×
17.10.2018
218.016.9305

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ НЕФТИ ОТ ГЕТЕРОАТОМНЫХ КОМПОНЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области очистки нефтей и нефтепродуктов, от серо-, азот- и кислородсодержащих соединений путем контактирования с неорганическим сорбентом и обработки ультразвуком, и может быть использовано в подготовке нефти к транспортировке и/или в цикле подготовки сырой нефти к переработке или очистке нефтепродуктов перед использованием. Способ очистки нефти от гетероатомных компонентов включает использование сорбента в виде смеси порошков оксидов: NiO:CuO:CoO:CaO в соотношении 1,0:2,0:1,0:(0,5-0,7) массовых частей, которую перемешивают с нефтью в соотношении 1:5 при атмосферном давлении. Полученную смесь сорбента с нефтью подвергают воздействию ультразвука с частотой 22 кГц и интенсивностью 0,15 Вт/м при времени обработки не более 10 мин, фильтруют. Остатки нефти с сорбента смывают смесью растворителей гексан-бензол-этанол, с последующей его отгонкой при атмосферном давлении. Обработанную нефть направляют на переработку. Использованный сорбент промывают смесью растворителей бензол-диметилкетон для удаления сорбированных гетероатомных соединений. Технический результат: уменьшение содержания в нефти гетероатомных компонентов на 5,28-5,34%, снижение кинематической вязкости нефти до 50 мм/с. 1 з.п. ф-лы, 1 табл., 1 пр., 2 ил.

Изобретение относится к области очистки нефтей и нефтепродуктов, от серо-, азот- и кислородсодержащих соединений путем контактирования с неорганическим сорбентом и обработки ультразвуком, и может быть использовано в подготовке нефти к транспортировке и/или в цикле подготовки сырой нефти к переработке или очистке нефтепродуктов перед использованием.

Известен способ очистки нефтепродуктов (керосиновой и дизельной фракций) от серосодержащих соединений [RU 2171826 С1, МПК (2000.01) C10G 25/00, C10G 25/05, опубл. 10.08.2001] посредством адсорбции в центробежном поле (во вращающемся барабане) путем совместного вращения адсорбента и исходного нефтепродукта в роторе при массовом соотношении адсорбента и нефтепродукта, которое поддерживают в пределах (1,5-2,0):1. Число оборотов вращения ротора барабана составляет 2000-2500 об/мин. Время вращения ротора 30-40 минут. В качестве адсорбента используют: силикагель марки АСК или оксид алюминия марки К-6.

Этим способом возможна переработка только нефтепродуктов, а не самой нефти.

Известен способ очистки сероводород- и меркаптансодержащей нефти [RU 2510640 С1, МПК C10G 27/04 (2006.01), опубл. 10.04.2014], включающий физическую очистку нефти от сероводорода и меркаптанов за счет концентрирования удаляемых компонентов в газовой фазе с выведением жидкого остатка в качестве товарной нефти и химическую очистку удаленных компонентов. Причем, физическую очистку осуществляют путем отдувки нефти циркулирующим газом в колонном аппарате при температуре отдувки и давлении 0,05÷0,099 МПа абс. с получением товарной нефти и газа отдувки. Химическую очистку осуществляют путем прямого каталитического окисления сероводорода и меркаптанов в газе отдувки кислородом воздуха с последующей подачей по меньшей мере части продуктов окисления на отдувку в качестве циркулирущего газа и промывкой балансовой части продуктов окисления товарной нефтью с получением очищенного газа.

Способ является многостадийным и его применение для очистки нефти ограничивается составом удаляемых соединений, а именно, только соединениями серы.

Известен способ очистки нефти и нефтепродуктов от соединений серы [RU 2394874 С1, МПК (2006.01) C10G 29/04, C10G 32/02, опубл. 20.07.2010], путем контактирования с осажденной медью на железной загрузке, отделения загрузки и последующего растворения выделенных соединений серы в растворителе и регенерации активности медного компонента загрузки и растворителя. Очистку производят в противотоке потока нефти или нефтепродуктов, подаваемого «снизу-вверх», и потока железной загрузки с осажденной медью, подаваемого «сверху-вниз». Образующуюся динамическую гетерогенную систему «жидкость-твердое» обрабатывают ультразвуком с частотой 10-25 кГц и мощностью 1-3 кВт. Массовое количество меди в загрузке к массовому количеству общей серы в нефти или нефтепродуктах варьируют в пределах: Сuв загрузке : Sобщая : (1,5-2,0):1,0. Этот способ выбран в качестве прототипа.

Данный способ может быть использован для очистки нефти с высоким содержанием серы (более 5% масс.) только от соединений серы.

Техническим результатом предлагаемого изобретения является создание способа очистки нефти не только от соединений серы, но и от других гетероатомных компонентов.

Предложенный способ очистки нефти от гетероатомных компонентов, также как в прототипе, включает обработку ультразвуком с частотой 22 кГц.

Согласно изобретению используют сорбент в виде смеси порошков оксидов: NiO:CuO:CoO:CaO в соотношении 1,0:2,0:1,0:(0,5-0,7) массовых частей, которую перемешивают с нефтью в соотношении 1:5 при атмосферном давлении. Полученную смесь сорбента с нефтью подвергают воздействию ультразвука интенсивностью 0,15 Вт/м2 при времени обработки не более 10 мин, затем фильтруют. Остатки нефти с сорбента смывают смесью растворителей гексан-бензол-этанол, с последующей его отгонкой при атмосферном давлении. Обработанную нефть направляют на переработку.

Использованный сорбент промывают смесью растворителей бензол-диметилкетон для удаления сорбированных гетероатомных компонентов.

В способе предусматривается физико-химическая очистка нефти для удаления гетероатомных соединений за счет использования неорганического сорбента сложного состава, включающего оксиды металлов и продукты их высокотемпературного взаимодействия.

Использование сорбента предложенного состава позволяет уменьшить содержание в нефти гетероатомных компонентов на 5,28÷5,34%. Кроме того, за счет уменьшения содержания гетероатомных компонентов происходит снижение кинематической вязкости нефти с 85 мм2/с до 50 мм2/с.

В таблице 1 представлены результаты очистки нефти от гетероатомных компонентов.

На фиг. 1 представлена термограмма используемого в способе сорбента до обработки нефтью, где кривая 1 отражает динамику изменения веса при нагревании, кривая 2 - разность температур между образцом и эталоном прибора (α-Al2O3), кривая 3 - тепловой поток при нагревании.

На фиг. 2 приведена термограмма используемого в способе сорбента после обработки нефтью, где кривая 1 отражает изменение веса образца при нагревании, кривая 2 - разность температур между образцом и эталоном прибора (α-Al2O3), кривая 3 - тепловой поток при нагревании.

Пример

Использовали готовые микронные порошки оксидов металлов NiO, CuO, СоО, СаО, полученные термическим разложением оксалатов в предельных углеводородах [RU 2468892 С1, опубл. 10.12.2012], которые смешали в пропорции 1,0:2,0:1,0:(0,5-0,7) массовых частей (таблица 1).

Образцы сорбента смешивали со сборной товарной нефтью в соотношении 1:5 (по массе) механическим путем и подвергали воздействию ультразвука с частотой 22 кГц и интенсивностью 0,15 Вт/м2 в ультразвуковой ванне ПСБ-4035-05 в течение времени не более 10 минут. Затем смесь отфильтровали с помощью бумажного фильтра. Обработанный сорбент после фильтрования промыли смесью растворителей гексан-бензол-этанол в соотношении 1:2:4 (по объему), отделив нефть. Затем для удаления гетероатомных соединений, сорбированных на сорбенте, промыли смесью растворителей бензол-диметилкетон в соотношении 1:2 (по объему).

После обработки сорбентом и фильтрования определяли содержание в нефти гетероатомных компонентов и ее вязкость.

Элементный состав нефти определяли с использованием CHNS-анализатора «Vario EL Cube». Идентификацию гетероатомных соединений проводили с использованием ИК- и ЯМР 1Н - спектроскопии и хроматомасс-спектрометрии. ИК-спектры регистрировали с помощью FT-IR спектрометра «Nicolet 5700» в диапазоне 4000-400 см-1. Спектры ЯМР 1Н получали с использованием ЯМР-Фурье спектрометра «AVANCE AV 300» фирмы Bruker при 300 МГц в растворах CDCl3. Хроматомасс-спектрометрический анализ осуществляли с использованием магнитного хроматомасс-спектрометра DFS фирмы «Thermo Scientific» (Германия). Кинематическую вязкость нефти определяли вискозиметром Штабингера при 20°С.

Для количественной оценки работы сорбента часть сорбента до смешения с нефтью и после фильтрования нефти с адсорбированными веществами подвергали дифференциальному термическому анализу, который проводили с использованием термоанализатора SDT Q600.

Гетероатомные соединения в исследуемой нефти представлены сложной смесью ароматических гетероциклических компонентов. В составе сернистых соединений идентифицированы бензо-, дибензо- и нафтобензотиофены и их алкилпроизводные, среди которых преобладают дибензотиофеновые структуры. Среди азотистых соединений установлено присутствие карбазола и его алкилгомологов, алкилпроизводных пиридина, хинолина и тиофенохинолина.

Исходное содержание в нефти серосодержащих соединений составляло 1,42 мас. %, азотистых - 0,34 мас. %, кислородных - 2,30 мас. %. После обработки сорбентом содержание в нефти сернистых соединений составило 0,90 мас. % (уменьшилось на 20,00%), азотистых - 1,28 мас. % (уменьшилось на 15,00%), кислородных - 2,28 мас. % (практически не изменилось). После обработки сорбентом вязкость нефти снизилась в 1,7 раза (указана кинематическая вязкость с 85 мм2/с до 50 мм2/с).

Результаты дифференциального термического анализа, полученные для образцов сорбента до и после смешивания с нефтью, представлены на фиг. 1 и фиг. 2 соответственно. Из фиг. 2 видно, что после 600°С вес уменьшился на 5,3%, т.е. сорбция на сорбенте прошла более эффективно (в 1,7 раза) в сравнении с образцом сорбента до сорбции (фиг. 1).

Технический результат изобретения заключается также в снижении вязкости нефти в 1,7 раза, что приводит к повышению производительности при транспортировке нефти по трубопроводу. Кроме того, при реализации изобретения нарабатывается товарная продукция - органические гетероатомные соединения. В способе концентрат гетероатомных соединений, удаленных с поверхности сорбента, направляют также в качестве коммерческого продукта для использования в технологиях тонкого органического синтеза.


СПОСОБ ОЧИСТКИ НЕФТИ ОТ ГЕТЕРОАТОМНЫХ КОМПОНЕНТОВ
СПОСОБ ОЧИСТКИ НЕФТИ ОТ ГЕТЕРОАТОМНЫХ КОМПОНЕНТОВ
Источник поступления информации: Роспатент

Showing 151-160 of 255 items.
09.06.2018
№218.016.5d04

Способ неразрушающего контроля неисправностей в электрической сети

Изобретение относится к области неразрушающего контроля и может быть использовано для предупреждения пожара при неисправности в электрической сети. Способ неразрушающего контроля неисправностей в электрической сети включает соединение вводного щита через переходное сопротивление с...
Тип: Изобретение
Номер охранного документа: 0002656128
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d1d

Микромеханический гироскоп

Изобретение относится к гироскопам вибрационного типа, в частности к микромеханическим гироскопам, которые предназначены для измерения угловой скорости движения основания. Микромеханический гироскоп содержит подвижную массу на двухосном резонансном подвесе, неподвижное основание, подвижные и...
Тип: Изобретение
Номер охранного документа: 0002656119
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d35

Способ определения концентрации кремния в воде

Изобретение относится к определению концентрации кремния в воде, а именно к определению кремния в присутствии гуминовых веществ, и может быть использовано в технологии очистки подземных и поверхностных вод от кремния как для технических, так и для питьевых целей. Заявленный способ определения...
Тип: Изобретение
Номер охранного документа: 0002656121
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d3d

Способ оценки радоноопасности участков застройки

Изобретение относится к измерению интенсивности альфа-излучения радона с поверхности грунтов и может быть использовано для оценки радоноопасности территорий застройки. Способ оценки радоноопасности участков застройки заключается в том, что в основании фундамента строящегося здания на дне...
Тип: Изобретение
Номер охранного документа: 0002656131
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d57

Способ контроля сплошности диэлектрического покрытия металлической подложки

Изобретение относится к области электроискровой и газоразрядной дефектоскопии путем обнаружения локальных дефектов и может быть использовано для обнаружения дефектов диэлектрических покрытий деталей электротехнического и радиотехнического оборудования, а также для контроля герметичности...
Тип: Изобретение
Номер охранного документа: 0002656292
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5df7

Гидроизоляционная композиция

Изобретение относится к области гидротехнического и гражданского строительства и может быть использовано для гидроизоляции строительных сооружений, гидротехнических сооружений из низкотемпературных грунтов и пород, а также при строительстве и ремонте дорог. Описана гидроизоляционная композиция,...
Тип: Изобретение
Номер охранного документа: 0002656473
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f14

Электроимпульсный буровой наконечник

Изобретение относится к техническим средствам для бурения скважин в крепких горных породах, мерзлых грунтах электроимпульсным способом высоковольтными разрядами, развивающимися внутри горных пород, и может быть использовано в горнодобывающей и строительной отраслях промышленности, а также при...
Тип: Изобретение
Номер охранного документа: 0002656653
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5fc8

Устройство для исследования разрушения высоковольтными разрядами горных пород под давлением

Изобретение относится к техническим средствам для исследования разрушения горных пород высоковольтными импульсными разрядами в близких к реальным условиям в скважинах на больших глубинах и может быть использовано в нефте- и газодобывающей отрасли для изучения возможности и эффективности бурения...
Тип: Изобретение
Номер охранного документа: 0002656632
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.6253

Гибридное транспортное средство с вентильным двигателем

Изобретение относится к гибридным транспортным средствам. Гибридное транспортное средство с вентильным двигателем содержит бортовой источник электроэнергии, к которому подключен накопитель электроэнергии, содержащий соединенные аккумуляторные батареи. Каждый преобразователь электроэнергии...
Тип: Изобретение
Номер охранного документа: 0002657707
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6294

Комплекс для моделирования химико-технологических процессов

Комплекс для моделирования химико-технологических процессов содержит задающее устройство, вычитатель, блок оптимизации, блок управления, матрицу фильтров, два преобразующих модуля, датчики температуры, давления и расхода технологической жидкости, электрореле, электродвигатель, соединенные...
Тип: Изобретение
Номер охранного документа: 0002657711
Дата охранного документа: 14.06.2018
Showing 11-11 of 11 items.
21.04.2023
№223.018.5002

Устройство для исследования процесса горения нанопорошков металлов или их смесей

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002746308
Дата охранного документа: 12.04.2021
+ добавить свой РИД