×
26.07.2018
218.016.7570

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ АТМОСФЕРЫ НА ВЫСОТЕ ПОЛЕТА КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002662371
Дата охранного документа
25.07.2018
Аннотация: Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению его подвижных частей определяют площадь миделя КА. Гасят возмущающие воздействия на калиброванный объект (КО), свободно перемещаемый внутри КА, и измеряют параметры движения КО относительно корпуса КА, в т.ч. – непрерывно с момента, когда эти параметры станут менее заданных значений, до момента контакта КО с корпусом КА. Плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, а также – по векторам расстояния и ускорения движения центра масс КО относительно центра масс КА. Технический результат состоит в возможности определения локальной плотности атмосферы по параметрам относительного движения КО. 1 з.п. ф-лы.

Изобретение относится к области космической техники и может быть использовано при определении плотности атмосферы на высоте полета космического аппарата (КА).

Известен способ определения плотности атмосферы по модели, описанной в государственном стандарте ГОСТ 4401-81 Атмосфера стандартная. Параметры. Данный ГОСТ устанавливает числовые значения основных параметров атмосферы для высот до 1200 км как функции высоты. Недостаток указанной «статической» модели атмосферы заключается в том, что в ней не предусмотрен учет изменения значений параметров атмосферы во времени, в частности учет переменного уровня солнечной активности и других космических факторов (Модель космоса. Том 2. НИИЯФ МГУ, 1983; Гальперин Ю.И., Дмитриев А.В., Зеленый Л.М., Панасюк Л.М. Влияние космической погоды на безопасность авиационных и космических полетов. «Полет 2001»).

Недостаток способа частично устраняется с использованием модели, описанной в государственном стандарте ГОСТ 25645.302-83 Расчеты баллистические искусственных спутников Земли. Методика расчета индексов солнечной активности.

Данный ГОСТ устанавливает методику расчета индексов солнечной активности (индексы W и F10.7) для интервалов времени прогнозирования условий движения КА от 4 мес до 11 лет при проведении проектных баллистических расчетов.

Наиболее близким из аналогов, принятым за прототип, является способ определения плотности атмосферы при баллистическом обеспечении полета КА, включающий измерение параметров движения КА и определение плотности атмосферы с учетом координат местоположения КА (ГОСТ 25645.166-2004. Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли - прототип). Указанный стандарт определяет соотношения для расчета значений параметров плотности атмосферы Земли в диапазоне высот 120-1500 км для различных уровней солнечной активности при известных дате, времени и координатах точки пространства, которую пролетает КА.

Недостатком способа-прототипа является то, что при его использовании точность определения плотности атмосферы Земли ограничена точностью модельных расчетов, не учитывающих фактическое состояние атмосферы в текущий момент времени в конкретных точках космического пространства, составляющих орбиту КА.

Задачей, на решение которой направлено настоящее изобретение, является повышение точности определения плотности атмосферы Земли.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в определении плотности атмосферы на высоте полета КА с инерционными исполнительными органами по измерениям параметров относительного движения свободно перемещаемого калиброванного объекта внутри корпуса КА.

Технический результат достигается тем, что в способе определения плотности атмосферы на высоте полета КА, включающем измерение параметров движения КА с инерционными исполнительными органами и определение плотности атмосферы с учетом координат местоположения КА, дополнительно на участке орбиты с отключенными двигателями КА поддерживают ориентацию КА с помощью гиродинов, измеряют параметры движения центра масс и параметры вращательного движения КА, по определенным параметрам углового положения КА и положению его подвижных частей определяют площадь миделя КА, гасят воздействия на свободно перемещаемый внутри корпуса КА калиброванный объект, измеряют параметры движения калиброванного объекта относительно корпуса КА, по измеренным параметрам движения калиброванного объекта относительно корпуса КА определяют момент времени, в который параметры движения калиброванного объекта относительно КА менее задаваемых значений, начиная с данного момента непрерывно измеряют параметры движения калиброванного объекта относительно КА до момента контакта калиброванного объекта с элементами корпуса КА, на интервале измерения параметров движения калиброванного объекта по измеренным параметрам движения КА определяют радиус-вектор и вектор скорости движения КА, и плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, вектору расстояния от центра масс калиброванного объекта до центра масс КА и вектору ускорения движения центра масс калиброванного объекта относительно центра масс КА.

Измерения параметров движения калиброванного объекта относительно КА на задаваемом временном интервале предлагается осуществлять посредством непрерывной фото-видеосъемки движения калиброванного объекта фото-видеоаппаратурой, жестко установленной относительно корпуса КА.

В полете КА набегающий поток воздействует на элементы конструкции КА тем больше, чем больше площадь проекции элементов на плоскость, перпендикулярную направлению набегающего потока, которое, в свою очередь, параллельно направлению вектора скорости КА.

В предлагаемом способе рассматриваем КА с инерционными исполнительными органами. На участке орбиты с отключенными двигателями КА поддерживают ориентацию КА с помощью гиродинов и измеряют параметры движения центра масс КА и параметры вращательного движения КА.

По определенным параметрам углового положения КА и положению подвижных частей КА (вращающиеся солнечные батареи КА, вращающиеся радиаторы КА и т.п.) определяют площадь миделя КА.

Далее используют находящийся на КА свободно перемещаемый внутри корпуса КА калиброванный объект - объект известной массы.

Гасит воздействия на данный калиброванный объект и измеряют параметры движения калиброванного объекта относительно корпуса КА.

Например, космонавт фиксирует положение данного калиброванного объекта внутри объема корпуса КА руками или с помощью специальных приспособлений.

Измерения параметров движения калиброванного объекта относительно КА на задаваемом временном интервале могут быть выполнены, например, посредством непрерывной фото-видеосъемки движения калиброванного объекта фото-видеоаппаратурой, жестко установленной относительно корпуса КА.

По измеренным параметрам движения калиброванного объекта относительно корпуса КА определяют момент времени, в который параметры движения калиброванного объекта относительно КА менее задаваемых значений.

Начиная с данного момента непрерывно измеряют параметры движения калиброванного объекта относительно КА до момента контакта калиброванного объекта с элементами корпуса КА. На интервале измерения параметров движения калиброванного объекта по измеренным параметрам движения КА определяют радиус-вектор и вектор скорости движения КА.

Плотность атмосферы на высоте полета КА определяют по площади миделя, массе, радиус-вектору центра масс и вектору скорости КА, вектору расстояния от центра масс калиброванного объекта до центра масс КА и вектору ускорения движения центра масс калиброванного объекта относительно центра масс КА.

Например, плотность атмосферы ρ может быть определена по соотношению

где - вектор ускорения движения центра масс калиброванного объекта относительно центра масс КА;

ΔR - векторное расстояние от центра масс калиброванного объекта до центра масс КА;

R - радиус-вектор центра масс КА;

V - вектор скорости КА в гринвичской системе координат;

CX - коэффициент аэродинамического сопротивления КА;

g(R,t) - напряженность гравитационного поля Земли;

SX - площадь миделя КА;

m - масса КА.

Соотношение (1) может быть получено и решено с помощью известных методов механики космического полета (Навигационное обеспечение полета орбитального комплекса «Салют-6»-«Союз»-«Прогресс». - М.: Наука, 1985; Иванов Н.М., Лысенко Л.Н., Дмитриевский А.А. Баллистика и навигация космических аппаратов. М.: Машиностроение, 1986; Охоцимский Д.Е., Сихарулидзе Ю.Г. «Основы механики космического полета. М.: Наука. 1990). При этом могут быть реализованы различные случаи расположения центра масс калиброванного объекта относительно орбиты движения центра масс КА в момент гашения воздействий на калиброванный объект и начала измерения параметров движения калиброванного объекта относительно корпуса КА: центр масс калиброванного объекта может располагаться дальше, на уровне и ближе к Земле, чем центр масс КА.

Опишем технический эффект предлагаемого изобретения.

Согласно правилам управления полетом международной космической станции (Спецификация Российского сегмента. Программа Международная космическая станция. SSP 41163. Редакция Н, 27.01.2001. раздел 3.3.12.8; Общие правила полета по операциям МКС. Том В. Управление полетных операций. NSTS-12820. Космический центр им. Линдона Б.Джонсона. Хьюстон, Техас, основной вариант, 09.10.2001. правило В4-152) текущая высота орбиты международной космической станции (МКС) должна поддерживаться такой, чтобы при текущем баллистическом коэффициенте МКС высота орбиты МКС не опустилась ниже 278 км в течение последующих 90 суток полета для стадии сборки МКС и 180 суток для послесборочной стадии. Указанные сроки необходимы для гарантированного обеспечения изготовления, запуска и стыковки с МКС транспортных кораблей, обеспечивающих жизнеспособность экипажа МКС. Это означает, что циклограмма поддержания требуемой высоты орбиты МКС определяется фактором торможения МКС в атмосфере Земли. В свою очередь, сопротивление атмосферы увеличивается как при увеличении баллистического коэффициента КА, так и при понижении орбиты, поскольку при приближении к Земле плотность атмосферы Земли увеличивается. Более того, в периоды возмущенной атмосферы, когда плотность атмосферы существенно возрастает относительно номинальных прогнозируемых значений, возможны случаи катастрофического понижения орбиты и нарушения указанного требования обеспечения безопасности экипажа и МКС в целом.

Предлагаемое изобретение обеспечивает определение фактической плотности атмосферы на текущей высоте полета КА (в том числе МКС), что в свою очередь повышает точность прогнозирования изменения скорости падения высоты орбиты КА и позволяет выходить из таких опасных ситуаций и/или экономить энергетические ресурсы на подъем орбиты КА до уровня, необходимого для обеспечения жизнеспособности и выполнения целевых задач КА.

Достижение технического результата в предложенном изобретении обеспечивается за счет, в том числе:

- построения предложенной ориентации КА,

- предложенных измерений предложенных параметров,

- предложенных гашения воздействий на свободно перемещаемый внутри корпуса КА калиброванный объект и регистрации его движения относительно КА до момента контакта с элементами корпуса КА,

- предложенного определения предложенных параметров и моментов по результатам выполненных измерений.

Таким образом, достигается технический эффект предлагаемого изобретения, который заключается в определении плотности атмосферы на текущей высоте полета КА по измерениям параметров относительного движения свободно перемещаемого калиброванного объекта внутри корпуса КА.

Выполненная оценка эффективности применения предлагаемого изобретения на российском сегменте (PC) МКС показала, что его использование позволит качественно повысить точность моделей учета влияния атмосферы при определении и прогнозирования движения МКС, обеспечивая при этом уникальную возможность уточнения плотности атмосферы на текущей фактической высоте полета МКС.

При этом в качестве упомянутого калиброванного объекта может использоваться как специально изготовленный и доставленный на PC МКС объект выбранной формы и массы, так и некоторый имеющийся на борту PC МКС объект известной массы.

При гашении воздействий на калиброванный объект исключается (минимизируется) влияние на калиброванный объект воздушных потоков внутри МКС, возникающих из-за работы систем вентиляции или охлаждения аппаратуры. Для этого на время проведения сеанса измерений эти системы должны быть отключены или калиброванный объект должен быть изолирован от возникающих воздушных потоков с помощью прозрачной для съемки воздухонепроницаемой перегородки.

Измерения параметров движения калиброванного объекта относительно МКС могут быть выполнены посредством имеющегося на российском сегменте МКС комплекса фото-видео аппаратуры, например, фото/видеоаппаратура Nikon D3x и кронштейны для жесткой фиксации съемочной аппаратуры внутри МКС.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Источник поступления информации: Роспатент

Showing 31-40 of 111 items.
16.06.2018
№218.016.6298

Система коммутации исполнительных органов и способ неразрушающего контроля работоспособности и разобщённости элементов коммутации и исполнительных органов

Группа изобретений относится к контролю систем управления. Система коммутации исполнительных органов содержит блок электропитания, исполнительные органы, положительную и единую отрицательную цепи электропитания, силовые ключи с управляющими входами, соединенные последовательно с исполнительными...
Тип: Изобретение
Номер охранного документа: 0002657724
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.62a9

Способ управления движением космического объекта при сближении с другим космическим объектом

Изобретение относится к стыковке двух космических объектов на околокруговой орбите, например пилотируемого выводимого космического корабля (ВКК) и международной космической станции (МКС) в качестве цели. ВКК выводят на опорную орбиту, имеющую отклонение от орбиты цели по долготе восходящего...
Тип: Изобретение
Номер охранного документа: 0002657704
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6395

Периферийный стыковочный механизм

Изобретение относится к космической технике. Периферийный стыковочный механизм (СтМ) содержит стыковочное кольцо с направляющими выступами и корпусами механизмов защелок для сцепки; штанги со штоками, установленными с возможностью поступательного перемещения вдоль продольных осей корпусов...
Тип: Изобретение
Номер охранного документа: 0002657623
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6399

Способ воздушного термостатирования отсеков космического аппарата при наземных испытаниях и устройство для его осуществления

Группа изобретений относится к оборудованию для наземных испытаний объектов ракетно-космической техники. Способ воздушного термостатирования отсеков космического аппарата (КА) включает нагнетание воздуха из окружающей среды, его охлаждение, осушку, нагревание и подачу в термостатируемый отсек...
Тип: Изобретение
Номер охранного документа: 0002657603
Дата охранного документа: 14.06.2018
10.07.2018
№218.016.6f2d

Электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Электрохимический компрессор водорода включает прочный корпус с входным и выходным штуцерами. Пакет электроизолированных мембранно-электродных блоков состоит...
Тип: Изобретение
Номер охранного документа: 0002660695
Дата охранного документа: 09.07.2018
19.07.2018
№218.016.7262

Способ определения работоспособности пиротехнических изделий при тепловом воздействии

Изобретение относится к методам испытаний и предназначено для определения работоспособности различных пиротехнических изделий (ПИ) - пироболтов, пирозамков, пироэнергодатчиков и др., при тепловом воздействии. Изобретение может быть использовано в ракетно-космической и авиационной технике при...
Тип: Изобретение
Номер охранного документа: 0002661503
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.7517

Способ преобразования энергии при энергоснабжении космического аппарата

Изобретение относится к системам энергоснабжения космических аппаратов (КА). Способ преобразования энергии при энергоснабжении КА включает подачу на электроды металл-водородного аккумулятора постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из компонент...
Тип: Изобретение
Номер охранного документа: 0002662320
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.75be

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к системе энергопитания космического аппарата (КА) с солнечными батареями (СБ). Способ включает измерение тока и параметров углового положения СБ. При измерении тока СБ определяют расстояние от Земли до Солнца и поворачивают нормаль к рабочей поверхности СБ до угла Q+ƒ с...
Тип: Изобретение
Номер охранного документа: 0002662372
Дата охранного документа: 25.07.2018
28.07.2018
№218.016.7610

Устройство контроля ориентации космических аппаратов при сближении

Изобретение относится к оптико-электронным приборам, используемым в системах управления движением космического аппарата (КА), гл. обр., к мишени стыковки пассивного КА. Мишень с высоким коэфф. поглощения её поверхности находится снаружи вблизи порта стыковки. Ось OA мишени (смотрит на нас)...
Тип: Изобретение
Номер охранного документа: 0002662620
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.765e

Стыковочный механизм космического аппарата

Изобретение относится к космической технике, в частности к стыковочным устройствам космических аппаратов (КА). Стыковочный механизм содержит подвижный корпус, связанный с основанием стыковочного механизма двухстепенным вращательным шарниром, тягами и электромагнитными тормозами, штангу с...
Тип: Изобретение
Номер охранного документа: 0002662605
Дата охранного документа: 26.07.2018
Showing 31-40 of 115 items.
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
10.08.2016
№216.015.5234

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594056
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.526e

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594054
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52e2

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594057
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.7cf4

Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002600039
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.870e

Способ контроля нештатных ситуаций на пилотируемом космическом аппарате и система для его осуществления

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют...
Тип: Изобретение
Номер охранного документа: 0002603814
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f41

Способ определения момента времени схода наблюдаемого с космического аппарата ледника

Способ определения момента времени схода наблюдаемого с космического аппарата ледника основан на определении перемещения ледника за заданный промежуток времени, определении неподвижных характерных точек на склонах ледника. Осуществляют первую съемку ледника и неподвижных характерных точек с...
Тип: Изобретение
Номер охранного документа: 0002605528
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9005

Способ определения деформации корпуса космического аппарата в полете

Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и...
Тип: Изобретение
Номер охранного документа: 0002605232
Дата охранного документа: 20.12.2016
+ добавить свой РИД