×
25.08.2018
218.016.7f17

Результат интеллектуальной деятельности: СПОСОБ ГИДРОЛОКАЦИИ В МЕЛКОВОДНЫХ ОБЛАСТЯХ С ОПЕРАТИВНЫМ КОНТРОЛЕМ ИЗМЕНЧИВОСТИ УСЛОВИЙ ОБНАРУЖЕНИЯ ПОДВОДНОЙ ЦЕЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидролокации, может быть использовано при проведении подводных работ, контроле подводной обстановки, при охране различных объектов со стороны водной среды и обеспечивает достижение постоянной максимально возможной дальности обнаружения подводных целей, а также помехоустойчивости в работе гидролокационной системы. Предложен способ гидролокации в мелководных областях с оперативным контролем изменчивости условий обнаружения подводной цели, заключающийся в продольном волновом зондировании излучателем водной толщи и приеме отраженного от подводной цели зондирующего сигнала, в котором одновременно с обнаружением подводной цели дополнительно осуществляют прием отраженного от рассеивающего объекта зондирующего сигнала в по меньшей мере двух точках, расположенных на разном расстоянии от рассеивающего объекта, определяют степень затухания энергии отраженного от рассеивающего объекта зондирующего сигнала с использованием данных об отношении интенсивностей зондирующего сигнала, принятого в упомянутых по меньшей мере двух точках, и по результатам сравнения полученного значения энергии с пороговым принимают решение о компенсации негативного влияния присутствующих помех, вызванных изменчивостью условий обнаружения подводной цели, при этом рассеивающий объект располагают в зондируемой области. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области гидролокации и может быть использовано при проведении подводных работ, контроле подводной обстановки и при охране различных объектов со стороны водной среды в изменчивых условиях работы гидролокационной системы, характерных, например, для мелководных прибрежных областей. В таких областях, с глубинами менее 5-10 м, при продольном волновом зондировании водной толщи наблюдается ряд факторов, вызывающих потери энергии распространяющихся в воде акустических сигналов. Это расширение фронта волны, пространственное затухание энергии акустических сигналов при распространении как в водной среде так и при многочисленных отражениях и рассеянии сигналов от дна и от волнующейся водной поверхности, а также рефракция звуковых лучей при распространении по неоднородно прогретому водному слою [1] и, кроме того, значительный фон естественных помех от ветра, дождя и волнения. В результате из-за суммарного влияния указанных факторов максимальная дальность обнаружения подводных целей, например, пловцов-нарушителей, в таких условиях может меняться значительно во времени: в зависимости от времени года, дня и ночи до нескольких часов, оказываясь практически не предсказуемой.

Для использовании описанного в патенте РФ №19160, опубл. 10.08.2001, комплексного стенда возникающая на практике необходимость экспериментального определения дальности обнаружения подводных объектов гидроакустическими средствами эвентуального наблюдателя в предпоходном планировании решается заданием известных среднестатистических экспериментальных данных для заданного времени года и района плавания, что возможно благодаря относительно стабильным условиям распространения звука в глубоководных областях акваторий. Однако это недостижимо для мелководных областей с их изменчивым характером условий обнаружения подводных целей.

Известен способ обнаружения вторжения подводного объекта в контролируемую область натурного водоема, подразумевающий прием провзаимодействовавшего с подводной целью акустического сигнала после его отражения от отражателей, расположенных вдоль эллиптической поверхности для формирования диаграммы направленности зондирующих сигналов специальной формы и достижения повышения соотношения сигнал/шум в принимаемом сигнале (патент РФ №2150123, опубл. 27.05.2000). К основным недостаткам данного способа, принятого за прототип, можно отнести очень сложную в технической реализации систему расположения устройств (приемника, излучателя и отражателей) в среде, жестко располагаемых в фокусах эллиптической поверхности области непрерывного акустического пятна, подверженную влиянию переменчивости условий среды (погодные условия, течения, волнение водной поверхности и пр.). В условиях мелководных областей это приведет к постоянной необходимости изменения геометрической системы расположения устройств и, соответственно, к смещению «фокусировки» отраженных сигналов, не поступающих на приемники, и таким образом создающих разряженную зону в области непрерывного акустического пятна, способствующую скрытному пересечению объектом контролируемой области.

Можно предположить, что для получения необходимой информации по распространению звука в условиях мелководных областей достаточно выполнить расчеты потерь, исходя из параметров и свойств мелководной среды, в которой распространяется звук, однако эти расчеты громоздки и сложны, как это следует из различных руководств, и, кроме того, требуют знания исходных параметров среды с учетом их изменений в оперативном режиме, например, знаний вертикального распределения скорости звука в водном слое и характера волнения, а также типа грунта и рельефа дна. При этом неизбежны значительные неточности и ошибки и, главное, теряется оперативность получения результата.

Технической проблемой, решение которой обеспечивается при осуществлении заявленного изобретения, является организация в процессе работы гидролокационной системы получения оперативной информации о влиянии потерь энергии гидроакустических сигналов и их изменчивости, а также фона помех на эффективность обнаружения подводных целей для возможной компенсации нежелательных последствий данных факторов посредством осуществления на практике в оперативном порядке необходимых мероприятий.

Такими мероприятиями могут быть увеличение или уменьшение уровня излучаемого зондирующего сигнала или изменение его частоты, выбор ширины диаграммы направленности излучаемого или принимаемого отраженного зондирующего сигнала и т.д., вплоть до перехода к известным способам гидролокации, обладающим преимуществами по дальности обнаружения целей, например, способу параметрической гидролокации, при котором дальность увеличивается за счет создания узкого сектора низкочастотного излучения зондирующих сигналов, когда снижаются потери энергии звука, или способам вынесенного приема, описанным в патентах РФ №№2358289, 2383899, 2461844, при которых отраженные от объекта зондирующие сигналы регистрируются приемником или приемниками, вынесенными в зону облучения ближе к цели, где уровни регистрируемых сигналов существенно более высокие по сравнению с их приемом на приемник, совмещенный с излучателем гидролокатора.

Техническим результатом заявленного изобретения является достижение постоянной максимально возможной дальности обнаружения подводных целей, а также помехоустойчивости в работе гидролокационной системы за счет оперативной оценки общих потерь энергии гидроакустических сигналов в контролируемой (зондируемой) мелководной области.

Для достижения заявленного технического результата предложен способ гидролокации в мелководных областях с оперативным контролем изменчивости условий обнаружения подводной цели, заключающийся в продольном волновом зондировании излучателем водной толщи и приеме отраженного от подводной цели зондирующего сигнала, в котором одновременно с обнаружением подводной цели дополнительно осуществляют прием отраженного от рассеивающего объекта зондирующего сигнала в по меньшей мере двух точках, расположенных на разном расстоянии от рассеивающего объекта, определяют степень затухания энергии отраженного от рассеивающего объекта зондирующего сигнала с использованием данных об отношении интенсивностей зондирующего сигнала, принятого в упомянутых по меньшей мере двух точках, и по результатам сравнения полученного значения энергии с пороговым принимают решение о компенсации негативного влияния присутствующих помех, вызванных изменчивостью условий обнаружения подводной цели, при этом рассеивающий объект располагают в зондируемой области.

В частных случаях реализации предложенного способа для продольного волнового зондирования используют излучатель зондирующего сигнала, совмещенный с его приемником, а прием отраженного от рассеивающего объекта зондирующего сигнала осуществляют на по меньшей мере два приемника, вынесенных в зондируемую область между излучателем и рассеивающим объектом. Прием отраженного от рассеивающего объекта зондирующего сигнала также могут осуществлять на подвижный приемник. Рассеивающим объектом может быть специально введенный в гидролокационную систему стационарный имитатор подводной цели (желательно наполненный воздухом сферический объект), а также сама подводная цель. В предложенном способе в знаменателе отношения интенсивностей зондирующего сигнала могут использовать интенсивность сигнала в наиболее близкой к рассеивающему объекту точке приема.

Структурная схема частного случая реализации заявленного способа показана на фиг. 1, где 1 - излучатель зондирующих сигналов, совмещенный с приемником; 2 - приемники, вынесенные в зону облучения; 3 - рассеивающий объект, находящийся в зондируемой зоне.

На фиг. 2 представлена осциллограмма регистрации излучаемого и отраженного от рассеивающего объекта зондирующего сигнала, где 4 - излучаемый зондирующий сигнал; 5 - отраженный от рассеивающего объекта зондирующий сигнал на фоне помех. По горизонтальной оси на фиг. 2 отложено отсчитываемое от излучателя расстояние, а по вертикали - уровень принимаемого зондирующего сигнала.

Потеря энергии (степень ее затухания) отраженного от рассеивающего объекта зондирующего сигнала при его прохождении в водном слое расстояния r от рассеивающего объекта к приемнику может быть оценена путем определения коэффициента затухания энергии β в дБ/км данного сигнала. Известно выражение для интенсивности принимаемого сигнала, учитывающее, кроме зависимости интенсивности от пространственного затухания волны, также расширение фронта волны при ее удалении от рассеивающего объекта:

I~r-2 10-0,1βr.

Обозначим приемники 2 (фиг. 1) между рассеивающим объектом и излучателем зондирующих сигналов как П1, П2, …, Пn, тогда расстояние r от рассеивающего объекта до каждого из приемником будет соответственно r1, r2, …rn.

Зондирующий сигнал от излучателя достигает рассеивающего объекта и, отразившись от него, приобретает некоторую интенсивность I. Этот отраженный и рассеянный объектом сигнал должен совершить еще обратный путь к n приемникам (n больше или равно 1), где его интенсивность уменьшается соответственно до I1, I2, …, In в результате расхождения фронта волны, потерь энергии из-за поглощения в воде и многократных отражений от дна и водной поверхности.

Для отношений I2/I1, …In/I1, определяющих снижение уровня отраженного от рассеивающего объекта зондирующего сигнала при прохождении расстояний r1, r2, …rn до одного или нескольких приемников, предложены выражения:

При этом в формировании отношений могут быть использованы любые другие их комбинации из имеющегося набора.

В полученных таким образом уравнениях значения интенсивности зондирующего сигнала I измеряются в точках приема единовременно или с заданной периодичностью, расстояния r1, r2, …rn заданы или легко могут быть измерены. Величина β может быть определена путем решения одного указанного уравнения или, например, путем получения усредненного значения при решении нескольких уравнений.

Возможны различные варианты практического выполнения и использования заявленного способа, например помещение в контролируемую зону излучателя, рассеивающего объекта и совокупности приемников, для проведения относительно длительных наблюдений регистрируемых приемниками отраженных от рассеивающего объекта зондирующих сигналов и их возможной изменчивости, вызываемой различными факторами, например волнением или сезонными изменениями условий распространения звука в водном слое. Другой вариант практической реализации заявленного способа предназначен для проведения оперативных замеров и может содержать ограниченное число приемников, вплоть до одного, местоположение которых между излучателем и рассеивающим объектом определяют в процессе проведения замеров.

Предложенный способ был опробован в реальных условиях озера Бисерово Московской области с глубинами 2-3 м, где наблюдались характерные для мелководных областей негативные факторы и потребовалось проведение необходимых мероприятий по увеличению дальности обнаружения подводных целей. На фиг. 2 представлен результат регистрации отраженного от рассеивающего объекта зондирующего сигнала одним из приемников 2 в эксперименте, вынесенным на 30 м от излучателя 1 по направлению излучения. То есть расстояние от данного приемника 2 до рассеивающего объекта 3 составило 300 м. Расстояние от излучателя 1 до рассеивающего объекта 3 равнялось 330 м. В эксперименте второй приемник был совмещен с излучателем 1.

На фиг. 2 видно, что до излучения зондирующего сигнала регистрируется естественный шум акватории, а затем выделяется излученный зондирующий сигнал 4 и реверберационные помехи как отклик на зондирующий сигнал 4 со стороны водной среды в виде отражений от дна и водной поверхности. Затем на этом фоне на приемник 2 приходит зондирующий сигнал 5, отраженный от рассеивающего объекта 1. Уровень естественного шума акватории до прихода на вынесенный приемник 2 излученного зондирующего сигнала 5 весьма слабый, судя по левой части рисунка, а фоном, на котором обнаруживается полезный сигнал от рассеивающего объекта 1, являются реверберационные помехи в виде многочисленных отражений зондирующего сигнала от дна и водной поверхности. Поэтому отмеченный на фиг. 2 отраженный от рассеивающего объекта зондирующий сигнал 5, хотя и обнаруживается на одном приемнике 2, вынесенном ближе к рассеивающему объекту 1, но оказывается сильно зашумленным. Результатом же предложенного способа является учет поглощения энергии как непосредственно в водной среде, так и в результате многочисленных отражений сигнала от дна и водной поверхности, определяющих снижение уровня отраженных от рассеивающего объекта сигналов при прохождении расстояний от рассеивающей цели до приемников.

Используя же результаты регистрации в по меньшей мере двух точках интенсивности отраженного от рассеивающего объекта зондирующего сигнала 5, получим при подстановке их в одно или несколько упомянутых уравнений искомую величину потерь энергии гидроакустических сигналов в зондируемой мелководной области. Для упомянутого эксперимента оценка значения коэффициента β на частотах в области 100 кГц, проводимая в течение 3 дней, по совокупности полученных в результате проведения измерений оказалась порядка 140 дБ/км. При сравнении данной величины с пороговой потребовалось изменение типа генерируемого зондирующего сигнала и его длительности. Повторное проведение эксперимента с измененными характеристиками зондирующего сигнала показало существенное увеличение его интенсивности в точках приема (почти в два раза), обеспечивающее наибольшую дальность обнаружения для текущих условий эксперимента. Увеличение интенсивности сигнала способствовало более четкому его выделению на уровне регистрируемых помех, что подтверждает общее повышение помехоустойчивости гидролокационной системы.

Источники информации

1. Акустика океана / Под ред. Л.М. Бреховских. М.: Наука, 1974. 695 с.


СПОСОБ ГИДРОЛОКАЦИИ В МЕЛКОВОДНЫХ ОБЛАСТЯХ С ОПЕРАТИВНЫМ КОНТРОЛЕМ ИЗМЕНЧИВОСТИ УСЛОВИЙ ОБНАРУЖЕНИЯ ПОДВОДНОЙ ЦЕЛИ
СПОСОБ ГИДРОЛОКАЦИИ В МЕЛКОВОДНЫХ ОБЛАСТЯХ С ОПЕРАТИВНЫМ КОНТРОЛЕМ ИЗМЕНЧИВОСТИ УСЛОВИЙ ОБНАРУЖЕНИЯ ПОДВОДНОЙ ЦЕЛИ
Источник поступления информации: Роспатент

Showing 21-30 of 681 items.
20.08.2014
№216.012.ec68

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а более конкретно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов (твэлов). Устройство содержит оболочку с герметизирующими торцевыми крышками, внутри которой расположена, по крайней мере, одна капсула...
Тип: Изобретение
Номер охранного документа: 0002526328
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f2d3

Электродетонатор

Электродетонатор относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам, и может быть использовано в качестве малогабаритного средства инициирования при проведении взрывных работ. Электродетонатор содержит гильзу с размещенным в ней зарядом ВВ,...
Тип: Изобретение
Номер охранного документа: 0002527985
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.03f6

Переход низкочастотный

Изобретение относится к электротехнике и может быть использовано для обеспечения герметичного ввода электрических проводников через защитные стенки в зону воздействия высокого давления, ударных нагрузок, содержащую высокотоксичные продукты. Переход низкочастотный в загрязненную зону через...
Тип: Изобретение
Номер охранного документа: 0002532412
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.092b

Способ и устройство для измерения углового ускорения контролируемого объекта

Изобретение относится к области приборостроения и предназначено для измерения углового ускорения. Для измерения углового ускорения объекта производят измерение длительности интервалов времени между фронтами всех импульсов импульсным датчиком углового положения, определяют среднюю скорость на...
Тип: Изобретение
Номер охранного документа: 0002533748
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.10f5

Корпус подводного аппарата

Изобретение относится к области судостроения, в частности к конструкции корпусов аппаратов, работающих на устойчивость при действии гидростатического давления и сжимающей силы. Корпус подводного аппарата содержит металлический каркас и охватывающую его эластичную оболочку, выполненную из...
Тип: Изобретение
Номер охранного документа: 0002535764
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.232f

Способ определения механических свойств хрупких материалов при растяжении

Изобретение относится к механическим испытаниям на растяжение хрупких образцов из композиционных материалов и предназначено для авиастроения, судостроения, машиностроения, атомной энергетики. Сущность изобретения: накладки одинаковых с образцом размеров и формы, выполненные из материала,...
Тип: Изобретение
Номер охранного документа: 0002540460
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.249e

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, в частности к бортовым антеннам спутниковой навигации. Технический результат изобретения заключается в упрощении настройки при уменьшении габаритов двухдиапазонной микрополосковой антенны круговой поляризации. Антенна содержит металлический...
Тип: Изобретение
Номер охранного документа: 0002540827
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a7f

Инерционный включатель

Инерционный включатель содержит корпус, инерционное тело на направляющей оси, контакты, а также неподвижную направляющую и подвижный поворотный привод контактов, расположенные коаксиально с инерционным телом и имеющие на боковых стенках пазы. Выключатель снабжен внешней втулкой, коаксиально...
Тип: Изобретение
Номер охранного документа: 0002542336
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3177

Система жизнеобеспечения исполнителя работ

Система жизнеобеспечения исполнителя работ относится к области атомной промышленности, а именно к системам жизнеобеспечения, защищающим от альфа- и бета-облучения. Система содержит герметичный костюм, в котором расположены маска, баллон с редуктором и распределитель воздуха, который сообщен...
Тип: Изобретение
Номер охранного документа: 0002544131
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3458

Матрица лазерных диодов и способ ее изготовления

Изобретение относится к матрицам лазерных диодов, которые могут быть использованы как самостоятельные источники излучения, так и в качестве системы накачки твёрдотельных лазеров. Матрица светодиодов содержит теплопроводящее основание с нанесенной толстопленочной металлизацией, выполненной в...
Тип: Изобретение
Номер охранного документа: 0002544875
Дата охранного документа: 20.03.2015
Showing 1-8 of 8 items.
27.07.2013
№216.012.5ab7

Пассивный метод и система обнаружения движущихся в воде объектов

Использование: для организации в условиях мелководья рубежной системы охраны подводных сооружений или сооружений на берегу со стороны водной среды от подводных пловцов-нарушителей или от других движущихся в воде объектов. Сущность: с помощью системы обнаружения регистрируются колебания давления...
Тип: Изобретение
Номер охранного документа: 0002488844
Дата охранного документа: 27.07.2013
10.11.2013
№216.012.7f42

Приемник низкочастотных колебаний давления в водной среде

Изобретение относится к измерительной технике. Сущность: приемник содержит основной и дополнительный пьезоэлементы, корпус, выполненный из теплопроводящего материала, например из металла. Основной пьезоэлемент прикреплен снаружи корпуса и воспринимает колебания давления водной среды, а также...
Тип: Изобретение
Номер охранного документа: 0002498251
Дата охранного документа: 10.11.2013
20.04.2015
№216.013.4424

Способ и система компенсации маскирующего влияния реверберационных помех на обнаружение подводных целей при гидролокации

Изобретение относится к области гидролокации и предназначено для компенсации маскирующего влияния реверберационных помех на обнаружение подводных целей при гидролокации в условиях значительных помех, характерных для мелководных акваторий. Для компенсации маскирующего влияния реверберационных...
Тип: Изобретение
Номер охранного документа: 0002548942
Дата охранного документа: 20.04.2015
10.03.2016
№216.014.c9d3

Способ и система автоматически управляемой активной охраны объектов со стороны водной среды

Изобретение относится к области гидролокации и предназначено для обнаружения подводных целей в областях, удаленных на значительные расстояния от места наблюдения. Предложенный способ автоматически управляемой активной охраны объектов со стороны водной среды с увеличенной дальностью обнаружения...
Тип: Изобретение
Номер охранного документа: 0002577089
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.30d2

Способ регистрации локальных колебаний давления при пассивной локации движущихся в воде целей с компенсацией помех от поверхностного волнения

Изобретение относится к пассивному обнаружению движущихся в воде целей в условиях прибрежных морских областей и озер для осуществления охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, таких как проложенные под водой кабели, коллекторы, трубопроводы,...
Тип: Изобретение
Номер охранного документа: 0002580877
Дата охранного документа: 10.04.2016
09.05.2019
№219.017.4ce5

Метод и система обнаружения целей при гидролокации

Изобретение относится к области гидролокации и предназначено для обнаружения подводных целей в прибрежных морских областях, а также в речных руслах, каналах, озерах. Метод обнаружения целей в водной среде и определения их местоположения включает волновое зондирование и прием отраженных от целей...
Тип: Изобретение
Номер охранного документа: 0002383899
Дата охранного документа: 10.03.2010
09.05.2019
№219.017.4d29

Способ и система обнаружения объектов при гидролокации

Изобретение относится к области гидролокации и предназначено для обнаружения объектов в воде в условиях мелководья. Способ обнаружения объектов при гидролокации заключается в том, что прием отраженных от объекта зондирующих сигналов при гидролокации ведут как на совмещенный с излучателем...
Тип: Изобретение
Номер охранного документа: 0002358289
Дата охранного документа: 10.06.2009
18.05.2019
№219.017.5a94

Система многоразового оповещения о волнах цунами в глубоком океане

Изобретение относится к области геофизики и может быть использовано при организации мер безопасности объектов прибрежного базирования, располагаемых в сейсмически активных районах океана. Система многоразового оповещения о волнах цунами выполнена в виде блоков, осуществляющих регистрацию...
Тип: Изобретение
Номер охранного документа: 0002435178
Дата охранного документа: 27.11.2011
+ добавить свой РИД