×
28.08.2018
218.016.7fff

СПОСОБ ПОЛУЧЕНИЯ БИОДИЗЕЛЬНОГО ТОПЛИВА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к получению топлив из возобновляемого сырья. Способ получения биодизельного топлива заключается в том, что масло смешивают с низшим спиртом с получением смеси, затем проводят процесс переэтерификации с использованием воды и каталитически активной мембраны, состоящей из диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину, соединительного слоя, выполненного из пористого полимера, и каталитически активного слоя, образованного липолитическим микроорганизмом, при этом пористый полимер выбран из тканых или нетканых материалов из волокон полиэтилена, полипропилена, политетрафторэтилена, полиамида, при этом указанную смесь приводят в контакт с каталитически активным слоем мембраны, а воду - с диффузионным слоем мембраны, после чего продукт контактирования указанной смеси с каталитически активным слоем подвергают упариванию для удаления непрореагировавшего спирта с получением целевого биодизельного топлива, а продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин. Технический результат – усовершенствование технологии получения биодизельного топлива, что обеспечивается липолитическим микроорганизмом, находящимся в активном сосотоянии в течение всего времени контактирования, при этом продукт получают с достаточно высоким выходом. 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к области получения топлив из возобновляемого сырья, в частности, к области получения биодизельного топлива из растительных масел.

Под биодизельным топливом понимают смеси сложных эфиров жирных кислот, в особенности метиловых и этиловых эфиров жирных кислот.

Известны способы получения биодизельного топлива с использованием неорганического катализатора - кислоты или щелочи (US 6211390, 2001, WO 2005/093015, 2005; US 5713965, 1998; US 5525126, 1996). Общим и существенным недостатком данных решений является необходимость очистки продуктов от неорганического катализатора путем промывки водой с последующей нейтрализацией. Кроме того, к недостаткам можно отнести образование большого количества щелочных или кислых стоков, что отрицательно сказывается на экологических показателях процесса в целом.

Также описаны методы получения биодизельного топлива с использованием биокатализаторов: ферментов или нативных клеток различных липолитических микроорганизмов. Данные методы позволяют избежать присутствия неорганических примесей в продуктах, однако такие показатели как выход и конверсия исходного сырья для описанных способов не велики, поскольку при использовании биокатализатора невозможно использовать большой избыток спирта в исходной смеси. Кроме того, биокатализатор теряет свою активность в ходе реакции за счет образования глицерина.

Так, известен способ получения биодизельного топлива, проводимый с помощью биореактора, содержащего полупроницаемую мембрану из регенерированной целлюлозы и иммобилизированной на носителе липазы Candida antarctica lipase В (KR 101143313, 2012).

Недостатками данного способа являются необходимость использования дорогостоящей выделенной липазы, а также необходимость иммобилизации липазы, которая приводит к частичной потере каталитической активности.

Наиболее близким к изобретению является способ получения биодизельного топлива (CN 101265413, 2008) с использованием липазы, иммобилизированной на пористой мембране. Мембрана, при этом, выполнена в виде пустотелого волокна, находящегося внутри реактора. Смесь масла и спирта циркулирует в объеме реактора, вода - в полости волокна. Образующийся в качестве продукта глицерин проникает сквозь мембрану и выводится из реакционной среды, обеспечивая смещение равновесие в реакции переэтерификации. Кроме того, вода, циркулирующая через полость волокна мембраны, частично проникая в реакционный объем, обеспечивает высокую активность иммобилизированной липазы.

Недостатками данного способа являются необходимость использования дорогостоящей липазы, а также сложность проведения процесса иммобилизации последней.

Техническая проблема заключается в упрощении технологии получения биодизельного топлива и снижении затрат на его производство.

Поставленная проблема решается описываемым способом получения биодизельного топлива, заключающийся в том, что смешивают масло с низшим спиртом с получением смеси и проводят процесс переэтерификации с использованием воды и каталитически активной мембраны, состоящей из диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину, соединительного слоя, выполненного из пористого полимера, и каталитически активного слоя, образованного липолитическим микроорганизмом, при этом указанную смесь приводят в контакт с каталитически активным слоем мембраны, а воду - с диффузионным слоем мембраны, после чего продукт контактирования указанной смеси с каталитически активным слоем подвергают упариванию для удаления непрореагировавшего спирта с получением целевого биодизельного топлива, а продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин.

Технический результат заключается в повышении площади поверхности контактирования смеси масла со спиртом с каталитически активным слоем за счет использования липолитического микроорганизма, находящегося в активном состоянии в течение всего времени контактирования.

Способ получения биодизельного топлива проводят следующим образом.

Смешивают масло с низшим спиртом с получением смеси и проводят процесс переэтерификации с использованием воды и каталитически активной мембраны, состоящей из диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину, соединительного слоя, выполненного из пористого полимера, и каталитически активного слоя, образованного липолитическим микроорганизмом.

Диффузионный слой мембраны представляет собой слой полимерного материала, проницаемого по отношению к низшим спиртам, в том числе по отношению к многоатомным спиртам, в частности, к глицерину. В качестве полимера возможно использовать любые полимерные материалы, совместимые с водными растворами спиртов, например, ацетат целлюлозы, поликарбонат, политетрафторэтилен.

Соединительный слой выполнен из пористого полимера, инертного по отношению к используемым в способе реагентам и липолитическим микроорганизмам. В качестве указанного пористого полимера возможно, например, использовать вспененные полимеры, в частности, пенополиуретан, а также тканые и нетканые материалы из полимерных волокон, например, тканые или нетканые материалы из волокон полиэтилена, полипропилена, политетрафторэтилена, поламидных волокон (нейлона, капрона), целлюлозных волокон.

Каталитически активный слой мембраны образован липолитическим микроорганизмом.

Используемую в описываемом способе каталитически активную мембрану получают следующим образом.

Предварительно готовят питательную среду для культивирования липолитических микроорганизмов.

Состав питательной среды подбирают в соответствии с видовой принадлежностью используемого липолитического микроорганизма. Предпочтительно используют загущенную питательную среду, содержащую необходимые для роста микроорганизма минеральные соли, источник углерода, источник азота и полисахарид для загущения среды. Минеральные соли выбирают в соответствии с видовой принадлежностью используемого липолитического микроорганизма. Так, в случае использования в качестве липолитического микроорганизма грибов вида Aspergillus niger или дрожжей вида Yarrowia lipolytica возможно использовать для приготовления питательной среды в качестве источника минеральных солей водопроводную воду.

Источник углерода выбирают из ряда: масло подсолнечника, рапсовое масло, глюкоза, фруктоза, глюкозо-фруктозный сироп, меласса, солодовый экстракт.

Источник азота выбирают из ряда: соевая мука, дрожжевой экстракт, пептон, триптон, мочевина.

Полисахарид для загущения среды выбирают из ряда: агар, альгинат натрия, карбоксиметилцеллюлоза.

Полученную загущенную питательную среду распределяют по поверхности соединительного слоя мембраны, состоящей из двух слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину и соединительного слоя, выполненного из пористого полимера.

При этом споры или клетки липолитических микроорганизмов возможно импрегнировать в загущенную питательную среду перед или после ее распределения по поверхности соединительного слоя данной мембраны.

Затем мембрану с распределенной по поверхности соединительного слоя загущенной питательной средой выдерживают в присутствии воздуха при термостатировании при температуре, подходящей для роста выбранного липолитического микроорганизма, в течение 20-200 часов. Предпочтительно проводят термостатирование при температуре, оптимальной для роста выбранного липолитического микроорганизма.

Таким образом, достигают равномерного зарастания поверхности исходной мембраны липолитическим микроорганизмом с получением каталитически активной мембраны, состоящей из трех слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину, соединительного слоя, выполненного из пористого полимера, и каталитически активного слоя, образованного липолитическим микроорганизмом.

Полученная мембрана может быть выполнена в виде пустотелого волокна (трубок) или в виде полимерной пленки.

При этом в качестве липолитического микроорганизма возможно использовать любой микроорганизм, характеризующийся тем, что он синтезирует липазы - ферменты, катализирующие реакции гидролиза, этерификации и переэтерификации липидов, в том числе триглицеридов жирных кислот, свободных жирных кислот и их сложных эфиров. К числу таких микроорганизмов могут относиться, например, бактерии, археи и эукариоты, в том числе одноклеточные грибы (дрожжи) и мицелиальные грибы. Возможно также использование генно-модифицированных микроорганизмов. Предпочтительно в качестве липолитического микроорганизма используют мицелиальные грибы, характеризующиеся тем, что они синтезируют липазы. Наиболее предпочтительно использовать грибы вида Aspergillus niger и дрожжи вида Yarrowia lipolytica.

В качестве масла возможно использовать растительные масла (например, масло подсолнечника, рапсовое масло, пальмовое масло, масло рыжика и другие), а также смеси растительных масел с животными жирами, в том числе, с высоким содержанием свободных жирных кислот.

В качестве спирта возможно использовать различные низшие спирты, предпочтительно, используют метиловый и этиловый спирты.

Наиболее предпочтительно (в случае использования в качестве липолитического микроорганизма грибов вида Aspergillus niger) в качестве питательной среды используют загущенную агаром среду следующего состава: дрожжевой экстракт - 6,2 г/л, соевую муку - 7,4 г/л, масло подсолнечника - 13,2 г/л, агар бактериологический - 15 г/л. Указанную среду готовят на основе водопроводной воды.

Далее смесь масла с низшим спиртом, предпочтительно в массовом соотношении от 3:1 до 20:1, приводят в контакт с каталитически активным слоем мембраны, образованным липолитическим микроорганизмом, а воду - с диффузионным слоем мембраны. Процесс проводят в периодическом или непрерывном режиме. При проведении указанного контактирования продукт контактирования подвергают рециркуляции с добавлением низшего спирта, предпочтительно из расчета от 1:3 до 1:20 в массовых долях по отношению к массе масла на каждый цикл рециркуляции. После проведения достаточного числа циклов рециркуляции продукт контактирования смеси масла с низшим спиртом с каталитически активным слоем мембраны подвергают упариванию для удаления непрореагировавшего спирта с получением целевого биодизельного топлива. Число циклов рециркуляции определяют исходя из суммарного расхода низшего спирта, который предпочтительно составляет от 1:2 до 1:5 по отношению к массе масла. Продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин. При этом отделенную воду возможно направлять на рециркуляцию, а глицерин использовать в качестве товарного продукта.

Реализацию описываемого способа возможно осуществлять с использованием любых известных аппаратов, предпочтительно реакторов, например, мембранных реакторов.

Ниже приведены примеры, иллюстрирующие описываемый способ, но не ограничивающие его.

Пример 1.

Предварительно готовят питательную среду следующего состава: дрожжевой экстракт - 6,2 г, соевая мука - 7,4 г, масло подсолнечника - 13,2 г, агар бактериологический - 15 г; водопроводная вода - до объема 1 л. Растворяют агар бактериологический при постоянном нагреве и перемешивании, затем среду в стеклянном сосуде помещают в автоклав и стерилизуют при избыточном давлении. После окончания стерилизации охлаждают жидкую среду до температуры 50-60°С. Затем в стерильных условиях полученную загущенную питательную среду распределяют по поверхности соединительного слоя мембраны, состоящей из двух слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину - ацетата целлюлозы и соединительного слоя, выполненного из пористого полимера - полипропилена и выдерживают при комнатной температуре до затвердевания.

Полученную мембрану помещают в мембранный биореактор. Объемы биореактора со стороны соединительного слоя мембраны с затвердевшей загущенной питательной средой и со стороны диффузионного слоя заполняют стерилизованной водопроводной водой. Объем биореактора со стороны соединительного слоя засевают спорами гриба Aspergillus niger, туда же подают воздух и термостатируют в течение 20 часов при температуре 30°С. Во время термостатирования мицелий гриба равномерно покрывает мембрану, образуя каталитически активный слой.

Таким образом, после проведения термостатирования получают каталитически активную мембрану, состоящую из трех слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину - ацетата целлюлозы, соединительного слоя, выполненного из пористого полимера полипропилена, и каталитически активного слоя, образованного липолитическим микроорганизмом - грибом Aspergillus niger.

Затем смесь масла с низшим спиртом приводят в контакт с каталитически активным слоем полученной мембраны, а воду - с диффузионным слоем данной мембраны следующим образом.

В реакционный объем биореактора (со стороны каталитически активного слоя мембраны) подают смесь рапсового масла и метанола, взятых в массовом соотношении 10:1. В объем биореактора со стороны диффузионного слоя подают дистиллированную воду и одновременно отводят из него воду, обогащенную глицерином.

Процесс переэтерификации ведут при температуре 20-22°С при рециркуляции смеси внутри реакционного объема. Рециркуляцию смеси проводят с добавлением метанола из расчета 1:10 в массовых долях по отношению к массе масла на каждый цикл рециркуляции до достижения суммарного расхода метанола, равного 1:3 по отношению к массе масла. После окончания процесса переэтерификации продукт контактирования указанной смеси с каталитически активным слоем мембраны замещают на новую порцию смеси масла и спирта и повторяют процесс.

Продукт контактирования смеси с каталитически активным слоем мембраны подвергают упариванию, а именно, нагреванию под вакуумом для удаления непрореагировавшего спирта. Полученный после упаривания продукт представляет собой биодизельное топливо. Продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин. При этом отделенную воду возможно направлять на рециркуляцию, а глицерин использовать в качестве товарного продукта.

Выход биодизельного топлива составляет 68% от массы исходного рапсового масла.

Пример 2.

Предварительно готовят питательную среду состава по примеру 1. Растворяют агар бактериологический при постоянном нагреве и перемешивании, затем среду в стеклянном сосуде помещают в автоклав и стерилизуют при избыточном давлении. После окончания стерилизации охлаждают питательную среду до температуры 50-60°С и вносят в нее при перемешивании споры гриба Aspergillus niger. Затем в стерильных условиях полученную загущенную питательную среду равномерно распределяют по поверхности мембраны, состоящей из диффузионного слоя (поликарбонат) и соединительного слоя (полиэтилен), со стороны соединительного слоя и выдерживают при комнатной температуре до затвердевания. Полученную мембрану помещают в мембранный биореактор. Объемы биореактора со стороны питательного слоя и со стороны диффузионного слоя заполняют стерилизованной водопроводной водой. В объем биореактора со стороны питательного слоя подают воздух и термостатируют в течение 50 часов при температуре 25°С. Во время термостатирования мицелий гриба равномерно покрывает мембрану, образуя каталитически активный слой.

Таким образом, после проведения термостатирования получают каталитически активную мембрану, состоящую из трех слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину - поликарбоната, соединительного слоя, выполненного из пористого полимера - полиэтилена, и каталитически активного слоя, образованного липолитическим микроорганизмом - грибом Aspergillus niger.

Затем смесь масла с низшим спиртом приводят в контакт с каталитически активным слоем полученной мембраны, а воду - с диффузионным слоем данной мембраны следующим образом.

В реакционный объем биореактора (со стороны каталитически активного слоя мембраны) подают смесь масла подсолнечника и этанола, взятых в массовом соотношении 5:1. В объем биореактора со стороны диффузионного слоя подают дистиллированную воду и одновременно отводят из него воду, обогащенную глицерином.

Процесс переэтерификации ведут в непрерывном режиме при температуре 20-22°С, при рециркуляции смеси в реакционном объеме с добавлением этанола из расчета 1:5 в массовых долях по отношению к массе масла на каждый цикл рециркуляции. При этом рециркуляцию проводят до достижения суммарного расхода этанола, равного 1:2 по отношению к массе масла. После окончания процесса переэтерификации продукт контактирования указанной смеси с каталитически активным слоем мембраны замещают на новую порцию смеси масла и спирта и повторяют процесс.

Продукт контактирования смеси с каталитически активным слоем мембраны подвергают упариванию, а именно, нагреванию под вакуумом для удаления непрореагировавшего спирта. Полученный после упаривания продукт представляет собой биодизельное топливо. Продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин. При этом отделенную воду возможно направлять на рециркуляцию, а глицерин использовать в качестве товарного продукта.

Выход биодизельного топлива составляет 66% от массы исходного масла подсолнечника.

Пример 3

Предварительно готовят питательную среду состава по примеру 1. Растворяют агар бактериологический при постоянном нагреве и перемешивании, затем среду в стеклянном сосуде помещают в автоклав и стерилизуют при избыточном давлении. После окончания стерилизации охлаждают жидкую среду до температуры 50-60°С. Затем в стерильных условиях питательную среду равномерно распределяют по поверхности соединительного слоя мембраны, состоящей из диффузионного слоя (ацетат целлюлозы) и соединительного слоя (полипропилен) и формованной в виде трубки таким образом, что диффузионный слой образует внутреннюю поверхность трубки, а соединительный слой - внешнюю поверхность трубки, и выдерживают при комнатной температуре до затвердевания. Полученную мембрану в виде трубки, помещают в мембранный биореактор. Внешний по отношению к мембранным трубкам объем биореактора, а также внутренний объем мембранных трубок заполняют стерилизованной водопроводной водой. Внешний объем биореактора засевают спорами гриба Aspergillus niger, туда же подают воздух и термостатируют в течение 96 часов при температуре 25°С. Во время термостатирования мицелий гриба равномерно покрывает поверхность соединительного слоя мембраны, образуя каталитически активный слой.

Таким образом, после проведения термостатирования получают каталитически активную мембрану, состоящую из трех слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину - поликарбоната, соединительного слоя, выполненного из пористого полимера - полиэтилена, и каталитически активного слоя, образованного липолитическим микроорганизмом - грибом Aspergillus niger.

Затем смесь масла с низшим спиртом приводят в контакт с каталитически активным слоем полученной мембраны, а воду - с диффузионным слоем данной мембраны следующим образом.

В реакционный объем биореактора (со стороны каталитически активного слоя мембраны) подают смесь масла рыжика и этанола, взятых в массовом соотношении 15:1.

Процесс переэтерификации ведут при температуре 20-22°С при рециркуляции указанной смеси, проводимой с добавлением этанола из расчета 1:15 в массовых долях по отношению к массе масла на каждый цикл рециркуляции. При этом рециркуляцию проводят до достижения суммарного расхода этанола, равного 1:2 по отношению к массе масла. Во внутренний объем мембранных трубок непрерывно подают дистиллированную воду и одновременно отводят воду, обогащенную глицерином.

После окончания процесса переэтерификации прореагировавшую массу в объеме биореактора замещают на новую порцию смеси масла и спирта и повторяют процесс.

Продукт контактирования смеси с каталитически активным слоем мембраны подвергают упариванию, а именно, нагреванию под вакуумом для удаления непрореагировавшего спирта. Полученный после упаривания продукт представляет собой биодизельное топливо. Продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин. При этом отделенную воду возможно направлять на рециркуляцию, а глицерин использовать в качестве товарного продукта.

Выход биодизельного топлива составляет 62% от массы исходного масла рыжика.

Пример 4.

Предварительно готовят питательную среду состава по примеру 1. Растворяют агар бактериологический при постоянном нагреве и перемешивании, затем среду в стеклянном сосуде помещают в автоклав и стерилизуют при избыточном давлении. После окончания стерилизации охлаждают жидкую среду до температуры 30-40°С и вносят в нее при перемешивании клетки дрожжей Yarrowia lipolytica. Затем в стерильных условиях питательную среду равномерно распределяют по поверхности соединительного слоя мембраны, состоящей из диффузионного слоя (политетрафторэтилен) и соединительного слоя (волокнистый политетрафторэтилен) и формованной в виде трубки таким образом, что диффузионный слой образует внутреннюю поверхность трубки, а соединительный слой - внешнюю поверхность трубки, и выдерживают при комнатной температуре до затвердевания. Полученную мембрану в виде трубки помещают в мембранный биореактор. Внешний по отношению к мембранным трубкам объем биореактора, а также внутренний объем мембранных трубок заполняют стерилизованной водопроводной водой. Во внешний объем биореактора подают воздух и термостатируют в течение 150 часов при температуре 30°С. Во время термостатирования дрожжи равномерно покрывают поверхность соединительного слоя мембраны, образуя каталитически активный слой.

Таким образом, после проведения термостатирования получают каталитически активную мембрану, состоящую из трех слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину - поликарбоната, соединительного слоя, выполненного из пористого полимера - полиэтилена, и каталитически активного слоя, образованного липолитическим микроорганизмом - клетками дрожжей Yarrowia lipolytica.

Затем смесь масла с низшим спиртом приводят в контакт с каталитически активным слоем полученной трехслойной мембраны, а воду - с диффузионным слоем данной мембраны следующим образом.

В реакционный объем биореактора (со стороны каталитически активного слоя мембраны) подают смесь масла рыжика и метанола, взятых в массовом соотношении 5:1.

Процесс переэтерификации ведут в непрерывном режиме при температуре 30-32°С при рециркуляции указанной смеси с добавлением метанола из расчета 1:5 в массовых долях по отношению к массе масла на каждый цикл рециркуляции. Рециркуляцию проводят до достижения суммарного расхода метанола, равного 1:3 по отношению к массе масла. Во внутренний объем мембранных трубок непрерывно подают дистиллированную воду и одновременно отводят воду, обогащенную глицерином.

После окончания процесса переэтерификации продукт контактирования замещают на новую порцию смеси масла и спирта и повторяют процесс.

Продукт контактирования смеси с каталитически активным слоем мембраны подвергают упариванию, а именно, нагреванию под вакуумом для удаления непрореагировавшего спирта. Полученный после упаривания продукт представляет собой биодизельное топливо. Продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин. При этом отделенную воду возможно направлять на рециркуляцию, а глицерин использовать в качестве товарного продукта.

Выход биодизельного топлива составляет 55% от массы исходного масла рыжика.

Пример 5.

Предварительно готовят питательную среду состава по примеру 1. Растворяют агар бактериологический при постоянном нагреве и перемешивании, затем среду в стеклянном сосуде помещают в автоклав и стерилизуют при избыточном давлении. После окончания стерилизации охлаждают жидкую среду до температуры 50-60°С. Затем в стерильных условиях питательную среду равномерно распределяют по поверхности соединительного слоя мембраны, состоящей из диффузионного слоя (ацетат целлюлозы) и соединительного слоя (нейлон) и формованной в виде трубки таким образом, что диффузионный слой образует внутреннюю поверхность трубки, а соединительный слой - внешнюю поверхность трубки, и выдерживают при комнатной температуре до затвердевания. Полученную мембрану в виде трубки помещают в мембранный биореактор. Внешний по отношению к мембранным трубкам объем биореактора, а также внутренний объем мембранных трубок заполняют стерилизованной водопроводной водой. Во внешний объем биореактора вносят посевную культуру дрожжей Yarrowia lipolytica, туда же подают воздух и термостатируют в течение 200 часов при температуре 30°С. Во время термостатирования дрожжи равномерно покрывают поверхность соединительного слоя мембраны, образуя каталитически активный слой.

Таким образом, после проведения термостатирования получают каталитически активную мембрану, состоящую из трех слоев - диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину - ацетата целлюлозы, соединительного слоя, выполненного из пористого полимера - нейлона, и каталитически активного слоя, образованного липолитическим микроорганизмом - клетками дрожжей Yarrowia lipolytica.

Затем смесь масла с низшим спиртом приводят в контакт с каталитически активным слоем полученной трехслойной мембраны, а воду - с диффузионным слоем данной мембраны следующим образом.

В реакционный объем биореактора (со стороны каталитически активного слоя мембраны) подают смесь масла рыжика и этанола, взятых в массовом соотношении 20:1.

Процесс переэтерификации ведут при температуре 30-32°С, в непрерывном режиме, при рециркуляции смеси во внешнем объема биореактора с добавлением этанола из расчета 1:20 в массовых долях по отношению к массе масла на каждый цикл рециркуляции. Указанную рециркуляцию проводят до достижения суммарного расхода этанола, равного 1:2 по отношению к массе масла. Во внутренний объем мембранных трубок непрерывно подают дистиллированную воду и одновременно отводят воду, обогащенную глицерином.

После окончания процесса переэтерификации прореагировавшую массу - продукт контактирования в объеме биореактора замещают на новую порцию смеси масла и спирта и повторяют процесс.

Полученный продукт контактирования смеси с каталитически активным слоем мембраны подвергают упариванию, а именно, нагреванию под вакуумом для удаления непрореагировавшего спирта. Полученный после упаривания продукт представляет собой биодизельное топливо. Продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин. При этом отделенную воду возможно направлять на рециркуляцию, а глицерин использовать в качестве товарного продукта.

Выход биодизельного топлива составляет 70% от массы исходного масла рыжика.

Проведение способа получения биодизельного топлива с использованием иных липолитических микроорганизмов, иного исходного сырья приводит к аналогичным результатам.

Таким образом, способ согласно изобретению позволяет упростить процесс получения биодизельного топлива и позволяет снизить затраты на его производство за счет исключения использования дорогостоящих препаратов очищенных липолитических ферментов при высоком выходе целевого продукта.

Способ получения биодизельного топлива, заключающийся в том, что смешивают масло с низшим спиртом с получением смеси, затем проводят процесс переэтерификации с использованием воды и каталитически активной мембраны, состоящей из диффузионного слоя, выполненного на базе полимера, проницаемого по отношению к низшим спиртам и глицерину, соединительного слоя, выполненного из пористого полимера, и каталитически активного слоя, образованного липолитическим микроорганизмом, при этом пористый полимер выбран из тканых или нетканых материалов из волокон полиэтилена, полипропилена, политетрафторэтилена, полиамида, при этом указанную смесь приводят в контакт с каталитически активным слоем мембраны, а воду - с диффузионным слоем мембраны, после чего продукт контактирования указанной смеси с каталитически активным слоем подвергают упариванию для удаления непрореагировавшего спирта с получением целевого биодизельного топлива, а продукт контактирования воды с диффузионным слоем разделяют на воду и глицерин.
Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
13.01.2017
№217.015.882b

Антифрикционная присадка к смазочным материалам

Настоящее изобретение относится к антифрикционной присадке к смазочным материалам, содержащей пропиленгликоль, олеиновую кислоту или касторовое масло, пальмитат меди, олово двухлористое, стеарат меди, диоксид кремния аморфный и терморасширенный графит при следующих соотношениях компонентов,...
Тип: Изобретение
Номер охранного документа: 0002602602
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.a0e6

Способ переработки нефтяных отходов

Настоящее изобретение относится к способу переработки нефтяных отходов, содержащих воду и механические примеси. Способ заключается в том, что предварительно проводят активацию гомогенизированного исходного сырья электромагнитным излучением с частотой 40,0-55,0 МГц, мощностью излучения 0,2-0,6...
Тип: Изобретение
Номер охранного документа: 0002606385
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a706

Способ переработки серосодержащего нефтешлама

Настоящее изобретение относится к способу переработки серосодержащего нефтешлама, который может быть использован в нефтяной и нефтеперерабатывающей промышленности. Способ включает отделение нефтешлама воды и механических примесей, контактирование подготовленного шлама с каталитической системой,...
Тип: Изобретение
Номер охранного документа: 0002608036
Дата охранного документа: 12.01.2017
26.08.2017
№217.015.d473

Пластичная смазка

Изобретение относится к составу пластичных смазок, предназначенных для тяжелонагруженных узлов трения, работающих при высоких температурах, во влажных и агрессивных средах, и может быть использовано в нефтегазовой, металлургической, автомобильной отраслях промышленности. Сущность: смазка...
Тип: Изобретение
Номер охранного документа: 0002622400
Дата охранного документа: 15.06.2017
29.12.2017
№217.015.fc6d

Способ осушки полости морского газопровода после гидравлических испытаний

Использование: изобретение относится к транспорту газа по магистральному газопроводу и может быть использовано при строительстве морских газопроводов. Полость морского газопровода доосушивают до заданных значений влажности одновременно с вакуумированием путем продувки полости азотом. При этом...
Тип: Изобретение
Номер охранного документа: 0002638105
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0610

Штамм базидиомицета trametes hirsuta - продуцент этилового спирта

Изобретение относится к биотехнологии. Штамм базидиального гриба Trametes hirsute, обладающий способностью продуцировать этиловый спирт, депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером ВКПМ F-1287. Штамм Trametes hirsute ВКПМ F-1287 позволяет...
Тип: Изобретение
Номер охранного документа: 0002630997
Дата охранного документа: 15.09.2017
17.02.2018
№218.016.2dda

Способ получения стимулятора роста растений

Изобретение относится к стимуляторам роста растений из лигноцеллюлозного сырья. Лигноцеллюлозное сырье смешивают с водой в расчете от 5,0 до 100,0 г воды на 1 г сырья. Добавляют к полученной смеси катализатор окисления, представляющий собой суспензию дисперсного оксида или гидроксида железа...
Тип: Изобретение
Номер охранного документа: 0002643723
Дата охранного документа: 05.02.2018
10.05.2018
№218.016.47f4

Способ определения коэффициента остаточной водонасыщенности горных пород

Использование: для определения коэффициента остаточной водонасыщенности горных пород. Сущность изобретения заключается в том, что осуществляют выбор образцов керна заданного литологического типа в широком диапазоне фильтрационно-емкостных свойств, после чего производят сканирование отобранных...
Тип: Изобретение
Номер охранного документа: 0002650706
Дата охранного документа: 17.04.2018
29.05.2018
№218.016.542f

Способ запрессовки зубков в корпус шарошки

Изобретение относится к вооружению породоразрушающего инструмента, а именно к запрессовке в корпус шарошки твердосплавных зубков, предназначенных для разрушения горной породы. Технический результат заключается в повышении точности осевого позиционирования зубков шарошки. В способе запрессовки...
Тип: Изобретение
Номер охранного документа: 0002654100
Дата охранного документа: 16.05.2018
29.05.2018
№218.016.5440

Устройство для контроля расхода компонентов продукции скважин

Изобретение относится к области нефтегазодобывающей промышленности и может быть использовано для контроля параметров потока продукции газовых, газоконденсатных и нефтяных скважин. Устройство содержит датчики давления и температуры контролируемого потока и пьезокерамический датчик пульсаций...
Тип: Изобретение
Номер охранного документа: 0002654099
Дата охранного документа: 16.05.2018
Showing 1-10 of 98 items.
27.08.2013
№216.012.638e

Способ получения катализатора гидроочистки дизельного топлива

Изобретение относится к каталитической химии, в частности к способу получения алюмоникельмолибденовых катализаторов гидроочистки дизельного топлива методом самораспространяющегося высокотемпературного синтеза через стадию интерметаллидных сплавов. Способ получения катализатора заключается в...
Тип: Изобретение
Номер охранного документа: 0002491123
Дата охранного документа: 27.08.2013
20.11.2013
№216.012.8254

Способ получения средства, обладающего противоопухолевой активностью

Изобретение относится к области биотехнологии. Способ предусматривает приготовление посевного мицелия базидиомицета, выбранного из группы Flammulina velutipes (Curtis) Singer и/или Hericium erinaceus (Bull.) Pers. Приготовление питательной среды, содержащей измельченный подсолнечный жмых...
Тип: Изобретение
Номер охранного документа: 0002499040
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.87e9

Способ активации катализаторов гидроочистки дизельного топлива

Настоящее изобретение относится к способу активации катализаторов гидроочистки дизельного топлива и может быть использовано в нефтеперерабатывающей и нефтехимической областях промышленности. Описан способ активации алюмоникельмолибденовых катализаторов гидроочистки дизельного топлива путем...
Тип: Изобретение
Номер охранного документа: 0002500475
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.88a3

Способ выделения метана из газовых смесей

Изобретение относится к способу выделения метана из газовых смесей путем контактирования смеси с водным раствором циклического простого эфира концентрацией не выше 20% мол. при температуре не выше 20°C и давлении до 3,0 МПа с получением конденсированной фазы, содержащей смешанные гидраты метана...
Тип: Изобретение
Номер охранного документа: 0002500661
Дата охранного документа: 10.12.2013
27.12.2013
№216.012.90d9

Буровой раствор на углеводородной основе

Изобретение относится к нефтяной и газовой промышленности, в частности к буровым растворам на углеводородной основе, предназначенным для проходки интервалов неустойчивых, глинистых пород, интервалов многолетних мерзлотных пород, продуктивных пластов и бурения горизонтальных участков скважин....
Тип: Изобретение
Номер охранного документа: 0002502774
Дата охранного документа: 27.12.2013
10.04.2014
№216.012.b1ae

Способ получения наночастиц металлов

Изобретение относится к порошковой металлургии, в частности к получению наночастиц металлов. Предварительно подготовленную суспензию зародышевых наночастиц металла вводят в ростовую среду, содержащую водный раствор соединения металла концентрацией 10-10 М, восстанавливающий агент концентрацией...
Тип: Изобретение
Номер охранного документа: 0002511202
Дата охранного документа: 10.04.2014
20.07.2014
№216.012.de48

Способ добычи вязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности добычи высоковязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости...
Тип: Изобретение
Номер охранного документа: 0002522690
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de5b

Способ диагностики дефектов на металлических поверхностях

Изобретение относится к методам неразрушающего контроля и предназначено для определения дефектов и трещин на поверхности металлического оборудования и трубопроводов. На поверхность контролируемого объекта наносят напылением наночастицы золота цилиндрической формы длиной не более 100 нм и с...
Тип: Изобретение
Номер охранного документа: 0002522709
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df06

Способ получения противовирусного средства и противовирусное средство

Группа изобретений относится к фармацевтической промышленности, а именно противовирусному средству. Способ получения противовирусного средства проводят путем приготовления посевного мицелия базидиомицета опенок зимний Flammulina velutipes (Curtis) Singer, приготовления жидкой питательной...
Тип: Изобретение
Номер охранного документа: 0002522880
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df35

Флокулянт для очистки воды и способ его получения

Изобретение относится к очистке бытовых и промышленных сточных вод, водоемов и морских акваторий от загрязнений. Флокулянт для очистки воды получают путем сополимеризации смеси мономеров - итаконой кислоты или ее ангидрида, алкилового эфира итаконовой кислоты и амида акриловой или метакриловой...
Тип: Изобретение
Номер охранного документа: 0002522927
Дата охранного документа: 20.07.2014
+ добавить свой РИД