×
22.09.2018
218.016.8964

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ЦИФРОВОЙ ПЛАТФОРМОЙ В БЕСПЛАТФОРМЕННОЙ ГИРОВЕРТИКАЛИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002667320
Дата охранного документа
18.09.2018
Аннотация: Изобретение относится к системам ориентации и навигации летательных аппаратов, в частности к бесплатформенным гировертикалям, курсовертикалям и навигационным системам, в которых измерительная информация поступает с датчиков угловых скоростей и акселерометров. Способ управления цифровой платформой в бесплатформенной гировертикали включает измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную систему координат, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат и приведение цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат. При этом линейные ускорения в связанной системе координат предварительно фильтруются, а величина угловой скорости приведения цифровой платформы из зоны превышения допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат устанавливается в зависимости от величины линейных ускорений в инерциальной системе координат и значения признака включения приведения платформы в зону допустимых для управления значений линейных ускорений в инерциальной системе координат, за счет чего обеспечивается компенсация вибрационных и шумовых воздействий на гировертикаль. Технический результат - повышение точности измерения выходных углов ориентации объекта. 2 н.п. ф-лы, 1 ил.

Заявленное изобретение относится к системам ориентации и навигации летательных аппаратов, в частности к бесплатформенным гировертикалям, курсовертикалям и навигационным системам, в которых измерительная информация поступает с датчиков угловых скоростей и акселерометров.

Известны бесплатформенные инерциальные системы ориентации с радиальной коррекцией, в которых положение цифровой платформы в инерциальной системе координат определяется по показаниям датчиков угловой скорости, а приведение к местной вертикали осуществляется по показаниям акселерометров. В этом случае также компенсируется дрейф датчиков угловых скоростей. При этом осуществляется отключение приведения платформы при воздействии на подвижный объект линейных ускорений в связанной системе координат, вызванных разгоном и разворотом объекта.

Основным недостатком таких систем является накопление угловых погрешностей вызванных дрейфом датчиков угловых скоростей и движением объекта по сфере Земли при отключении обратной связи в гировертикали во время разгона и торможения. В результате чего значения ускорений в инерциальной системе координат после включения обратной связи гировертикали превышают допустимые для управления, что приводит к невозможности восстановления системы управления цифровой платформы.

Прототипом заявленного изобретения является способ управления бесплатформенной гировертикалью с радиальной коррекцией и устройство для реализации этого способа (Патент РФ №2574379, МПК: G01C 23/00, опубл. 10.02.2016 г.).

Известный способ включает измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорений в инерциальной системе координат с дополнительной возможностью выполнения вычислений и компенсации ошибок определения углов крена и тангажа при превышении допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат.

При этом устройство для реализации известного способа содержит трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок перерасчета линейных ускорений из связанной системы координат в инерциальную систему координат, блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформой при уменьшении линейных ускорений в инерциальной системе координат до значений, допустимых для управления цифровой платформой, блок приведения цифровой платформы для компенсации ошибок положения цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы.

При таком способе управления при наличии шумовых и вибрационных воздействий на гировертикаль величина амплитуды которых превышает допустимые для управления, система управления цифровой платформой будет отключена на всем промежутке времени действия вибраций. Это приведет к накоплению погрешностей измерения углов тангажа и крена, вызванных наличием дрейфа датчиков угловых скоростей и движением летательного аппарата по сфере Земли.

Техническим результатом заявленного изобретения является повышение точности измерения выходных углов ориентации объекта за счет компенсации вибрационных и шумовых воздействий на гировертикаль.

Указанный технический результат достигается способом управления цифровой платформой в бесплатформенной гировертикали, путем приведения цифровой платформы в зону управления бесплатформенной гировертикали, включающим измерение угловых скоростей и линейных ускорений, преобразование приращения углов крена и тангажа из связанной системы координат в инерциальную систему координат, вычисление и компенсацию ошибок определения углов крена и тангажа при допустимых для управления цифровой платформой значениях величин линейных ускорениях в инерциальной системе координат и приведение цифровой платформы при превышении допустимых для управления значениях величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат, при этом дополнительно введена фильтрация линейных ускорений в связанной системе координат, а величина угловой скорости приведения цифровой платформы из зоны превышения допустимых для управления значений величин линейных ускорений в инерциальной системе координат в зону допустимых для управления цифровой платформой значений величин линейных ускорений в инерциальной системе координат устанавливается в зависимости от величины линейных ускорений в инерциальной системе координат и значения признака включения приведения платформы в зону допустимых для управления значений линейных ускорений в инерциальной системе координат.

Заявленный технический результат достигается также бесплатформенной гировертикалью, содержащей трехосный блок датчиков угловых скоростей, трехосный блок датчиков линейных ускорений, блок цифровой платформы, блок вычисления углов крена и тангажа, блок пересчета линейных ускорений из связанной системы координат в инерциальную, блок управления цифровой платформой, блок приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат и блок включения приведения цифровой платформы, при этом блок цифровой платформы соединен первым входом с выходом блока датчиков угловых скоростей, вторым входом с выходом блока управления цифровой платформой, третьим входом с выходом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, первым выходом со входом блока вычисления углов крена и тангажа, и вторым выходом с первым входом блока пересчета линейных ускорений из связанной системы координат в инерциальную, который вторым входом соединен с первым выходом трехосного блока датчиков линейных ускорений, первым выходом со входом блока управления цифровой платформой, и вторым выходом с первым входом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, при этом дополнительно введены блок фильтрации линейных ускорений в связанной системе координат и блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы, причем, вход блока фильтрации линейных ускорений в связанной системе координат соединен со вторым выходом трехосного блока датчиков линейных ускорений, а выход со входом блока включения приведения цифровой платформы, блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы первым входом соединен с выходом блока включения приведения цифровой платформы, вторым входом с третьим выходом блока пересчета линейных ускорений из связанной системы координат в инерциальную, первым выходом со вторым входом блока приведения цифровой платформы в зону допустимых значений линейных ускорений в инерциальной системе координат, а вторым выходом соединен с четвертым входом блока цифровой платформы.

На Фиг. представлена структурно-функциональная блок-схема предложенной бесплатформенной гировертикали, где:

1 - трехосный блок датчиков угловых скоростей;

2 - трехосный блок датчиков линейных ускорений;

3 - блок цифровой платформы;

4 - блок пересчета линейных ускорений из связанной системы координат в инерциальную;

5 - блок управления цифровой платформой с возможностью отключения управления цифровой платформой при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат и включения управления цифровой платформой при достижении допустимых для управления значений величин линейных ускорений в инерциальной системе координат;

6 - блок вычисления углов крена и тангажа;

7 - блок включения приведения цифровой платформы;

8 - блок приведения цифровой платформы для вычисления и компенсации ошибок положения цифровой платформы при превышении допустимых для управления значений величин линейных ускорений в инерциальной системе координат;

9 - блок фильтрации линейных ускорений в связанной системе координат;

10 - блок анализа величины линейных ускорений в инерциальной системе координат и признака включения приведения цифровой платформы.

Заявленные способ и устройство работают следующим образом.

Информация об угловых скоростях в связанной системе координат по трем ортогональным осям летательного объекта передается из трехосного блока микромеханических датчиков угловых скоростей 1 в блок 3 цифровой платформы, в котором производится преобразование приращения углов из связанной системы координат в инерциальную и расчет углового положение цифровой платформы в виде коэффициентов aN матрицы направляющих косинусов. Коэффициенты матрицы направляющих косинусов передаются в блок 4 и в блок 6.

В блоке 6 по коэффициентам матрицы направляющих косинусов рассчитываются углы крена (γ) и тангажа (ϑ) летательного объекта в инерциальной системе координат.

Информация о линейных ускорениях в связанной системе координат по трем ортогональным осям летательного объекта передается из трехосного блока микромеханических акселерометров 2 в блоки 4 и 9.

В блоке 4 по информации об угловом положении цифровой платформы, поступающей из блока 3 в виде коэффициентов матрицы направляющих косинусов, производится пересчет линейных ускорений из связанной системы координат в инерциальную систему координат.

Результаты расчета в виде проекций ускорений на инерциальные оси Ах,у передаются в блоки 5, 8, 10.

В блоке 5 рассчитывается угловая скорость управления цифровой платформой , корректирующая положение цифровой платформы в блоке 3 по перекрестным инерциальным осям:

,

где ky - коэффициент усиления сигнала управления.

Если углы крена и тангажа определены с ошибкой, вызванной, например, дрейфом гироскопов или угловой скоростью облета вокруг Земли, то проекции ускорений на инерциальные оси не будут равны нулю Ах,у≠0. В результате, в блоке 5 будет сформирован корректирующий сигнал , с помощью которого в блоке 3 будет скомпенсирована ошибка углового положения цифровой платформы.

Действие линейных ускорений по связанным осям летательного объекта axl,yl,zl≠0 также будет вызывать появление в блоке 4 ускорений по инерциальным осям Аx,y, а, следовательно, и сигналы обратной связи . Однако в этом случае они будут не компенсировать ошибки определения углового положения цифровой платформы, а, наоборот, создавать их.

Величина допустимого значения Аa,y≤АД определяется заданными ошибками определения углов крена и тангажа.

При больших линейных ускорениях, когда Аx,y становится равной или больше АД, обратная связь системы управления разрывается - . В этот момент ошибки определения углов крена и тангажа будут возрастать из-за дрейфа гироскопов и скорости облета Земли.

При исчезновении линейных ускорений, вызванных разгонными двигателями летательного аппарата или виражами и координированными разворотами, величина накопленной ошибки определения углов, определяемая величиной Ах,у, может оказаться больше допустимой (Ax,yД), что не позволит включиться обратной связи в блоке управления цифровой платформой 5.

Приведение цифровой платформы в область линейных ускорений по инерциальным осям Ах,уД осуществляется следующим образом.

В блоке 7 по информации, поступающей из блока 9, анализируется величина, действующих по связанным осям линейных ускорений в виде:

,

где: - сумма квадратов текущих значений линейных ускорений, действующих по связанным осям; - сумма квадратов линейных ускорений, действующих по связанным осям в момент первоначального включения гировертикали при неподвижном объекте.

При в блоке 7 вырабатывается признак С=0, передаваемый в блок 10 и разрешающий включение приведения цифровой платформы в область значений Аx,y, допустимых для управления цифровой платформой. При вырабатывается признак С=1, запрещающий включение приведения гировертикали. Значение допустимого определяется коэффициентом δ, который устанавливается в соответствии с техническим заданием.

Для обеспечения качественного управления обратной связью признак С должен реагировать на постоянную составляющую линейных ускорений по связанным осям. При вибрационном воздействии на летательный аппарат признак С тоже будет носить знакопеременный характер, что приведет к искажениям выходной информации гировертикали. В связи с этим, линейные ускорения, поступающие в блок 7 должны быть отфильтрованы. В блоке 9 осуществляется фильтрация линейных ускорений по связанным осям, поступающих из блока 2 в блок 7.

Однако наличие фильтрации вызывает запаздывание определения признака С в блоке 7. В результате запаздывания при возрастании линейного ускорения по связанным осям за пределы зоны управления, приведение платформы осуществляется с ошибкой, определяемой величиной действующих линейных ускорений по связанным осям, что приводит к ошибкам определения углов крена и тангажа.

Минимизация ошибок, вызванных запаздыванием выработки признака С, осуществляется следующим образом. В блоке 10 анализируются ускорения по инерциальным осям Аx,y, текущее значение признака С и предыдущее значение Спред. В блоке 10 установлены следующие условия, которые определяют три возможных режима обратной связи.

Если признак С=1, то управление цифровой платформой не производится (обратная связь отключена).

Если признак С=0, Спред=0 и Аx,yд, то приведение цифровой платформы производится с ограниченной скоростью ωмин, обеспечивающей компенсацию дрейфа гироскопа.

Если признак С=0, Спред=1 и Аx,yд, то приведение цифровой платформы осуществляется со скоростью, выработанной в блоке 8:

где kп - коэффициент усиления сигнала приведения.

Таким образом, применение заявленного изобретение обеспечит повышение точности измерения выходных углов ориентации за счет подавления вибрационных и шумовых воздействий на летательный аппарат.


СПОСОБ УПРАВЛЕНИЯ ЦИФРОВОЙ ПЛАТФОРМОЙ В БЕСПЛАТФОРМЕННОЙ ГИРОВЕРТИКАЛИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ЦИФРОВОЙ ПЛАТФОРМОЙ В БЕСПЛАТФОРМЕННОЙ ГИРОВЕРТИКАЛИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Showing 21-26 of 26 items.
26.05.2019
№219.017.6186

Способ управления скоростью полёта самолёта с учетом стабилизации скорости

Изобретение относится к способу управления скоростью полета самолета с учетом стабилизации скорости. Для управления скоростью полета самолета используют основной управляющий сигнал, поступающий на привод тяги двигателей, а также дополнительный управляющий сигнал, поступающий на привод секций...
Тип: Изобретение
Номер охранного документа: 0002689054
Дата охранного документа: 23.05.2019
15.06.2019
№219.017.8350

Способ измерения угловой скорости летательного аппарата и устройство для его реализации

Группа изобретений относится к способу и устройству для измерения угловой скорости летательного аппарата. Для измерения угловой скорости летательного аппарата принимают первичный сигнал в цифровом виде, формируют масштабный коэффициент на заданный максимальный уровень выходного аналогового...
Тип: Изобретение
Номер охранного документа: 0002691551
Дата охранного документа: 14.06.2019
26.10.2019
№219.017.daca

Бесплатформенная инерциальная навигационная система

Изобретение относится к бесплатформенным инерциальным навигационным системам (БИНС). Заявленное изобретение представляет собой БИНС, включающую инерциальный моноблок, выполненный по меньшей мере с одной герметичной крышкой, и монтажную раму, снабженные фиксирующими элементами для закрепления...
Тип: Изобретение
Номер охранного документа: 0002704198
Дата охранного документа: 24.10.2019
26.03.2020
№220.018.0ff4

Способ цифровой фильтрации шумовой составляющей в инерциальных датчиках

Изобретение относится к области приборостроения и может быть использовано при построении одноосных и трехосных измерителей угловых скоростей и линейных ускорений с цифровым выходом информации. Сущность заявленного решения заключается в том, что способом цифровой фильтрации шумовой...
Тип: Изобретение
Номер охранного документа: 0002717552
Дата охранного документа: 24.03.2020
14.06.2020
№220.018.26d2

Маятниковый акселерометр

Изобретение относится к области точного приборостроения. Маятниковый акселерометр содержит герметичный корпус в виде двух цилиндров разного диаметра, сопряженных посредством конической сопрягающей поверхности, на которой расположены вертикально ориентированные гермовводы, при этом базирующая...
Тип: Изобретение
Номер охранного документа: 0002723151
Дата охранного документа: 09.06.2020
21.04.2023
№223.018.4fb8

Способ управления самолётом в режиме системы автоматического управления "уход на второй круг"

Изобретение относится к способу управления самолетом в режиме САУ «Уход на второй круг». Для управления самолетом приборную скорость формируют с учетом максимально допустимой скорости полета (V) для текущего положения закрылков и предкрылков с линейной интерполяцией между узловыми точками с...
Тип: Изобретение
Номер охранного документа: 0002792904
Дата охранного документа: 28.03.2023
Showing 11-16 of 16 items.
05.07.2018
№218.016.6ad4

Способ управления бесплатформенной гировертикалью с радиальной коррекцией и бесплатформенная гировертикаль для его реализации

Изобретение относится к области авиационного приборостроения и может быть использовано в бесплатформенных инерциальных системах, в частности в гировертикалях, курсовертикалях и навигационных системах, при измерении углов крена и тангажа подвижного объекта. Способ управления бесплатформенной...
Тип: Изобретение
Номер охранного документа: 0002659970
Дата охранного документа: 04.07.2018
18.05.2019
№219.017.5742

Способ измерения угловой скорости одноосным микромеханическим гироскопом и устройство для его реализации

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в пилотажных системах управления для измерения угловых скоростей подвижного объекта. Способ основан на компенсации влияния воздействия линейных ускорений на измеряемую гироскопом угловую скорость...
Тип: Изобретение
Номер охранного документа: 0002385462
Дата охранного документа: 27.03.2010
18.05.2019
№219.017.57a9

Трехосный микромеханический измеритель параметров движения

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в пилотажных системах управления при измерении угловых скоростей и линейных ускорений. Измеритель содержит корпус в виде шестигранного куба с базовыми поверхностями на боковых гранях,...
Тип: Изобретение
Номер охранного документа: 0002377576
Дата охранного документа: 27.12.2009
15.06.2019
№219.017.8350

Способ измерения угловой скорости летательного аппарата и устройство для его реализации

Группа изобретений относится к способу и устройству для измерения угловой скорости летательного аппарата. Для измерения угловой скорости летательного аппарата принимают первичный сигнал в цифровом виде, формируют масштабный коэффициент на заданный максимальный уровень выходного аналогового...
Тип: Изобретение
Номер охранного документа: 0002691551
Дата охранного документа: 14.06.2019
15.06.2019
№219.017.837c

Способ гибки длинномерных полых изделий с профилем открытого типа

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении изогнутых длинномерных профилей открытого типа. Внутри заготовки размещают набор вставок и осуществляют совместную гибку заготовки и вставок. В каждую из открытых полостей заготовки устанавливают...
Тип: Изобретение
Номер охранного документа: 0002691478
Дата охранного документа: 14.06.2019
26.03.2020
№220.018.0ff4

Способ цифровой фильтрации шумовой составляющей в инерциальных датчиках

Изобретение относится к области приборостроения и может быть использовано при построении одноосных и трехосных измерителей угловых скоростей и линейных ускорений с цифровым выходом информации. Сущность заявленного решения заключается в том, что способом цифровой фильтрации шумовой...
Тип: Изобретение
Номер охранного документа: 0002717552
Дата охранного документа: 24.03.2020
+ добавить свой РИД