охранного документа: 0002540386
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ad

Установка для получения газа из гидрата газа

Изобретение относится к устройствам для получения газообразного и сжиженного топлив из залежей гидратов. Технический результат заключается в получении свободного сжатого газа высокого давления и сжиженного газа, обеспечении работы установки за счет собственных энергетических ресурсов,...
Тип: Изобретение
Номер охранного документа: 0002541354
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2bbb

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему....
Тип: Изобретение
Номер охранного документа: 0002542652
Дата охранного документа: 20.02.2015
27.03.2015
№216.013.351e

Устройство для формирования и испытания образцов тонких покрытий

Изобретение относится к лабораторной испытательной технике, а именно к устройству для формирования и испытания образца тонких покрытий в нагрузочных устройствах, например, для испытания тонких керамических теплозащитных покрытий на механическую прочность растяжением. Устройство представляет...
Тип: Изобретение
Номер охранного документа: 0002545082
Дата охранного документа: 27.03.2015
Showing 1-3 of 3 items.
03.07.2018
№218.016.69db

Устройство для анализа динамических процессов в рабочих колесах турбомашин

Изобретение может быть использовано для анализа быстропротекающих процессов в рабочих колесах турбомашин в процессе поузловой доводки рабочих колес турбин и компрессоров газотурбинных двигателей. Устройство обеспечивает анализ динамических процессов в рабочих колесах турбомашин в режиме...
Тип: Изобретение
Номер охранного документа: 0002659428
Дата охранного документа: 02.07.2018
13.03.2020
№220.018.0b64

Способ изготовления преформы рабочей лопатки вентилятора из композиционного материала

Изобретение относится к способам изготовления деталей из композиционных материалов, а именно к способам изготовления преформ рабочих лопаток вентилятора авиационного двигателя из композиционного материала. Способ осуществляют путем того, что к основе поочередно пришивают стежками фиксирующей...
Тип: Изобретение
Номер охранного документа: 0002716443
Дата охранного документа: 11.03.2020
21.04.2023
№223.018.5063

Способ определения предела прочности при растяжении керамических и композиционных материалов

Изобретение относится к области технической физики, а именно к способам определения предела прочности при растяжении керамических и композиционных материалов, и может быть использовано при определении прочностных и упругих характеристик материалов. Сущность: осуществляют нагрев рабочей зоны...
Тип: Изобретение
Номер охранного документа: 0002794108
Дата охранного документа: 11.04.2023
+ добавить свой РИД