×
23.10.2018
218.016.9511

Результат интеллектуальной деятельности: Электрод суперконденсатора

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике, в частности к суперконденсаторам. Изобретение может быть использовано в энергетике, при создании высокоэффективных генераторов и накопителей электрической энергии, в автономных мобильных миниатюрных слаботочных источниках питания, применяемых в системах микроэлектроники. Электрод выполнен в виде подложки, на которой сформирована матрица структур, образованных массивами вертикально ориентированных углеродных нанотрубок, покрытых полианилином, содержащим атомы изотопа углерода С-14. Изобретение позволяет улучшить электрические характеристики суперконденсатора и продлить срок его службы. 6 з.п. ф-лы, 1 ил.

Изобретение относится к электронной технике, в частности к суперконденсаторам. Изобретение может быть использовано в энергетике, при создании высокоэффективных генераторов и накопителей электрической энергии, в автономных мобильных миниатюрных слаботочных источниках питания, применяемых в системах микроэлектроники.

Суперконденсаторы являются одними из наиболее перспективных устройств для хранения энергии. Суперконденсаторы обычно имеют конструкцию из двух поляризуемых электродов, разделенных сепаратором проницаемым для ионов, пропитанным электролитом. Недостатками многих известных суперконденсаторов является необходимость зарядки от внешнего источника питания.

Известен патент США US2858459 (МПК G21H 1/04, опубликован 28.10.1958), в котором описан конденсатор, состоящий из двух шаровидных обкладок, одна из которых находится внутри другой большего диаметра. На внутренней обкладке имеется источник бета излучения, от которого этот конденсатор заряжается. Недостатком указанного выше устройства является большие габариты и вес, малая мощность и малая величина тока при непрерывной работе.

Известен конденсатор с двойным электрическим слоем по патенту РФ RU 2172037 (МПК H01G 9/058, H01G 9/155, опубликован 10.08.2001 г.), содержащий электрод, выполненный из сорбента, например активированного угля, скрепленного частицами термопластичного полимера, при этом средний размер частиц полимера, равномерно распределенных между частицами активированного угля, составляет 0,08-0,9 от среднего размера частиц активированного угля. В качестве полимера использован полиэтилен.

Известен электрический суперконденсатор включающий размещенные в корпусе, по меньшей мере, одну секцию электродов, пропитанных электролитом и разделенных ионопроницаемым сепаратором, где электроды выполнены из материала, включающего металлизированную активную углеродную основу из смеси активного угля, электронопроводящей добавки в виде многостенных углеродных нанотрубок и полимерного связующего (патент РФ RU 2427052, МПК Н01G 9/058, H01G 9/155, опубликован 20.08.2011).

Наиболее близким по совокупности существенных признаков (прототипом) является электрод суперконденсатора, который содержит проводящий слой, покрытый слоем композита из полианилина и многостенных углеродных нанотрубок (ПАНИ/МУНТ) (Панкратов Д.В., Шумакович Г.П., Горшков К.В., Зейфман Ю.С., Горбачева М.А., Васильева И.С., Морозова О.В., Липкин А.В. Гибкий тонкий суперконденсатор на основе композита из многостенных углеродных нанотрубок и электропроводящего полианилина // Современные проблемы науки и образования. - 2012. - №4). Композит сформирован на проводящей подложке и состоит из полианилина и углеродных нанотрубок, причем углеродные нанотрубки в композите распределены хаотически и не имеют непосредственного контакта с проводящей подложкой. Суперконденсатор, содержащий такой электрод, не может заряжаться автономно, без применения внешнего источника электрического питания.

Технической проблемой настоящего изобретения является создание электрода для суперконденсатора, способного совмещать функции генерации, накопления и хранения электрической энергии в течение всего срока службы без зарядки от внешнего источника энергии, обеспечивая тем самым длительное автономное использование источника питания.

Технический результат заключается в том, что предлагаемый электрод суперконденсатора обеспечивает непрерывную зарядку за счет энергии бета распада нуклидов, что позволяет объединить функции генерации, накопления и хранения энергии, обеспечивает высокую емкость и количество хранимой энергии, низкое электрическое сопротивление электродов, высокие токи разрядки с выделением накопленной энергии за короткий промежуток времени, высокую теплопроводность электродов, которая обеспечивает хороший отвод тепла, что улучшает электрические характеристики суперконденсатора и продлевает срок его службы.

Для достижения вышеуказанных технических результатов в электроде суперконденсатора, содержащем углеродные нанотрубки и полианилин, электрод, выполнен в виде подложки, на которой в сформирована матрица структур, образованных массивами вертикально ориентированных углеродных нанотрубок, покрытых полианилином, содержащим атомы изотопа углерода С-14.

В частном случае реализации изобретения высота углеродных нанотрубок составляет от 30 до 100 мкм.

В частном случае реализации изобретения массивы вертикально ориентированных углеродных нанотрубок сформированы в матрице окон, вскрытых в диэлектрическом слое, нанесенном на каталитический слой, который нанесен на буферный слой подложки. В частном случае реализации изобретения окна с поперечным размером 40-60 мкм расположены в виде в виде упорядоченной матрицы. В частном случае реализации изобретения расстояние между центрами окон составляет 70-100 мкм. Окна могут быть выполнены многоугольной или квадратной или прямоугольной или круглой формы.

От прототипа предлагаемый электрод отличается тем, что нанотрубки в столбиках покрыты полианилином, содержащим изотоп С-14. Массивы углеродных нанотрубок, сформированные в окнах, покрытые полианилином, содержащим изотоп С-14, образуют так называемые столбчатые структуры или столбики. В результате электрохимического осаждения мономеров анилина, образуется электропроводящий и теплопроводящий пористый композитный материал, обладающий высокой электропроводностью и теплопроводностью. Использование полианилина на основе изотопа углерода С-14 приводит к тому, что полианилин приобретает радиоактивные свойства и испускает электроны высоких энергий от 5 до 140 кэВ. Это свойство связано с тем, что изотоп углерода С-14 подвергается бета распаду с выделением электронов, которые обладают высокой энергией. Средняя энергия электронов, возникающих при бета-распаде изотопа С-14 составляет 49 кэВ, а их максимальная энергия достигает 140 кэВ. Высокая энергия, образовавшихся электронов приводит к генерации в электролите пар положительно и отрицательно заряженных ионов. Энергия генерации одной такой пары составляет 2-3 эВ. Поэтому один электрон высоких энергий взаимодействует с электролитом многократно и производит 20000-30000 таких пар. Парные ионы разделяются электрическим полем двойного электрического слоя, который образуется на границе с электролитом при контакте его с поверхностью сформированной столбчатой структуры композита из вертикально ориентированных массивов углеродных нанотрубок и полианилина, в результате суперконденсатор приобретает свойство генерации энергии и самозаряда.

Упорядоченное расположение массивов углеродных нанотрубок по поверхности электрода обеспечивает увеличение механической прочности за счет того, что пучки массивов нанотрубок армируют полианилин, увеличение адгезии с подложкой, создание электрического контакта низкого сопротивления между композитом из вертикально ориентированных массивов углеродных нанотрубок и полианилина и подложкой (далее - композит), осуществление хорошего отвода тепла от слоя композита, за счет высокой теплопроводности углеродных нанотрубок и низкого теплового сопротивления контакта композита с подложкой. Диаметр столбиков определяется длиной пробега электронов, испущенных при бета распаде, в полианилине. Расстояние между центрами столбиков определяется необходимостью существования зазора между этими столбиками. Выбранная геометрия расположения столбиков пористого композита на основе пучков массивов углеродных нанотрубок, с осажденным на них полианилином обеспечивают зазор между столбиками с поперечным размером от 40 до 60 мкм, которые образуются в результате осаждения полианилина на поверхность углеродных нанотрубок. В этот зазор и в поры композита свободно проникает электролит, который вводится при сборке электрода в суперконденсатор. За счет пористости сформированной структуры электрода увеличивается площадь поверхности, по сравнению с прототипом. Увеличение поверхности ведет к росту емкости суперконденсатора, т.к. емкость обусловлена двойным электрическим слоем, который образуется при контакте электролита с поверхностью столбиков, образованных на основе массивов углеродных нанотрубок и полианаилина.

Совокупность признаков, характеризующих изобретение, позволяет изготовить электрод для суперконденсатора, который обладает высокой механической прочностью, высокой электро- и теплопроводностью, большой площадью поверхности и свойством обеспечивать зарядку суперконденсатора за счет энергии внутреннего источника бета-излучения.

Изобретение поясняется фигурой на которой изображена схема поперечного разреза электрода.

Электрод выполнен в виде подложки 1, на которой в сформирована матрица структур, образованных массивами 2 вертикально ориентированных углеродных нанотрубок, покрытых полианилином 3, содержащим атомы изотопа углерода С-14 (фиг.).

Способ изготовления электрода суперконденсатора, включает следующие операции: нанесении на проводящую подложку 1 буферного слоя 4, каталитического слоя 5, затем диэлектрического слоя 6. Вскрытие в диэлектрическом слое 6 матрицы окон 7 размером 40-60 мкм до каталитического слоя 5. Осаждение в окнах 7 массивов вертикально ориентированных углеродных нанотрубок 2. Функционализация поверхности углеродных нанотрубок 2 кислородсодержащими группами, формирование слоя полианилина 3, содержащего изотоп С-14, на вертикально ориентированных углеродных нанотрубках 2 электрохимическим осаждением. Проведение отжига.

Высота углеродных нанотрубок 2 составляет от 30 до 100 мкм. Расстояние между центрами окон 7, в которых формируют (выращивают) массив углеродных нанотрубок 70-100 мкм. Окна 7 могут быть любой формы, например квадратной или круглой формы.

Функциональная кислородсодержащая группа является карбоксильной группой. Перед функционализацией проводится отжиг, снижающий дефектность углеродных нанотрубок 2. Буферный слой 4 выполняют толщиной от 10 нм до 60 нм из алюминия, и/или титана, и/или нитрида титана, а каталитический слой 5 толщиной от 0,5 нм до 20 нм из железа и/или оксида железа, и/или кобальта, и/или оксида кобальта, и/или никеля, и/или оксида никеля, и/или их сплавов. Осаждение буферного и каталитического слоя можно реализовать магнетронным и/или электронно-лучевым способом, и/или иным способом.

Слой диэлектрика 6 выполняется из оксида/нитрида кремния, толщиной от 0.5 до 2 мкм. Осаждение диэлектрического слоя 6 можно реализовать магнетронным и/или электронно-лучевым способом, и/или иным способом.

Окна 7 в диэлектрике вскрываются методами планарной технологии, с использованием фотолитографии и травления.

Формирование вертикально ориентированных пучков углеродных нанотрубок 2 осуществляется путем плазмо-химического осаждения из газовой фазы. Реализуется данный метод путем введения подложки в нагретый реактор, подачи газа-носителя и углеродсодержащего газа, генерации плазмы. В качестве газа-носителя используют аргон и/или аммиак, и/или гелий, и/или азот, углеродсодержащего газа метан и/или этилен, и/или ацетилен, и/или окись углерода. Давление в реакторе при формировании массива углеродных нанотрубок задается в диапазоне от 60 Па до 550 Па, температура в диапазоне от 400°С до 800°С. Для генерации плазмы в реактор подается от генератора электромагнитное излучение с частотой 13,56 МГц и мощностью в диапазоне от 10 Вт до 200 Вт. Поперечный размер столбика нанотрубок 30-60 мкм. Диаметр сформированных углеродных нанотрубок составляет от 4 до 90 нм, а длина от 30 мкм до 100 мкм. Покрытие полианиалином, содержащим изотоп С-14, осуществляется электрохимическим методом из раствора мономера. Полианилин равномерно покрывает нанотрубки. Последующий отжиг завершает формирование столбиков композита углеродные нанотрубки - полианилин, которые упорядоченно расположены по поверхности электрода. Таким образом, формируется радиоактивный электрод.

Пример

Для формирования электрода суперконденсатора на подложку из высоколегированного кремния n-типа проводимости осаждали буферный слой титана толщиной 20 нм и каталитической слой никеля толщиной 2 нм. После этого, подложку помещали в магнетрон и проводили нанесение оксида кремния толщиной 1 мкм. После этого, методами планарной технологии (нанесение и обработка фоторезиста, фотолитография, удаление фоторезиста из окон, травление окон, удаление фоторезиста и окончательная отмывка подложки) осуществляли вскрытие окон в оксиде кремния. Далее подложки размещали на держателе в загрузочной камере, производилась откачка загрузочной камеры, затем с помощью загрузочного устройства образцы были введены в реактор и помещены на поверхность рабочего стола, нагретого до температуры 550°С. Давление в реакторе было доведено до 5×10-3 Па. После чего через реактор пропускали поток аргона со скоростью подачи 300 см3/мин, аммиака 100 см3/мин и ацетилена 100 см3/мин. Непосредственно перед проведением синтеза (формирования углеродных нанотрубок) было стабилизировано давление в реакторе до 400 Па. Произведена генерация высокочастотной плазмы с подачей электромагнитного излучения мощностью 20 Вт.

После формирования вертикально ориентированных массивов углеродных нанотрубок была произведена термическая обработка при температуре 350°С и давлении 5×10-3 Па.

Диаметр пучков массивов углеродных нанотрубок изменялся от 30 до 60 нм, что согласовано с самопоглощением электронов высоких энергий в полианилине.

Для функционализация поверхности углеродных нанотрубок карбоксильными группами использовалось технологическая линия химической обработки пластин. Нижняя поверхность пластины защищалась химически стойким лаком, пластина помещалась в сушильную камеру, камера откачивалась до остаточного давления 10 Па, температура в камере поднималась до 250°С. Сушка при этой температуре проводилась в течении 2 часов. Затем пластина с массивом нанотрубок извлекалась из камеры. Процесс функционализации заключался в химической обработке массива углеродных нанотрубок и проводиться в 2 стадии. Первая стадия заключалась в обработке углеродных нанотрубок в 37% соляной кислоте течении 1 часа. Пластина помещалась в ванну с раствором соляной кислоты и выдерживалась в ней 1 час. Затем пластина извлекалась из ванны и промывалась в потоке деионизованной воды в течении 10 минут. Эта операция способствует очистке углеродных нанотрубок от остатков катализатора. Вторая стадия заключалась в обработке в смеси концентрированных серной и азотной кислоты в соотношении 1:3. Пластина с массивом углеродных нанотрубок помещалась в этот раствор, который поддерживался при температуре 60°С и выдерживалась в нем в течении 2-х часов. Затем углеродные нанотрубки промывались в деионизованной воде при температуре 80°С в течении 12 часов. Затем пластина помещалась в вакуумную камеру, давление в камере понижалось до 5×10-3 Па, камера нагревалась до температуры 200°С и в этих условиях пластина выдерживалась 30 минут. Затем камера охлаждалась, давление в ней поднималось до атмосферного и пластина извлекалась.

Для электрохимического осаждения полианилина на функцианализированную поверхность углеродных нанотрубок приготавливался раствор анилина, изготовленного на основе изотопа углерода С-14, цитрата натрия, фосфата калия, тетра бората натрия (весовое соотношение 2:1:1:1) в 0.05 молярном растворе хлорида калия. Для приготовления раствора хлорида калия применялась деионизованная вода. В раствор добавлялся КОН, пока рН раствора не становилось равным 6. Этот раствор помещался в гальваническую ванну, пластина закреплялась на аноде гальванической ванны, причем обеспечивался контакт электрода анода с проводящей пластиной. Подложка, нижняя поверхность которой была изолирована, помещалась в этот раствор. На подложке поддерживался потенциал +300 мВ, время осаждения составляло 4-10 минут. По окончании этого процесса пластина извлекалась из гальванической ванны, пленка химически стойкого лака удалялась механическим способом, производилась промывка пластины в деионизованной воде, в течении 10 часов, а затем сушка в вакууме при температуре 150-200°С в течении 24 часов.

Таким образом, был изготовлен электрод, который при помещении в макет суперконденсатора подтвердил свою работоспособность, и выполнение заявленных функций. Ток при разряде практически не изменялся, что связано со способностью электрода подзаряжать суперконденсатор.


Электрод суперконденсатора
Электрод суперконденсатора
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
04.04.2018
№218.016.318f

Способ формирования эмитирующей поверхности автоэмиссионных катодов

Изобретение относится к способам изготовления автоэмиссионных катодов с применением углеродных нанотрубок и может быть использовано для изготовления элементов и приборов вакуумной микро- и наноэлектроники. Способ включает осаждение на подложку электропроводящего буферного слоя, осаждение...
Тип: Изобретение
Номер охранного документа: 0002645153
Дата охранного документа: 16.02.2018
09.06.2018
№218.016.5d28

Полевой эмиссионный элемент и способ его изготовления

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Полевой эмиссионный элемент содержит электропроводящую подложку 1, расположенный на ней диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002656150
Дата охранного документа: 31.05.2018
11.06.2018
№218.016.614e

Способ изготовления радиоприёмного устройства

Изобретение относится к способу изготовления радиоприемного устройства с применением углеродных нанотрубок. Технический результат заключается в повышении стабильности работы и срока службы радиоприемного устройства с применением углеродных нанотрубок. Способ изготовления радиоприемного...
Тип: Изобретение
Номер охранного документа: 0002657174
Дата охранного документа: 08.06.2018
12.07.2018
№218.016.70ad

Способ изготовления электрода суперконденсатора

Изобретение относится к электронной технике, в частности к способам изготовления суперконденсаторов. Способ изготовления электрода суперконденсатора заключается в нанесении на проводящую подложку буферного слоя, каталитического слоя, затем диэлектрического слоя, вскрытии в диэлектрическом слое...
Тип: Изобретение
Номер охранного документа: 0002660819
Дата охранного документа: 10.07.2018
02.08.2018
№218.016.77b0

Радиоприёмное устройство

Использование: для создания элементов и приборов радиоприемной аппаратуры. Сущность изобретения заключается в том, что радиоприемное устройство, содержащее подложку с нанесенным на нее, по меньшей мере одним, диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на...
Тип: Изобретение
Номер охранного документа: 0002662908
Дата охранного документа: 31.07.2018
26.01.2019
№219.016.b45f

Способ изготовления полевого эмиссионного элемента

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке...
Тип: Изобретение
Номер охранного документа: 0002678192
Дата охранного документа: 24.01.2019
Showing 11-20 of 125 items.
20.01.2014
№216.012.9887

Способ изготовления датчика давления, содержащего углеродные нанотрубки

Изобретение относится к способам изготовления датчиков давления и может быть использовано в микро- и наноэлектронике для изготовлении систем для измерения давления окружающей среды. Способ изготовления датчика давления включает нанесение первого диэлектрического слоя на поверхность подложки,...
Тип: Изобретение
Номер охранного документа: 0002504746
Дата охранного документа: 20.01.2014
27.03.2014
№216.012.aed9

Металлокомпозитный баллон высокого давления

Баллон предназначен для использования в установках гидроабразивной резки. Баллон состоит из лейнера (1) и внешней силовой композиционной оболочки (2). Лейнер (1) содержит верхнее днище (4) с удлиненной горловиной (5), среднюю цилиндрическую часть (6) и нижнее днище (7) с элементом (8) для...
Тип: Изобретение
Номер охранного документа: 0002510476
Дата охранного документа: 27.03.2014
20.07.2014
№216.012.df0d

Способ формирования электропроводящих слоев на основе углеродных нанотрубок

Заявляемое изобретение относится к области электрической техники, в частности к способам создания электропроводящих слоев, применяемых в широких областях техники, в том числе в электронике или электротехнике, и может быть использовано для создания проводящих соединений в микросхемах. Способ...
Тип: Изобретение
Номер охранного документа: 0002522887
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df16

Устройство преобразования частоты генератора переменного тока

Изобретение относится к электротехнике и может быть использовано для питания различных электрических нагрузок напряжением изменяющейся частоты и амплитуды. Устройство содержит три синхронных многофазных генератора, имеющих общий привод, три многофазно - однофазных циклоконвертора с...
Тип: Изобретение
Номер охранного документа: 0002522896
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.ee45

Композитный адгезив

Изобретение относится к области фармацевтики и представляет собой композитный адгезив для крепления композиционных пломбировочных материалов к твердым тканям зуба, отличающийся тем, что в качестве исходного адгезива используют полимерный состав, содержащий 10-47,5 мас.% уретанди(мет)акрилата,...
Тип: Изобретение
Номер охранного документа: 0002526816
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f586

Способ изготовления рабочих органов почвообрабатывающих машин

Способ включает формообразование рабочих органов из горячекатаного биметаллического листа и термическую обработку. Основной слой биметалла изготавливают из легированной стали, содержащей, мас.%: углерод 0,10-0,50; кремний 0,5-1,5; марганец 0,5-1,5; хром 0.5-1,5; фосфор не более 0,025; сера не...
Тип: Изобретение
Номер охранного документа: 0002528687
Дата охранного документа: 20.09.2014
27.11.2014
№216.013.0bf0

Донная защита хвостового отсека ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для защиты хвостовых отсеков ракет-носителей от газодинамического воздействия струй работающих жидкостных ракетных двигателей (ЖРД). Донная защита хвостового отсека ракеты-носителя содержит подвижный кольцевой экран с...
Тип: Изобретение
Номер охранного документа: 0002534464
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d8f

Способ изготовления двухслойных горячекатаных листов

Изобретение может быть использовано для изготовления изделий, эксплуатирующихся в широком температурном интервале (до -60°C) в условиях повышенного коррозионного износа под воздействием морской воды и других агрессивных сред. Биметаллическую заготовку получают путем электрошлаковой наплавки на...
Тип: Изобретение
Номер охранного документа: 0002534888
Дата охранного документа: 10.12.2014
10.04.2015
№216.013.3b4d

Устройство дистанционного слежения в исследовательской радиационно-защитной "горячей" камере

Изобретение относится к устройству видеонаблюдения и может быть использовано для слежения за технологическими процессами в радиационно-защитных «горячих» камерах. Технический результат: расширение диапазона видеонаблюдения за счет вращения исполнительного механизма в двух взаимно...
Тип: Изобретение
Номер охранного документа: 0002546669
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cef

Способ производства горячекатаного проката повышенной прочности

Изобретение относится к области металлургии, а именно к производству горячекатаного проката повышенной прочности из низколегированной стали, предназначенного для изготовления деталей большегрузных автомобилей, подъемно-транспортных механизмов и сельскохозяйственных машин методом штамповки,...
Тип: Изобретение
Номер охранного документа: 0002547087
Дата охранного документа: 10.04.2015
+ добавить свой РИД