×
13.10.2018
218.016.91f3

Результат интеллектуальной деятельности: Способ управления автономной двухконтурной ядерной энергетической установкой

Вид РИД

Изобретение

№ охранного документа
0002669389
Дата охранного документа
11.10.2018
Аннотация: Изобретение относится к ядерной энергетике и может быть использовано для управления автономными ядерными энергетическими установками с реакторами водо-водяного типа, имеющими в своем составе турбогенераторную установку, включая стационарные и транспортные установки, при изменениях внешней электрической нагрузки. Способ управления автономной двухконтурной ядерной энергетической установкой при изменении внешней электрической нагрузки заключается в том, что поддержание частоты вращения турбины обеспечивают с помощью изменения мощности дополнительно введенной балластной электрической нагрузки генератора, причем сигнал на изменение заданного значения расхода питательной воды и заданной мощности реактора формируют по величине суммарной мощности генератора, с учетом необходимой мощности балластной электрической нагрузки, а с помощью регулирующего клапана подачи пара на турбину поддерживают давление перед ним. Технический результат – улучшение условий эксплуатации ядерной энергетической установки, повышение ее надежности и увеличение ресурса, при сохранении маневренности со стороны потребителей электрической энергии. 2 ил.

Изобретение относится к ядерной энергетике и может быть использовано для управления автономными ядерными энергетическими установками с реакторами водо-водяного типа, имеющими в своем составе турбогенераторную установку, включая стационарные и транспортные установки, при изменениях внешней электрической нагрузки.

Выбор принципов регулирования является важным этапом в разработке системы управления ядерной энергетической установкой (энергоблоком), так как даже при работе установки в базовом режиме, т.е. практически при постоянной мощности, возникают проблемы при отработке внутренних и внешних возмущений системой управления, состоящей из отдельных локальных регуляторов.

Известен способ автоматического управления энергоблоком атомной электростанции, заключающийся в отслеживании изменений внешней нагрузки системой регулирования турбины, установке требуемой мощности турбины при помощи регулирующего клапана, изменяющего расход пара на турбину, и регулировании давления пара изменением положения клапана питательной воды парогенератора по сигналу отклонения давления пара от заданного значения и управлением скоростью насоса питательной воды по отклонению сигнала расхода питательной воды от своего заданного значения с последующим изменением мощности реактора путем перемещения органов регулирования (см., например, патент RU №2565605, от 03.07.2014 МПК G21C 7/36, патент RU №2565772, от 06.08.2014, МПК G21C 7/36).

Недостатки данного способа заключаются в следующем:

- для поддержания частоты вращения турбины в заданных пределах при изменениях внешней электрической нагрузки требуется высокое быстродействие регулирующего клапана;

- имеется значительное запаздывание в контуре регулирования давления пара, равное, как минимум, времени испарения питательной воды в парогенераторе;

- при практически любых изменениях нагрузки необходимо маневрирование мощностью реактора.

Известен способ управления ядерной энергетической установкой (энергоблоком атомной электростанции), заключающийся в отслеживании изменений внешней нагрузки системой регулирования турбины при помощи регулирующего клапана, изменяющего расход пара на турбину по сигналу на поддержание частоты вращения турбины, и регулировании давления пара изменением положения клапана питательной воды парогенератора по сигналу отклонения давления пара от заданного значения, а также с использованием схемы коррекции заданной мощности реактора по сигналам отклонения давления пара от заданного значения и отклонения частоты вращения турбины от заданного значения (см., например, Юркевич Г.П. "Системы управления ядерными реакторами. Принципы работы и создания", М, 2009, стр. 331, рис. 5.12) (см. Приложение 1).

Недостатки данного способа заключаются в следующем:

- для поддержания частоты вращения турбины в заданных пределах при изменениях внешней электрической нагрузки требуется высокое быстродействие регулирующего клапана;

- имеется значительное запаздывание в контуре регулирования давления пара, равное, как минимум времени испарения питательной воды в парогенераторе;

- при практически любых изменениях нагрузки необходимо маневрирование мощностью реактора.

Кроме того, использование при управлении схемы коррекции заданной мощности реактора, направленное на увеличение маневренности энергоблока, одновременно ведет к повышению нагруженности оборудования установки вследствие более интенсивного маневрирования мощностью реактора.

Техническая задача, на решение которой направлено заявляемое изобретение, заключается в согласовании электрических процессов во внешней нагрузке с механическими и тепловыми процессами в турбогенераторной и реакторной частях установки за счет изменения мощности балластной электрической нагрузки.

Решение технической задачи позволяет получить технический результат, заключающийся в улучшении условий эксплуатации ядерной энергетической установки, в повышении ее надежности и увеличении ресурса, при сохранении маневренности со стороны потребителей электрической энергии.

Задача решается тем, что в способе управления автономной двухконтурной ядерной энергетической установкой при изменениях внешней электрической нагрузки, включающем отслеживание указанных изменений системами регулирования реакторной части установки и ее турбогенераторной части, состоящей из турбины и генератора, с использованием сигнала поддержания частоты вращения турбины и сигнала поддержания давления пара перед регулирующим клапаном, изменяющим расход пара на турбину, путем изменения расхода питательной воды при помощи питательного клапана, входящего в систему регулирования расхода питательной воды, и последующего соответствующего изменения мощности реактора, дополнительно введена балластная электрическая нагрузка генератора, с помощью изменения мощности которой поддерживают частоту вращения турбины, причем сигнал на изменение заданного значения расхода питательной воды и заданной мощности реактора формируют по величине суммарной мощности генератора, с учетом необходимой мощности балластной электрической нагрузки, а с помощью регулирующего клапана подачи пара на турбину поддерживают давление перед ним.

Предложенный способ управления ядерной энергетической установкой позволяет уменьшить запаздывание управляющих воздействий, направленных на поддержание частоты вращения турбогенератора. Это связано с тем, что частоту вращения турбогенератора поддерживают за счет регулирования мощности его электрической нагрузки с учетом саморегулирующих свойств асинхронного генератора, работающего в устойчивой области механической характеристики. При этом регулирование мощности электрической нагрузки осуществляется путем оперативного изменения мощности балластной электрической нагрузки, а не за счет быстродействия регулирующего клапана. Это приводит к уменьшению требований к быстродействию клапана и уменьшению механической нагрузки в самом клапане, что соответственно увеличивает ресурс его работы.

Поддержание давления пара перед регулирующим клапаном осуществляется самим этим клапаном - при увеличении давления пара перед клапаном последний открывается, уменьшая тем самым свое гидравлическое сопротивление и снижая давление перед собой, и наоборот. При этом, поскольку регулирование происходит за счет непосредственного изменения расхода пара, а не за счет изменения расхода питательной воды, это позволяет уменьшить запаздывание управляющих воздействий, направленных на поддержание давления, на время, необходимое для испарения питательной воды в парогенераторе.

Суть предложенного способа поясняется схемами, приведенными на фиг. 1 и фиг. 2. На фиг. 1 приведена общая схема управления ядерной энергетической установкой, на фиг. 2 - схема, иллюстрирующая распределение электрической мощности генератора между потребителями (электрическими нагрузками), включая управление балластной электрической нагрузкой.

Кроме того, на схемах использованы следующие обозначения:

Рп - давление пара,

Рзад - заданное значение по давлению пара,

ΔРп - отклонение давления пара от заданного значения,

Gпв - расход питательной воды,

Gпв зад - заданное значение по расходу питательной воды,

ΔGпв - отклонение расхода питательной воды от заданного значения,

ωтг - частота вращения турбины,

ωтг зад - заданное значение по частоте вращения турбины,

Δωтг - отклонение частоты вращения турбины от заданного значения,

Uc - напряжение на конденсаторной батарее в звене постоянного тока выпрямителя-преобразователя частоты,

Uh - напряжение на внешней нагрузке,

Uch - напряжение на потребителях собственных нужд,

Iн - ток внешней нагрузки,

Iбн - ток балластной нагрузки,

Iсн - ток потребителей собственных нужд,

Nсумм - суммарная мощность электрической нагрузки,

А - амперметр,

V - вольтметр,

- заданная скорость изменения расхода питательной воды,

РМД - регулятор максимального давления.

Пример реализации способа управления ядерной энергетической установкой рассмотрен для энергетической установки, где в качестве источника тепла использован ядерный реактор 1 и парогенератор 2, образующие реакторную часть установки или первый контур циркуляции.

Турбогенераторная часть установки или второй контур циркуляции содержит турбину 3 с асинхронным генератором 4. Электрический ток, полученный в турбогенераторной части установки при преобразовании асинхронным генератором 4 тепловой мощности турбины 3 в электрическую мощность, подают на выпрямитель-преобразователь частоты 5. Также в составе второго контура присутствуют: регулирующий клапан 6 подачи пара на турбину, конденсатор 7, клапан травления 8, обеспечивающий, при необходимости, сброс пара непосредственно в конденсатор 7, питательный насос 9, обеспечивающий подачу питательной воды в парогенератор 2 через питательный клапан 10, регулирующий расход питательной воды.

Электрическую мощность от асинхронного генератора 4 подают через выпрямитель-преобразователь частоты 5 на внешнюю электрическую нагрузку 11, балластную электрическую нагрузку 12, подключенную к звену постоянного тока выпрямителя-преобразователя частоты 5, и на потребители собственных нужд ядерной энергетической установки 13.

Изменения давления пара Рп во втором контуре, изменения частоты вращения турбины ωтг, изменения расхода питательной воды Gпв и изменения мощности потребителей (электрических нагрузок) отслеживают с помощью соответствующих датчиков: датчика измерения давления пара (Рп) 14, датчика измерения частоты вращения турбины (ωтг) 15, датчика измерения расхода питательной воды (Gпв) 16, датчика измерения напряжения в звене постоянного тока выпрямителя-преобразователя частоты (Uc) 17, датчика измерения напряжения на внешней нагрузке (Uн) 18, датчика измерения напряжения на потребителях собственных нужд (Uch) 19, датчика измерения тока балластной нагрузки (Iбн) 20, датчика измерения тока внешней нагрузки (Iн) 21 и датчика измерения тока потребителей собственных нужд (Iсн) 22. В качестве регуляторов, обеспечивающих поддержание заданного давления пара Рзад перед регулирующим клапаном 6, заданного значения расхода питательной воды Gпв зад и заданного значения частоты вращения турбины ωтг зад используют традиционные пропорционально - интегрально - дифференциальные регуляторы 23.

Управление ядерной энергетической установкой при изменениях внешней электрической нагрузки осуществляют следующим образом. При изменениях внешней электрической нагрузки 11 изменяется ток нагрузки Iн и, соответственно, электрическая мощность, вырабатываемая выпрямителем-преобразователем частоты 5. При наличии разбаланса между мощностью, передаваемой турбиной 3 асинхронному генератору 4, и мощностью, снимаемой с асинхронного генератора 4 выпрямителем-преобразоватем частоты 5, будет происходить отклонение частоты вращения турбины 3 от заданного значения. Сигнал об отклонении частоты вращения турбины Δωтг, поступает в регулятор 23 и из него на управление балластной нагрузкой 12. При отрицательном отклонении частоты вращения турбины 3 от заданного значения Δωтг (т.е. при частоте ωтг ниже заданной ωтг зад) мощность балластной нагрузки 12 уменьшается, при положительном - увеличивается. Вследствие изменения мощности балластной нагрузки 12 разбаланс мощностей уменьшается, и частота вращения турбины ωтг возвращается к заданному значению ωтг зад.

Заданное значение расхода питательной воды Gпв зад, которое одновременно является и заданным значением мощности реактора 1, формируют по величине суммарной электрической мощности потребителей Nсумм, включая необходимую мощность балластной электрической нагрузки 12, с учетом КПД преобразования тепловой и механической энергии в электрическую. При этом изменение мощности реактора 1 производят путем изменения расхода питательной воды Gпв за счет изменения положения питательного клапана 10 или изменения скорости вращения питательного насоса 9. Изменение мощности реактора 1 производят со скоростью изменения расхода питательной воды , минимизирующей возмущения параметров реакторной установки.

Изменение расхода питательной воды Gпв с некоторым запаздыванием, определяемым временем, необходимым для испарения питательной воды в парогенераторе 2, приводит к изменению расхода пара, вырабатываемого парогенератором и к изменению давления пара Рп перед регулирующим клапаном 6. Вследствие отклонения давления пара ΔРп от заданного значения Рзад формируют сигнал на изменение положения регулирующего клапана 6 в сторону поддержания давления пара Рп, то есть при увеличении давления Рп производят открытие регулирующего клапана 6, при уменьшении - закрытие. Изменение положения регулирующего клапана 6 приводит к изменению расхода пара, подаваемого на турбину 3, и к изменению мощности турбины 3. Изменение мощности турбины 3 ведет к изменению электрической мощности, вырабатываемой асинхронным генератором 4. При этом новое значение электрической мощности с точностью до механических потерь устанавливается равным механической мощности турбины 3.

Оперативное отслеживание изменений внешней электрической нагрузки за счет соответствующего изменения мощности балластной электрической нагрузки, с последующим неоперативным изменением мощности реакторной установки, позволяет осуществить эксплуатацию последней с минимальным количеством режимов маневрирования с изменением расхода питательной воды и при отсутствии травления пара в нормальных режимах.

Таким образом, способ управления автономной двухконтурной ядерной энергетической установкой при изменениях внешней электрической нагрузки, в котором поддержание частоты вращения турбины обеспечивают с помощью изменения мощности дополнительно введенной балластной электрической нагрузки генератора, позволяет улучшить условия эксплуатации ядерной энергетической установки, повысить ее надежность и увеличить ресурс, при сохранении маневренности со стороны потребителей электрической энергии.

Пример управления ядерной энергетической установкой

КТ - клапан травления, «Конд» - конденсатор, ПГ - парогенератор, ПК - питательный клапан, ПН - питательный насос, Р - реактор, РК - регулирующий клапан, РМД - регулятор максимального давления, ТГ - турбогенератор, Gпв - расход питательной воды, Рп - давление пара, ωтг - частота вращения ТГ, «зад» - заданное значение.

Способ управления автономной двухконтурной ядерной энергетической установкой при изменениях внешней электрической нагрузки, включающий отслеживание указанных изменений системами регулирования реакторной части установки и ее турбогенераторной части, состоящей из турбины и генератора, с использованием сигнала поддержания частоты вращения турбины и сигнала поддержания давления пара перед регулирующим клапаном, изменяющим расход пара на турбину, путем изменения расхода питательной воды при помощи питательного клапана, входящего в систему регулирования расхода питательной воды, и последующего соответствующего изменения мощности реактора, отличающийся тем, что поддержание частоты вращения турбины обеспечивают с помощью изменения мощности дополнительно введенной балластной электрической нагрузки генератора, причем сигнал на изменение заданного значения расхода питательной воды и заданной мощности реактора формируют по величине суммарной мощности генератора, с учетом необходимой мощности балластной электрической нагрузки, а с помощью регулирующего клапана подачи пара на турбину поддерживают давление перед ним.
Способ управления автономной двухконтурной ядерной энергетической установкой
Способ управления автономной двухконтурной ядерной энергетической установкой
Способ управления автономной двухконтурной ядерной энергетической установкой
Источник поступления информации: Роспатент

Showing 61-70 of 174 items.
16.03.2019
№219.016.e1ea

Устройство активной защиты акватории ударно-волновым воздействием на подводный объект

Изобретение относится к области защиты акваторий и инфраструктуры промышленных и иных охраняемых объектов, расположенных во внутренних водоемах и на континентальном шельфе, от подводных диверсантов и других подводных объектов. Предложено устройство активной защиты акватории ударно-волновым...
Тип: Изобретение
Номер охранного документа: 0002681967
Дата охранного документа: 14.03.2019
10.04.2019
№219.016.fef2

Одностадийный способ получения ароматического полиэфира

Настоящее изобретение относится к одностадийному способу получения ароматических полиэфиров реакцией нуклеофильного замещения, включающему взаимодействие 0,056-0,063 моль 4,4'-дихлордифенилсульфона, 90 мл диметилсульфоксида, 0,0024 моль катализатора оксида алюминия, 0,087 моль щелочного агента...
Тип: Изобретение
Номер охранного документа: 0002684328
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff03

Способ получения ароматических полиэфиров

Изобретение относится к области получения ароматических полиэфиров. Описан способ получения ароматических полиэфиров реакцией нуклеофильного замещения, включающий взаимодействие 0,0404 моль 4,4'-дихлордифенилсульфона и 0,0404 моль ароматических диоксисоединений в присутствии 0,044 моль...
Тип: Изобретение
Номер охранного документа: 0002684327
Дата охранного документа: 08.04.2019
10.04.2019
№219.016.ff0f

Ароматические полиэфирэфиркетоны, сополиэфирэфиркетоны и способ их капсулирования

Настоящее изобретение относится к способу получения капсулированных ароматических полиэфирэфир- и сополиэфирэфиркетонов. Описан способ капсулирования ароматических полиэфирэфиркетонов и сополиэфирэфиркетонов, полученных в результате синтеза смеси компонентов в соотношении: 0,021-0,035 моль...
Тип: Изобретение
Номер охранного документа: 0002684329
Дата охранного документа: 08.04.2019
20.04.2019
№219.017.351d

Способ послойного изготовления изделий из нескольких порошков и устройство для его осуществления

Изобретение относится к послойному изготовлению изделий из нескольких порошков. Способ включает изготовление в камере построения каждого слоя фазами, каждая из которых включает послойную подачу порошка из бункера с дозирующим устройством на технологически заданные участки рабочей поверхности...
Тип: Изобретение
Номер охранного документа: 0002685326
Дата охранного документа: 17.04.2019
20.04.2019
№219.017.3548

Инжекционный лазер

Использование: для создания инжекционного лазера. Сущность изобретения заключается в том, что инжекционный лазер включает выращенную на подложке лазерную гетероструктуру, содержащую активную область, заключенную между первым и вторым волноводными слоями, к которым с внешней стороны примыкают...
Тип: Изобретение
Номер охранного документа: 0002685434
Дата охранного документа: 18.04.2019
20.04.2019
№219.017.35ac

Устройство для послойного изготовления объемных изделий из двух и более порошковых компонентов

Изобретение относится к устройству для послойного изготовления объемных изделий и может быть использовано при изготовлении объемных изделий из двух или более разнородных порошковых компонентов. Устройство содержит камеру построения, платформу построения, порошковые питатели, лазерное устройство...
Тип: Изобретение
Номер охранного документа: 0002685328
Дата охранного документа: 17.04.2019
27.04.2019
№219.017.3c9f

Реконфигурируемый вычислительный модуль

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении удельных производительностей на единицу мощности потребления и на единицу площади. Реконфигурируемый вычислительный модуль, подключаемый к внутрикристальной кольцевой сети, содержит макроблок...
Тип: Изобретение
Номер охранного документа: 0002686017
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3cec

Композиционный материал на основе полифениленсульфона

Изобретение относится к применению композиционного материала в качестве суперконструкционного полимерного материала для аддитивных 3D-технологий методом послойного наплавления (FDM). Композиционный материал содержит следующие компоненты, мас.%: 85-95 полифениленсульфона (ПФС) и 5-15 талька....
Тип: Изобретение
Номер охранного документа: 0002686329
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3cf2

Крыло летательного аппарата с интегрированными солнечными панелями

Изобретение относится к области авиации, а именно к конструкции планеров летательных аппаратов, использующих в качестве силовой установки электродвигатели, функционирующие за счет энергии, получаемой с солнечных панелей, запасаемой в аккумуляторных батареях для полета в периоды недостаточной...
Тип: Изобретение
Номер охранного документа: 0002686350
Дата охранного документа: 25.04.2019
Showing 1-3 of 3 items.
10.05.2018
№218.016.388a

Способ управления автономной двухконтурной ядерной энергетической установкой при изменениях внешней электрической нагрузки

Изобретение относится к способу управления автономной двухконтурной ядерной энергетической установкой при изменениях внешней электрической нагрузки. В заявленном способе обеспечивается согласование электрических процессов, происходящих во внешней нагрузке, с механическими и тепловыми процессами...
Тип: Изобретение
Номер охранного документа: 0002646855
Дата охранного документа: 12.03.2018
29.05.2019
№219.017.67b0

Устройство диагностирования межканальной неустойчивости в реакторе с водой под давлением

Изобретение относится к ядерной энергетике, в частности к области контроля теплоносителя в активной зоне реактора, и предназначено для контроля возникновения межканальной неустойчивости (регулярных пульсаций расхода) в активной зоне реактора в режиме реального времени и может быть использовано...
Тип: Изобретение
Номер охранного документа: 0002414759
Дата охранного документа: 20.03.2011
29.05.2019
№219.017.67ea

Способ диагностики возникновения межканальной неустойчивости в реакторе с водой под давлением

Изобретение относится к ядерной энергетике, в частности к области контроля теплоносителя в активной зоне реактора с водой под давлением, и предназначено для контроля возникновения межканальной неустойчивости (регулярных пульсаций расхода) в активной зоне в режиме реального времени. Регистрируют...
Тип: Изобретение
Номер охранного документа: 0002427937
Дата охранного документа: 27.08.2011
+ добавить свой РИД