×
19.07.2018
218.016.7262

Результат интеллектуальной деятельности: Способ определения работоспособности пиротехнических изделий при тепловом воздействии

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам испытаний и предназначено для определения работоспособности различных пиротехнических изделий (ПИ) - пироболтов, пирозамков, пироэнергодатчиков и др., при тепловом воздействии. Изобретение может быть использовано в ракетно-космической и авиационной технике при проектировании и изготовлении различных устройств с применением ПИ, связанных в процессе эксплуатации с тепловым воздействием, для анализа аварийных и нештатных ситуаций, при которых температура конструкции аппаратов оказывается выше, чем предусмотренная для штатной эксплуатации используемых ПИ. Способ определения работоспособности пиротехнических изделий при тепловом воздействии состоит в том, что производят тепловое воздействие на пиротехническое изделие путем нагрева его корпуса с заданным постоянным темпом, контролируют при этом температуру корпуса пиротехнического изделия, определяют температуру корпуса, при которой осуществляется самопроизвольное срабатывание пиротехнического изделия, нагрев корпуса пиротехнического изделия производят до температуры, лежащей в диапазоне от максимальной рабочей температуры пиротехнического изделия до температуры его корпуса, при которой происходит самопроизвольное срабатывание пиротехнического изделия для выбранного темпа нагрева, затем производят штатное инициирование пиротехнического изделия и фиксируют наличие срабатывания или отказа, в случае отказа продолжают нагрев корпуса пиротехнического изделия до осуществления его самопроизвольного срабатывания, операции повторяют поочередно с другими аналогичными пиротехническими изделиями для различных выбранных из упомянутого диапазона температур и темпов нагрева до получения зависимости максимальной рабочей температуры корпуса пиротехнического изделия, при которой происходит его штатное срабатывание, от темпа нагрева корпуса пиротехнического изделия и по полученной зависимости судят о работоспособности пиротехнических изделий при тепловом воздействии. Изобретение обеспечивает возможность определения области режимов тепловых воздействий, при которых ПИ остается работоспособным, повышение надежности и безопасности при эксплуатации и хранении ПИ, возможность прогнозирования поведения ПИ при различных тепловых нагружениях. 3 ил.

Изобретение относится к области ракетно-космической и авиационной техники и предназначено для определения работоспособности различных пиротехнических изделий (ПИ) (пироболтов, пирозамков, пироэнергодатчиков и др.) при тепловом воздействии.

Предполагается определение такой характеристики, как области режимов нагрева корпуса ПИ, в которой не происходит потери работоспособности ПИ после теплового воздействия и возможно их штатное срабатывание. Под штатным срабатыванием понимается срабатывание ПИ путем инициирования его штатным способом, при котором выполняется его функциональное назначение (ПИ соответствует требуемым техническим характеристикам).

В случае теплового воздействия на ПИ, когда еще не происходит их самопроизвольного срабатывания в результате нагрева, экспериментально получены различные результаты при инициировании ПИ. В зависимости от температуры и режима нагрева в некоторых случаях при инициализации происходит его штатное срабатывание, в других случаях возможен отказ. Это может быть связано, например, с термодеструкцией инициализирующего взрывчатого вещества и т.д.

В ракетно-космической технике очень часто приходится устанавливать ПИ на элементы конструкции, которые граничат с зонами интенсивного нагрева. Поэтому при разработке конструкций с применением ПИ, работающих в условиях теплового воздействия, необходимо для каждого типа ПИ знать область режимов теплового воздействия, при которых ПИ остается работоспособным.

Изобретение может быть использовано в ракетно-космической и авиационной технике при проектировании и изготовлении различных устройств с применением ПИ, связанных в процессе эксплуатации с тепловым воздействием, а также для анализа аварийных и нештатных ситуаций, при которых температура конструкции аппаратов оказывается выше, чем предусмотренная для штатной эксплуатации используемых ПИ.

Известен способ определения характеристик срабатывания бытовых ПИ, а именно способ определения факта невоспламеняемости (отсутствия самопроизвольного срабатывания) бытовых ПИ при тепловом воздействии и устройство для его осуществления (МВД РФ, Государственная противопожарная служба, Нормы пожарной безопасности «Изделия пиротехнические бытового назначения. Требования пожарной безопасности. Методы испытаний», НПБ 255-99, п. 27.3).

Этот способ заключается в следующем.

В центре термостата (устройства для создания и поддержания постоянной температуры) размещают термоэлектрический преобразователь (термопару). ПИ подвешивают на проволоке вблизи центра термостата так, чтобы спай термопары был размещен на стенке в средней части ПИ. Включают термостат и нагревают ПИ со скоростью 1-2°С/мин до заданной температуры 100°С. После этого ПИ термостатируют (выдерживают при постоянной температуре термостата) в течение 30 мин. Испытания выполняют последовательно не менее чем на трех ПИ. Если в процессе испытаний зарегистрировано спонтанное повышение температуры как при выходе на режим, так и при термостатировании ПИ, термостат отключают. После завершения испытаний и остывания термостата до комнатной температуры открывают дверцу и осматривают ПИ.

ПИ считают устойчивым к нагреву, если ни в одном из трех испытаний не произошло воспламенения при заданной температуре.

ПИ считают неустойчивым к нагреву, если хотя бы в одном из трех испытаний оно воспламенилось, а также если произошел спонтанный рост температуры в процессе выхода на режим (сверх установленного темпа роста температуры) или в режиме термостатирования при заданной температуре.

Недостатком известного способа является то, что не оценивается работоспособность ПИ после теплового воздействия.

Известен способ подтверждения соответствия требуемым характеристикам ПИ бытового и технического назначения по ГОСТ Р 51271-99 «Изделия пиротехнические. Методы испытаний» (п. 5.1, 5.2, 8.2 - метод оценки стойкости к климатическим воздействиям, основанный на моделировании реальных климатических воздействий с помощью специальных камер - испытания на теплостойкость до плюс 60°С).

Способ заключается в следующем.

Для целей подтверждения соответствия отбирают по 12 ПИ, но не менее двух потребительских упаковок. Включают камеры тепла. Температуру в камерах доводят до заданной программой сертификационных испытаний. Располагают ПИ в камерах так, чтобы была обеспечена свободная циркуляция воздуха между ПИ (упаковками с ПИ), ПИ и стенками камеры. Закрывают камеры и, если за время загрузки камер температура в них снизилась, выдерживают их требуемое время для достижения заданной температуры. Момент достижения заданной температуры в камере считают началом испытаний. Выдерживают ПИ в камере в течение 2 ч, если другое время не указано в программе сертификационных испытаний. По окончании испытаний ПИ извлекают из камеры и проводят их внешний осмотр и сравнение с ПИ, не подвергавшимися воздействию тепла. Все изменения во внешнем виде ПИ регистрируют в рабочем журнале.

Недостаток - принципиально невозможно определить, до какой температуры корпуса ПИ остается работоспособным при кратковременном нагреве, поскольку в известном способе не контролируется температура корпуса ПИ, а только температура воздуха в камере тепла. По внешнему виду ПИ невозможно оценить состояние взрывчатых веществ внутри корпуса, т.е. подтвердить его работоспособность.

Недостатком известного способа является и то, что не гарантируется полная безопасность работ. В результате нагрева испытуемое ПИ может выйти из строя, при этом заряд ПИ может и не уничтожится, если не достигнута температура самопроизвольного срабатывания. В соответствии с Федеральными нормами и правилами в области промышленной безопасности "Правила безопасности при взрывных работах" отказавшие заряды взрывчатых веществ должны по возможности уничтожаться на месте. В известном же способе после нагрева ПИ передается для определения соответствия техническим характеристикам в другое место.

Известен также способ определения характеристик самопроизвольного срабатывания ПИ при тепловом воздействии (патент RU 2583979, опубл. 10.05.2016, МПК: F42B 35/00 (2006.01), G01N 25/50 (2006.01)).

В нем осуществляют операцию теплового воздействия на пиротехническое изделие с заданным постоянным темпом нагрева его корпуса до момента самопроизвольного срабатывания и фиксируют температуру корпуса пиротехнического изделия, при которой произошло самопроизвольное срабатывание. Эту операцию повторяют поочередно с другими аналогичными пиротехническими изделиями с заданным шагом по темпу нагрева до получения зависимости температуры самопроизвольного срабатывания изделия от времени нагрева корпуса. По этой зависимости с использованием расчетного темпа нагрева корпуса пиротехнического изделия определяют время самопроизвольного срабатывания пиротехнического изделия при его аварийном спуске.

Недостатком этого способа является то, что не оценивается работоспособность (возможность штатного срабатывания) ПИ при тепловом воздействии.

Этот способ взят за прототип, поскольку в нем осуществляют тепловое воздействие на ПИ путем нагрева с постоянным темпом и контролем температуры корпуса ПИ, как и в заявленном изобретении.

Задачей заявленного изобретения является:

- определение области режимов тепловых воздействий, при которых ПИ остается работоспособным;

- повышение надежности и безопасности при эксплуатации и хранении ПИ;

- возможность прогнозирования поведения ПИ при различных тепловых нагружениях.

Техническим результатом изобретения является возможность определения максимальной температуры корпуса ПИ, при которой возможно штатное срабатывание ПИ в зависимости от темпа нагрева его корпуса. Это обеспечивает возможность определения области режимов тепловых воздействий, при которых ПИ остается работоспособным, повышение надежности и безопасности при эксплуатации и хранении ПИ, возможность прогнозирования поведения ПИ при различных тепловых нагружениях.

Технический результат достигается тем, что в способе определения работоспособности пиротехнических изделий при тепловом воздействии, состоящем в том, что производят тепловое воздействие на пиротехническое изделие путем нагрева его корпуса с заданным постоянным темпом, контролируют при этом температуру корпуса пиротехнического изделия, определяют температуру корпуса, при которой осуществляется самопроизвольное срабатывание пиротехнического изделия, нагрев корпуса пиротехнического изделия производят до температуры, лежащей в диапазоне от максимальной рабочей температуры пиротехнического изделия до температуры его корпуса, при которой происходит самопроизвольное срабатывание пиротехнического изделия для выбранного темпа нагрева. Затем производят штатное инициирование пиротехнического изделия и фиксируют наличие срабатывания или отказа. В случае отказа продолжают нагрев корпуса пиротехнического изделия до осуществления его самопроизвольного срабатывания. Операции повторяют поочередно с другими аналогичными пиротехническими изделиями для различных выбранных из упомянутого диапазона температур и темпов нагрева до получения зависимости максимальной рабочей температуры корпуса пиротехнического изделия, при которой происходит его штатное срабатывание, от темпа нагрева корпуса пиротехнического изделия. По полученной зависимости судят о работоспособности пиротехнических изделий при тепловом воздействии.

Сущность изобретения поясняется чертежами (фиг. 1-3).

На фиг. 1 представлено устройство для реализации предложенного способа из патента RU 2583979, опубл. 10.05.2016, МПК: F42B 35/00 (2006.01), G01N 25/50 (2006.01), которое позволяет нагревать образец ПИ с заданным постоянным темпом и подать на ПИ инициализирующий импульс тока при достижении заданной температуры. При этом темп нагрева может изменяться в широких пределах, а в случае отказа срабатывания заряда ПИ устройство позволяет безопасно уничтожить его на месте путем нагрева до температуры выше температуры самопроизвольного срабатывания. Здесь:

1 - ПИ (пироболт);

2 - кварцевая трубка;

3 - нагреватель в виде теплового излучателя;

4 - источник электропитания регулируемой мощности;

5 - датчик температуры (термопара);

6 - регистратор температуры;

7 - изолирующий кожух;

8 - источник тока инициирования с элементами подключения к ПИ.

На фиг. 2 представлена диаграмма температур самопроизвольного срабатывания (Tcc) от темпа нагрева корпуса испытываемых ПИ, на которую нанесены результаты экспериментальных данных по испытаниям семи пироболтов. Здесь приняты следующие обозначения: СС - самопроизвольное срабатывание; ШС - штатное срабатывание; НС - несрабатывание; Тсс - температура, при которой происходит самопроизвольное срабатывание ПИ для выбранного темпа нагрева; Тшср - максимальная температура, при которой осуществляется штатное срабатывание для выбранного темпа нагрева; Тссдх - максимальная температура длительного хранения, при которой не происходит самопроизвольного срабатывания ПИ.

Пироболты сначала нагревались до некоторой температуры с постоянными темпами нагрева. Эти участки на диаграмме представлены отрезками прямых линий различного наклона. Чем выше темп нагрева, тем больше угол наклона. Если не происходило самопроизвольного срабатывания, то болты выдерживались некоторое время при постоянной температуре. Эти участки на диаграмме отображены горизонтальными отрезками. Далее производилось инициирование болтов, если до этого не происходило самопроизвольное срабатывание. Некоторые болты срабатывали штатно, некоторые отказывали. Эти болты охлаждались до начальной температуры, а затем уничтожались путем нагрева с постоянным темпом до самопроизвольного срабатывания. Болт №1 самопроизвольно сработал при температуре 180°С и темпе нагрева 29,7°С /мин. Болт №2 нагревался с меньшим темпом (11,2°С /мин) и самопроизвольно сработал при 160°С. Болты №3 (темп нагрева 2,2°С /мин) и №4 (темп нагрева 4,6°С /мин) штатно сработали после нагрева до 125°С и выдержки при достигнутой температуре 1800 с и 7200 с соответственно. Болт №5 (темп нагрева 3,6°С /мин) самопроизвольно сработал после нагрева до 140°С и выдержки в течение 540 с. В то же время болт №6 (темп нагрева 5,5°С /мин) нагретый до такой же температуры после меньшей выдержки 180 с при достигнутой температуре штатно сработал. Болт №7 (темп нагрева 7,1°С /мин), нагретый до 140°С, после выдержки 480 с штатно не сработал. После повторного нагрева (на фиг. 2 №7 бис) болт №7 самопроизвольно сработал при температуре 160°С (темп нагрева 8,2°С /мин).

По ограниченному количеству экспериментальных данных (см. фиг. 2) для самопроизвольно сработавших болтов №1, №2, №5, №7 бис на диаграмме была построена зависимость температуры Тсс (см. патент RU 2583979, опубл. 10.05.2016), при достижении которой происходило самопроизвольное срабатывание пироболтов, от времени (темпа) нагрева. Зависимость Тсс от времени имеет ряд особенностей. Чем меньше время нагрева (чем выше темп нагрева), тем выше значение Тсс. Это объясняется тем, что корпус пироболтов имеет конечное тепловое сопротивление. Поэтому чем выше темп нагрева, тем выше тепловой поток внутрь корпуса пироболта и тем выше температура поверхности корпуса пироболта по сравнению с температурой внутренних поверхностей, где находится заряд. С возрастанием времени нагрева (уменьшением темпа нагрева) зависимость Tcc от времени плавно стремится к постоянному значению, которое обозначим Тссдх. Это означает, что при длительном хранении ПИ при температуре, меньшей чем Тссдх, самопроизвольного срабатывания ПИ произойти не может. Интересно, что у пироболтов №3, №4, №6, №7, кривые нагрева которых лежат ниже зависимости Тсс от времени, самопроизвольного срабатывания не наблюдалось, хотя болты №3 и №7 нагревались выше значения Тссдх.

На фиг. 2 также представлена зависимость максимальной температуры, при которой возможно штатное срабатывание ПИ при постоянном темпе нагрева в зависимости от темпа нагрева (на диаграмме имеет обозначение Тшср).

Что же касается работоспособности пироболтов после теплового воздействия, то при нагреве они могут выходить из строя и до достижения температуры самопроизвольного срабатывания, как это было с болтом №7.

Фиг. 3 иллюстрирует процесс нахождения области режимов теплового воздействия на ПИ, в которой ПИ остаются работоспособными после теплового воздействия. Здесь приняты следующие обозначения:

Тсс - температура, при которой происходит самопроизвольное срабатывание ПИ для выбранного темпа нагрева;

Тшср - максимальная температура, при которой осуществляется штатное срабатывание ПИ для выбранного темпа нагрева;

Тссдх - максимальная температура длительного хранения, при которой не происходит самопроизвольного срабатывания ПИ;

Тшсрдх - максимальная температура длительного хранения, при которой возможно штатное срабатывание ПИ;

I область - область, в которой при постоянном темпе нагрева всегда происходит штатное срабатывание ПИ;

II область - область, в которой при постоянном темпе нагрева всегда происходит отказ в срабатывании ПИ;

n - номер шага при определении Тшср для выбранного темпа нагрева.

По аналогии с самопроизвольным срабатыванием пироболтов для каждого постоянного темпа нагрева должна существовать максимальная температура Тшср, до достижения которой всегда происходит штатное срабатывание ПИ. В основе потери работоспособности ПИ при нагреве лежит тепловое воздействие на его заряд. Тогда и зависимость Тшср от времени нагрева (темпа нагрева) имеет такой же вид, как и у Тсс. (см. фиг. 2 и фиг. 3) Так же как и для Тсс значения должны возрастать при уменьшении времени нагрева (увеличении темпа нагрева) и также плавно стремиться к постоянному значению, которое обозначим Тшсрдх. Точно также при длительном хранении ПИ при температуре меньшей, чем Тшсрдх ПИ всегда остается работоспособным.

В практическом определении зависимости Тшср от времени имеется существенное отличие от определения зависимости Тсс от времени. Если самопроизвольное срабатывание ПИ происходит сразу после достижения критической температуры Тсс и это сразу фиксируется, то при штатном инициировании невозможно сказать, в какой момент времени и при какой температуре корпуса ПИ произошла потеря работоспособности. Поэтому для определения зависимости Тшср от времени необходимо нагревать ПИ с разными темпами нагрева и инициировать их при различных температурах. Тогда на диаграмме температура - время появятся две области. В первой области появятся точки, где происходит штатное срабатывание, во второй - отказы. Границей между этими областями и будет искомая зависимость Тшср, которая и обеспечивает получение заявленного технического результата.

Сущность заявленного способа поясним на примере определения области работоспособности пироболтов при тепловом воздействии с использованием устройства, представленного на фиг. 1.

На пироболт (1), помещенный в кварцевую трубку (2), осуществляют тепловое воздействие нагревателем (3) при помощи источника электропитания регулируемой мощности (4). Нагрев корпуса пироболта (1) осуществляют с заданным постоянным темпом до температуры, лежащей в диапазоне от максимальной рабочей температуры корпуса пироболта до температуры его самопроизвольного срабатывания. Контроль температуры осуществляют при помощи датчика температуры (5) и регистратора температуры (6). При достижении нужной температуры инициируют пироболт и фиксируют отказ или срабатывание. Инициирование ПИ осуществляется подсоединением ПИ к источнику тока инициирования (8) Срабатывание или отказ проще всего фиксируется по наличию или отсутствию характерного звука срабатывания. Если произошел отказ, то продолжают нагрев пироболта (1) до его уничтожения путем самопроизвольного срабатывания. Изолирующий кожух (7) при этом защищает оборудование и персонал от разлета осколков. Так как нагрев ПИ до его уничтожения производится дистанционно и нет необходимости переносить его для уничтожения в другое место, то этим достигается необходимая безопасность работ при проведении испытаний. Операции повторяют поочередно с другими аналогичными пироболтами для различных температур и темпов нагрева до получения статистики, достаточной для определения зависимости максимальной рабочей температуры корпуса пироболтов Тшср от времени нагрева (темпа нагрева) и по полученной зависимости судят о работоспособности пиротехнических изделий при тепловом воздействии. Выбор темпов нагрева и температур для инициирования ПИ может быть, вообще говоря, произвольным. Но для экономии дорогостоящих образцов ПИ при испытаниях программу испытаний желательно составлять таким образом, чтобы обойтись минимальным количеством образцов для достижения требуемой точности результата. При выборе значений темпов нагрева и температур корпуса пироболтов можно использовать, например, следующий метод. В качестве начального темпа нагрева выбирают максимально возможный, который обеспечивает используемое устройство нагрева (см. фиг. 3). Верхней границей температурного диапазона для искомой Тшср может служить температура самопроизвольного срабатывания Тсс. Будем считать ее известной, поскольку известен способ ее определения (патент RU 2583979, опубл. 10.05.2016). Нижней границей может служить максимальная известная рабочая температура ПИ, указанная в паспорте. Если ПИ является новой разработкой, то за нижнюю границу можно взять и комнатную температуру. Тогда на первом шаге (n=1) испытуемое ПИ инициируют при температуре, соответствующей середине выбранного таким образом диапазона. В результате получают либо штатное срабатывание, либо отказ. Берут новый диапазон, нижней границей которого служит максимальная температура, при которой ПИ штатно срабатывало или, если таковой нет, начальная температура. Верхней границей берут минимальную температуру, при которой происходил отказ или, если таковой нет, температуру самопроизвольного срабатывания ПИ. Следующее ПИ инициируют при температуре, соответствующей середине нового интервала. И так продолжают далее. С каждым шагом n интервал, в котором лежит искомая температура, сокращается в два раза. На восьмом шаге, например, он сократится в 2n=264 раза. Это значит, что израсходовав восемь ПИ, можно определить искомую температуру Тшср практически с погрешностью порядка 1°С в предположении, что для большинства известных пиротехнических составов температура самопроизвольного воспламенения не превышает 260°С. Определив Тшср для начального темпа нагрева, можно перейти к следующему темпу нагрева. Величину нового темпа можно взять вдвое меньше. И так далее. Четыре-пять полученных таким образом точек зависимости Тшср от темпа нагрева даст удовлетворительное начальное представление обо всей кривой. При необходимости можно всегда уточнить результат, проведя испытания для других выбранных темпов нагрева. Таким образом, полученная зависимость от времени Тшср для пироболтов представлена на фиг. 3.

В качестве примера для иллюстрации осуществления заявленного способа использовались ПИ с электрическим инициированием. Но способ можно использовать и для других ПИ, которые можно дистанционно инициировать в течение короткого промежутка времени при достижении заданной температуры в процессе нагрева. Например, хлопушки с тросовым приводом.

При уменьшении темпов нагрева зависимость Тшср от времени становится более пологой и начиная с некоторого характерного времени вырождается в горизонтальную прямую. Предельное значение этой зависимости Тшсрдх является максимальной температурой для своего вида ПИ, при длительном хранении ниже которой ПИ всегда остается работоспособным. Знание максимально допустимой температуры при длительном хранении обеспечивает надежность срабатывания ПИ после длительного хранения и, как следствие, безопасность использования изделий, в которых использованы ПИ.

В частности, при спуске космических аппаратов с орбиты земли при нештатных ситуациях за счет аэродинамического нагрева могут реализовываться высокие темпы нагрева ПИ, близкие к постоянным.

Имея такую характеристику ПИ, как зависимость Тшср от темпа нагрева, можно сказать, произойдет или нет штатное срабатывание, если известна кривая нагрева конструкции, в которой установлен корпус ПИ.

Можно решать и обратную задачу. Если известен момент отказа срабатывания, то можно судить о температуре и темпе нагрева корпуса ПИ в этот момент времени.

Все вышесказанное подтверждает достижимость заявленного технического результата.

Способ определения работоспособности пиротехнических изделий при тепловом воздействии, состоящий в том, что производят тепловое воздействие на пиротехническое изделие путем нагрева его корпуса с заданным постоянным темпом, контролируют при этом температуру корпуса пиротехнического изделия, определяют температуру корпуса, при которой осуществляется самопроизвольное срабатывание пиротехнического изделия, отличающийся тем, что нагрев корпуса пиротехнического изделия производят до температуры, лежащей в диапазоне от максимальной рабочей температуры пиротехнического изделия до температуры его корпуса, при которой происходит самопроизвольное срабатывание пиротехнического изделия для выбранного темпа нагрева, затем производят штатное инициирование пиротехнического изделия и фиксируют наличие срабатывания или отказа, в случае отказа продолжают нагрев корпуса пиротехнического изделия до осуществления его самопроизвольного срабатывания, операции повторяют поочередно с другими аналогичными пиротехническими изделиями для различных выбранных из упомянутого диапазона температур и темпов нагрева до получения зависимости максимальной рабочей температуры корпуса пиротехнического изделия, при которой происходит его штатное срабатывание, от темпа нагрева корпуса пиротехнического изделия и по полученной зависимости судят о работоспособности пиротехнических изделий при тепловом воздействии.
Способ определения работоспособности пиротехнических изделий при тепловом воздействии
Способ определения работоспособности пиротехнических изделий при тепловом воздействии
Способ определения работоспособности пиротехнических изделий при тепловом воздействии
Способ определения работоспособности пиротехнических изделий при тепловом воздействии
Источник поступления информации: Роспатент

Showing 1-10 of 111 items.
19.01.2018
№218.016.00e2

Способ испытания пневмогидравлической системы

Изобретение относится к ракетно-космической технике и может быть применено в различных видах техники, где используется пневмогидравлическая система. Заявленный способ испытания пневмогидравлической системы включает подачу контрольного газа в пневмогидравлическую систему, контроль испытательного...
Тип: Изобретение
Номер охранного документа: 0002629697
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0105

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата (КА) относится к области дистанционного мониторинга природных и техногенных процессов. Способ наблюдения наземных объектов с движущегося по околокруговой орбите КА включает определение текущих...
Тип: Изобретение
Номер охранного документа: 0002629694
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.1dc2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль...
Тип: Изобретение
Номер охранного документа: 0002640943
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1dd9

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике. Ракетный разгонный блок содержит криогенный бак окислителя с дополнительными придонными перегородками, заборным устройством, штангой датчика уровня криогенного топлива, маршевый двигатель. Криогенный бак окислителя снабжен каплеотражателем,...
Тип: Изобретение
Номер охранного документа: 0002640941
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.22c3

Способ определения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в...
Тип: Изобретение
Номер охранного документа: 0002642166
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2438

Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Предложенный способ относится к области дистанционного мониторинга природных процессов, в частности роста и движения ледников. Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите КА включает определение текущих параметров орбиты, съемку с КА ледника и...
Тип: Изобретение
Номер охранного документа: 0002642544
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2aa2

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий авиационной и ракетной техники. Электронасосный агрегат содержит корпус (1) и установленные в нем электродвигатель (4) и двухопорный полый вал (5) насоса с по крайней мере одним рабочим...
Тип: Изобретение
Номер охранного документа: 0002642877
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2bb6

Способ определения параметров движения наблюдаемого с космического аппарата ледника

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения параметров движения фронтальной части ледника. Сущность: с космического аппарата выполняют съемку ледника и неподвижных характерных наземных точек в моменты, взятые...
Тип: Изобретение
Номер охранного документа: 0002643224
Дата охранного документа: 31.01.2018
10.05.2018
№218.016.3b52

Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости

Изобретение относится к космической технике, в частности к средствам фиксации в условиях невесомости элементов предметной среды, особенно инструментов. Протяженная рукоятка многофункционального инструмента для использования в условиях невесомости выполнена с продольным сквозным пазом. В пазу...
Тип: Изобретение
Номер охранного документа: 0002647427
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3c0c

Способ управления стационарным плазменным двигателем

Изобретение относится к исследованию и эксплуатации электроракетных стационарных плазменных двигателей. В способе, включающем запуск двигателя, сравнение измеренных значений разрядного тока с верхним допустимым его значением, и в случае превышения предельного значения выключение двигателя с...
Тип: Изобретение
Номер охранного документа: 0002647749
Дата охранного документа: 19.03.2018
Showing 1-8 of 8 items.
10.10.2013
№216.012.740d

Способ определения характеристик срабатывания пиротехнических изделий с электрическим инициированием и устройство для его осуществления

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного тока, фиксируют момент t подачи тока и значение...
Тип: Изобретение
Номер охранного документа: 0002495366
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.740e

Способ определения характеристик срабатывания пиротехнических изделий с электрическим инициированием и устройство для его осуществления

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного напряжения, фиксируют момент t подачи тока и значение...
Тип: Изобретение
Номер охранного документа: 0002495367
Дата охранного документа: 10.10.2013
20.03.2015
№216.013.3467

Способ измерения пространственного распределения теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ включает тепловое воздействие от инфракрасного источника нагрева по всей видимой поверхности исследуемого изотропного материала....
Тип: Изобретение
Номер охранного документа: 0002544890
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3468

Способ определения комплекса теплофизических параметров изотропных материалов

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Способ определения комплекса теплофизических параметров изотропных материалов включает тепловое воздействие от инфракрасного источника нагрева...
Тип: Изобретение
Номер охранного документа: 0002544891
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.346b

Способ оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта....
Тип: Изобретение
Номер охранного документа: 0002544894
Дата охранного документа: 20.03.2015
10.05.2016
№216.015.3b47

Способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии и устройство для его реализации

Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры...
Тип: Изобретение
Номер охранного документа: 0002583979
Дата охранного документа: 10.05.2016
10.04.2019
№219.017.006b

Способ определения теплофизических характеристик пенополиуретанов

Изобретение относится к теплофизическим измерениям. Способ состоит в том, что на теплоизолируемую поверхность исследуемого образца воздействуют по линии тепловыми импульсами постоянной мощности и периодом следования. Выбирают ряд образцов пенополиуретана с заранее определенными и различными...
Тип: Изобретение
Номер охранного документа: 0002295720
Дата охранного документа: 20.03.2007
20.04.2023
№223.018.4b1e

Способ экспериментального определения динамических характеристик гибких протяженных конструкций

Изобретение относится к области испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий и может быть использовано в машиностроении, ракетно-космической, авиационной и в других отраслях техники. Способ заключается в том, что гибкую...
Тип: Изобретение
Номер охранного документа: 0002775360
Дата охранного документа: 29.06.2022
+ добавить свой РИД