×
12.07.2018
218.016.6ff2

Способ получения наноструктурированных платиноуглеродных катализаторов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химических источников тока, а именно к способу получения катализаторов с наноразмерными частицами платины на углеродных носителях для электродов низкотемпературных топливных элементов (НТЭ), который заключается в том, что процесс электрохимического диспергирования платины осуществляют при повышенной плотности тока 1,6-2,0 А/см. Технический результат заключается в увеличении мощностных характеристик и стабильности катализатора в процессе работы топливного элемента. 1 з.п. ф-лы, 5 пр.
Реферат Свернуть Развернуть

Изобретение относится к области химических источников тока, а именно к способу получения катализаторов с наноразмерными частицами платины на углеродных носителях для электродов низкотемпературных топливных элементов (НТЭ) и направлено на увеличение мощностных характеристик и стабильности катализатора в процессе работы топливного элемента. Указанный технический результат достигается путем осаждения наночастиц платины, полученных электрохимическим методом при повышенной плотности тока на поверхности наноструктурированного высокодисперсного углеродного носителя (УН).

В качестве УН для наночастиц платины наиболее часто используют мелкодисперсные углеродные материалы, обладающие высокоразвитой поверхностью. Использование углеродных материалов для осаждения наночастиц платины на их поверхности вызвано необходимостью стабилизации наночастиц вследствие их агломерации. Взаимодействие наночастиц металла с поверхностью УН способствует их закреплению и, таким образом, препятствует их агломерации. Это приводит к сохранению дисперсности частиц и, следовательно, высокой удельной площади поверхности. Тем не менее, в процессе работы катализаторов в составе НТЭ наблюдается их деградация, вызванная агломерацией наночастиц платины и/или их отрывом от поверхности УН (Thompsett D. // Catalysts for the Proton Exchange Membrane Fuel Cell, in: Handbook of Fuel Cells. Fundamentals, Technology and Applications. Editors: Vielstich W., Lamm A., Gasteiger H.A. Sohn, Wiley & Sons Ltd., New York, USA, 2003. Vol. 3. P. 6-1-6-23). На сегодняшний день разработано большое количество различных углеродных структур, которые формально отвечают таким требованиям. Углеродные структуры должны прочно удерживать наночастицы платины, обладать высокой электронной проводимостью, хорошими механическими свойствами, достаточно развитой площадью поверхности, пористой структурой и быть устойчивым в окислительных процессах, реализуемых в процессе эксплуатации топливного элемента. Однако такое формальное соответствие не позволяет с уверенностью утверждать, подходит ли та или иная углеродная структура для использования ее в составе катализаторов топливных элементов.

Для получения Pt/C катализаторов обычно используются конденсационные методы, основанные на химическом восстановлении ионов платины до металлического состояния.

Выделяют различные технологии получения наноструктурированных каталитических материалов на основе наночастиц платины: пропитка, микроэмульсионный метод, золь-гель технология, полиольный метод. В качестве соединений-предшественников наноразмерных металлических частиц, в частности платины, широко применяются платинохлористоводородная кислота и ее соли. Восстановление может проводиться как из водной среды, так и из органической. В качестве восстановителя в водных средах в основном применяются боргидриды щелочных металлов, водород, гидразин, аскорбиновая кислота. При проведении процесса в органической среде применяют полиолы, диолы и амины. В общем случае процесс получения Pt/C катализатора во многих конденсационных способах заключается в следующем: в водный или водноорганический раствор платинохлористоводородной кислоты или ее соли вносят УН, затем добавляется восстановитель (Н2, NaBH4), иногда - при нагревании. В процессе синтеза формирование и последующий рост наночастиц платины могут происходить как в объеме раствора, так и на поверхности частиц углерода. Взаимодействие растущих зародышей платины с углеродным носителем может влиять на структуру активной каталитической фазы - наночастиц платины. На электрокаталитические свойства Pt/C-материалов, полученных таким способом, будет оказывать влияние носитель, как непосредственно на процесс формирования наночастиц, так и на характеристики катализатора уже в процессе его эксплуатации.

Из патента США №5489663, опубл. 1996 известен катализатор на основе платинового сплава и способ его приготовления. Способ основан на восстановлении соединений платины на углеродном носителе с последующей термообработкой при 800°С.

Недостатком данного способа является то, что процесс предполагает восстановление после максимально полной сорбции соединений платины на поверхности УН, что ведет к образованию крупных кристаллов при восстановлении, а также то, что используется высокая температура последующей термообработки, увеличивающая размер частиц катализатора (агломерация, спекание).

Из патента RU 2191070 известен катализатор на основе благородных металлов (платины, палладия, рутения, родия, иридия), нанесенных на графитоподобный УН в количестве не менее 0.01 масс. %, а также на основе смесей или сплавов благородных металлов (платины, палладия, рутения, родия, иридия), содержащих два и более металла, нанесенных на графитоподобный УН с суммарным содержанием металлов не менее 0,01 масс. %. Графитоподобный углеродный материал представляет собой трехмерную углеродную матрицу с объемом пор 0.2-1.7 см3/т. Катализатор получают нанесением комплексных соединений благородных металлов, например Ptn(CO)2n, Ru[(CO(NH2)2)]Cl2, Ru(OH)Cl3, [Pd(H2O)4](NO3)2 и т.п., на графитоподобный углеродный материал.

Недостатком данного способа получения катализаторов является недостаточно высокая коррозионная устойчивостью и каталитическая активность.

Ближайшим аналогом заявленного способа получения катализатора на основе сажи Vulcan ХС 72, является способ, описанный в патенте RU №2424850. Способ получения катализатора состоит в том, что процесс проводят с использованием платиновых электродов в растворах гидроксидов щелочных металлов концентрацией от 2 до 6 М под действием переменного тока частотой 50 Гц и средней величине тока, отнесенной к единице площади поверхности электродов 0.3-1.5 А/см2, в присутствии наночастиц сажи.

Недостатком данного способа является использование сажи Vulcan ХС 72 которая не обеспечивает достаточно прочное закрепление наночастиц платины. Наночастицы металла в этом способе получаются достаточно крупными (5-25 нм), а также присутствие агломератов частиц металла на поверхности сажи, что приводит к низкой каталитической активности и быстрой деградации катализатора.

Предлагаемое техническое решение заключается в использовании в качестве носителя углеродных материалов на основе графитоподобных структур (графита, нановолокон и нанотрубок), обладающих протяженной структурой, поверхность которых способствует прочному закреплению наночастиц платины и их равномерному распределение по поверхности УН с размером частиц 4-20 нм.

Техническим результатом является также возможность получать катализаторы с заданными значениями структурных характеристик (средним размером металлических наночастиц, дисперсией их размерного распределения, удельной площадью поверхности металла), что дает возможность при создании топливных элементов оптимизировать эти показатели для получения наилучшего сочетания морфологической стабильности и активности катализатора применительно к конкретным материалам и условиям эксплуатации.

В качестве наноструктурированных УН могут быть использованы высокодисперсные наноструктурированные материалы с удельной площадью поверхности выше 50 м2/г типа Timrex HSAG 300, углеродные нановолокна Taunit и углеродные нанотрубки. Оптимальное содержание УН в процессе электрохимического синтеза составляет 1-20 г/л раствора.

Решение поставленной задачи достигается тем, что процесс осуществляется с использованием платиновых электродов и УН в растворах гидроксидов щелочных металлов концентрацией от 2 до 6 М под воздействием переменного тока частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 1.6-2.0 А/см2. В качестве УН могут быть использованы высокодисперсные наноструктурированные материалы с удельной площадью поверхности выше 50 м2/г (Timrex HSAG300, углеродные нановолокна Taunit и углеродные нанотрубки). Предлагаемый способ приготовления катализатора основан на явлении разрушения платиновых электродов в растворах гидроксидов щелочных металлов при воздействии переменного тока с одновременным осаждением образующихся наночастиц платины на УН. Способ осуществлялся с использованием двух одинаковых электродов, выполненных из платиновой фольги, площадью 4 см2 каждый. В раствор гидроксида щелочного металла вводится УН, затем в раствор погружают параллельно друг другу электроды на расстоянии 1 см друг от друга. На электроды подается переменный ток.

Пример 1. Катализатор на основе углеродной сажи Vulcan ХС 72 был получен по способу, заявленному в патенте RU №2424850.

В 2М раствор NaOH при перемешивании был введен Vulcan ХС 72. Перемешивание проводилось в течение 15 минут. Затем в раствор были погружены электроды. На электроды в течение 2.5 часов подавался переменный ток, средняя величина которого составляла 1.5 А. Температура раствора находилась в пределах 30-40°С. Полученную суспензию катализатора фильтровали, промывали ацетоном, затем промывали дистиллированной водой, сушили при температуре 80°С в течение 1 часа. Вес наночастиц платины составил 40% от массы катализатора. Размер наночастиц платины - от 5 до 25 нм. Удельная мощность водородно-воздушного ТЭ на основе синтезированного катализатора составила 63 мВт/см2 при 60°С.

Пример 2. Синтез катализатора с наноразмерными частицами платины на основе углеродной сажи Vulcan ХС 72 проводили аналогично примеру 1 с отличием, что перемешивание проводили в течении 60 минут, а средняя величина тока составила 2.0 А.

Размер наночастиц платины - от 4 до 20 нм. Удельная мощность водородно-воздушного ТЭ на основе синтезированного катализатора составила 83 мВт/см2 при 60°С.

Пример 3. Процесс аналогичен приведенному в примере 2 и отличается тем, что в качестве УН использовались углеродные нановолокна Taunit. Содержание платины составило 40% от массы катализатора. Размер наночастиц платины - от 4 до 20 нм. Удельная мощность водородно-воздушного ТЭ на основе синтезированного катализатора составила 23 мВт/см2 при 60°С.

Пример 4. Процесс аналогичен приведенному в примере 2 и отличается тем, что в качестве УН использовались наноструктурированные углеродные нанотрубки. Размер наночастиц платины- от 4 до 18 нм. Удельная мощность водородно-воздушного ТЭ на основе синтезированного катализатора составила 135 мВт/см2 при 60°С.

Пример 5. Процесс аналогичен приведенному в примере 2 и отличается тем, что в качестве УН использовались наноструктурированные углеродные нантрубки LGCNT предоставленные компанией LG Chem. Размер наночастиц платины - от 4 до 18 нм. Удельная мощность водородно-воздушного ТЭ на основе синтезированного катализатора составила 105 мВт/см2 при 60°С.

Таким образом, заявляемый способ обеспечивает получение высокоэффективных катализаторов с наноразмерными частицами платины на углеродном носителе без использования солей платины (соединений-предшественников), токсичных восстановителей и повышенных температур. Способ позволяет получить катализаторы с размерами частиц платины от 4 до 20 нанометров. Проведение процесса при более высокой плотности тока и использование протяженных наноструктурированных углеродных носителей позволяет достигать повышение характеристик электрода за счет снижения его электрического сопротивления, повышение рабочей плотности тока за счет увеличения удельной площади поверхности катализатора. Улучшение характеристик электрода повышает эффективность работы топливного элемента.

Источник поступления информации: Роспатент

Showing 1-10 of 33 items.
27.06.2014
№216.012.d59b

Реактор для жидкофазной очистки стирольной фракции от примеси фенилацетилена методом каталитического селективного гидрирования стирольной фракции

Изобретение относится к конструкциям химических реакторов с механическими перемешивающими устройствами и может быть использовано в химических и смежных с ней промышленностях для проведения различных каталитических процессов, в частности для жидкофазной очистки стирольной фракции от примеси...
Тип: Изобретение
Номер охранного документа: 0002520461
Дата охранного документа: 27.06.2014
10.08.2014
№216.012.e86b

Способ получения ультрагидрофобных покрытий для борьбы с обледенением больших площадей

Изобретение относится к способу получения ультрагидрофобных покрытий многоразового (долговременного, возобновляемого) использования для борьбы с обледенением больших площадей (крыльев самолетов, строений, линий электропередачи, панелей солнечных батарей и т.д.). Способ получения...
Тип: Изобретение
Номер охранного документа: 0002525292
Дата охранного документа: 10.08.2014
20.10.2014
№216.012.ff09

Разветвленный полимер и способ его получения

Настоящее изобретение относится к разветвленным полимерам и способам их получения. Описан разветвленный полимер, состоящий из 50-99.8 мас.% (от массы полимера) звеньев, образованных стиролом и/или α-замещенными алкил стиролами - α-метил-стирол, α-изопропил-стирол и/или алкил стиролами с...
Тип: Изобретение
Номер охранного документа: 0002531145
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1d76

Способ переработки попутных и природных газов

Изобретение относится к способу переработки природных и попутных нефтяных газов с повышенным содержанием тяжелых гомологов метана путем прямого парциального окисления углеводородного газа и последующего карбонилирования получаемых продуктов. При этом углеводородный газ смешивают с кислородом...
Тип: Изобретение
Номер охранного документа: 0002538970
Дата охранного документа: 10.01.2015
10.11.2015
№216.013.8b00

Способ изготовления фоточувствительных халькопиритных пленок

Изобретение относится к технологии создания фоточувствительных халькопиритных пленок, которые могут найти применение при создании солнечных батарей. Способ получения фоточувствительных халькопиритных пленок включает два этапа, на первом получают прекурсорную пленку, а на втором проводят ее...
Тип: Изобретение
Номер охранного документа: 0002567191
Дата охранного документа: 10.11.2015
27.03.2016
№216.014.c67f

Способ получения метилпропионата и метилметакрилата

Изобретение относится к процессам переработки углеводородных газов с получением жидких химических продуктов с высокой добавленной стоимостью. Способ переработки природных и попутных нефтяных газов, а также углеводородных нефтяных газов с повышенным содержанием тяжелых гомологов метана и...
Тип: Изобретение
Номер охранного документа: 0002578598
Дата охранного документа: 27.03.2016
10.03.2016
№216.014.caae

Стеклополимерный композиционный материал и способ его изготовления

Изобретение относится к химической промышленности, преимущественно к производству стеклополимерных композиционных материалов. Стеклополимерный композиционный материал содержит стеклотканевый наполнитель, пропитанный политетрафторэтиленом. Содержание равномерно распределенного по объему...
Тип: Изобретение
Номер охранного документа: 0002577053
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.2e9b

Применение 2-метилен-1,3-динитроксипропана в качестве противоишемического средства

Изобретение относится к области медицины, а именно к применению 2-метилен-1,3-динитроксипропана в качестве противоишемического средства. 1 ил., 5 табл.
Тип: Изобретение
Номер охранного документа: 0002580929
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.7339

Производные фуллеренов с пониженным сродством к электрону и фотовольтаическая ячейка на их основе

Настоящее изобретение относится к новым соединениям общей формулы (1), которые используются в качестве основы тонкой полупроводниковой пленки в структуре солнечной батареи, к композиции, содержащей соединения формулы (1), и к применению новых соединений. В формуле (1): C - углеродный каркас...
Тип: Изобретение
Номер охранного документа: 0002598079
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.9150

N,n'-бис(3-бромпропионил)-n,n'-диметил-1,2-этилендиамин, способ его получения и применение его в качестве водорастворимого реагента, проявляющего противоопухолевые свойства

Изобретение относится к N,N'-бис(3-бромпропионил)-N,N′-диметил-1,2-этилендиамину формулы 1. Соединение по изобретению получают путем обработки производных 3-бромпропионовой кислоты N,N′-диметил-1,2-этилендиамином в присутствии бикарбонатов щелочных металлов. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002605603
Дата охранного документа: 27.12.2016
Showing 1-10 of 22 items.
10.07.2013
№216.012.536b

Способ электрохимического получения катализатора pt-nio/c

Изобретение относится к способу получения катализатора. Описан способ электрохимического получения катализатора Pt-NiO/C, включающий приготовление раствора гидроксида одного из щелочных металлов, в полученный раствор при перемешивании добавляют углеродный носитель, получают суспензию, в которой...
Тип: Изобретение
Номер охранного документа: 0002486958
Дата охранного документа: 10.07.2013
10.12.2013
№216.012.87e3

Наноструктурированный катализатор для дожигания монооксида углерода

Настоящее изобретение относится к катализаторам из металлов платиновой группы на оксидном носителе, предназначенным для удаления вредных компонентов, в частности газообразного монооксида углерода в выхлопных газах автомобильных двигателей, или для использования в электродах газочувствительных...
Тип: Изобретение
Номер охранного документа: 0002500469
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a75

Способ электрохимического получения композиционного материала nio/c

Изобретение относится к области электрохимической энергетики, а именно к приготовлению активной массы электрода с наноразмерными частицами NiO на углеродном носителе, используемого в химических источниках тока, в частности в никель-металл-гидридных аккумуляторах, а также в суперконденсаторах....
Тип: Изобретение
Номер охранного документа: 0002501127
Дата охранного документа: 10.12.2013
10.01.2014
№216.012.95d5

Носитель электрокатализатора для низкотемпературных спиртовых топливных элементов

Настоящее изобретение относится к области химических источников тока, а именно к материалу носителя для электрокатализаторов на основе диоксида титана, легированного рутением, для применения в качестве материала анода в спиртовых низкотемпературных топливных элементах с полимерной...
Тип: Изобретение
Номер охранного документа: 0002504051
Дата охранного документа: 10.01.2014
20.02.2014
№216.012.a3c5

Каталитический электрод для спиртовых топливных элементов

Изобретение относится к каталитическому электроду для мембранно-электродных блоков спиртовых (использующих в качестве топлива метанол или этанол) топливных элементов, где в качестве электрокаталитического материала используется электропроводный диоксид титана, легированный оксидом рутения в...
Тип: Изобретение
Номер охранного документа: 0002507640
Дата охранного документа: 20.02.2014
20.07.2014
№216.012.ddcc

Способ получения модифицированных перфторированных сульфокатионитных мембран

Настоящее изобретение относится к способу получения модифицированных перфторированных сульфокатионитных мембран. Описан способ получения модифицированных перфторированных сульфокатионитных мембран путем формирования высокомолекулярных протонпроводящих добавок в их транспортных каналах,...
Тип: Изобретение
Номер охранного документа: 0002522566
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df69

Способ изготовления металл-оксидного каталитического электрода для низкотемпературных топливных элементов

Изобретение относится к области химических источников тока, а именно к способу изготовления и материалу каталитического электрода - элемента мембранно-электродного блока для водородных и спиртовых топливных элементов. Металл-оксидный каталитический электрод представляет собой пористый...
Тип: Изобретение
Номер охранного документа: 0002522979
Дата охранного документа: 20.07.2014
10.12.2014
№216.013.0f13

Способ электрохимической защиты текстильных изделий от статического электричества

Изобретение относится к области охраны труда и технике безопасности и предназначено для индивидуальной защиты от воздействия электростатического поля. Изобретение позволяет повысить эффективность индивидуальной защиты работников современных электростатических и взрывоопасных производств при...
Тип: Изобретение
Номер охранного документа: 0002535276
Дата охранного документа: 10.12.2014
27.07.2015
№216.013.65ca

Теплоноситель для солнечного коллектора

Изобретение относится к органическим теплоносителям, а именно к жидким пожаробезопасным теплоносителям на водно-гликолиевой основе, используемым для преобразования электромагнитного излучения Солнца в тепловую энергию для нагрева теплоносителя. Теплоноситель седиментационно устойчивый для...
Тип: Изобретение
Номер охранного документа: 0002557611
Дата охранного документа: 27.07.2015
10.09.2015
№216.013.75aa

Способ изготовления каталитического электрода на основе гетерополисоединений для водородных и метанольных топливных элементов

Изобретение относится к области электротехники, а именно к способу изготовления каталитического электрода мембрано-электродного блока, преимущественно для водородных и метанольных топливных элементов. Способ изготовления каталитического электрода топливного элемента включает изготовление...
Тип: Изобретение
Номер охранного документа: 0002561711
Дата охранного документа: 10.09.2015
+ добавить свой РИД