×
10.07.2018
218.016.6f3d

Результат интеллектуальной деятельности: ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002660676
Дата охранного документа
09.07.2018
Аннотация: Изобретение относится к радиотехнике и может быть использовано в системах радиосвязи для повышения точности измерения скорости движения космических аппаратов (КА). Достигаемый технический результат - повышение точности измерения скорости космического аппарата за счет уменьшения случайной составляющей измерения частоты Доплера. Указанный результат достигается за счет использования более чем одной гармонической составляющей для измерения частоты Доплера F по каждой i-й гармонике, 0≤i≤|n|, с последующим усреднением результатов частных измерений. Индекс 0 соответствует первой, основной/центральной, гармонике. 2 ил.

Изобретение относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи.

Одним из важнейших параметров движения КА является скорость его перемещения по орбите, т.е. производная по времени расстояния между КА и наземным комплексом управления (НКУ) относительно НКУ. Задача точного измерения скорости движения КА является актуальной на всем протяжении космической эры. Предложено множество вариантов решения этой задачи, которые, в основном, опираются на оценку Доплеровского смещения несущей частоты.

Известно устройство, реализующее «Способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа», защищенные патентом РФ №2526401, опубликованным 20.08.2014, в котором используются три территориально разнесенные наземные измерительные станции и приемоответчик КА. Измеренные Доплеровские сдвиги частоты со всех измерительных станций (ИС) передаются в баллистический центр. Там вычисляются разности этих Доплеровских сдвигов, эквивалентные измерениям радиоинтерферометров с базами, соответствующими расстояниям между ИС. В баллистическом центре по результатам измерений указанных скоростей и дальности рассчитывается траектория движения КА. Технический результат заключается в создании высокоточной и быстродействующей системы траекторных измерений с упрощенными конструкцией и эксплуатацией ее средств. Техническая сущность аналога заключена в использовании широко известного метода усреднения результатов измерения, разнесенными по пространству измерителями. В этом случае шумы, присутствующие в составе сигнала, принимаемого каждым измерителем не коррелированы, что и объясняет эффективность пространственного усреднения.

Способ характеризуется сложной и дорогостоящей реализацией по причине необходимости использования нескольких разнесенных измерительных станций. Кроме того, методическая погрешность измерения каждой измерительной станции определяет погрешность итоговой оценки.

Наиболее близким к заявляемому является устройство по патенту США №8,970,426, опубликованному 03.03.2015 «Automatic matched Doppler filter selection». Прототип содержит антенну, интерфейсный модуль в составе генератора сигнала и приемника, подключенных к антенне, аналого-цифровой преобразователь, подключенный к выходу приемника, блок цифровой обработки в составе последовательно соединенных блока сжатия импульсов, банка из n фильтров, входы каждого фильтра параллельно подключены к выходу блока сжатия импульсов, вычислительного блока и дисплея, причем вычислительный блок соединен с банком из n фильтров.

Техническая сущность прототипа состоит в реализации множества Доплеровских частотных фильтров, используемых для разделения всего пространства Доплеровских частот на множество узких областей с соответствием каждого фильтра одной из этих частотных полос. Зная пространственную частоту, обычно связанную с конкретными помехами, например, вида отражений от местных предметов, погодных влияний, наложений сигналов можно использовать Доплеровские фильтры для дискриминации помех, а также определять цели по Доплеровской частоте. Таким образом, каждый Доплеровский фильтр настроен на конкретное значение частоты Доплера FD.

Недостаток прототипа состоит в низкой точности измерения скорости КА в связи с большим значением случайной составляющей. Это объясняется тем, что аддитивный шум в составе принимаемого сигнала является причиной случайной составляющей результата измерения частоты Доплера.

Задачей настоящего технического решения является повышение точности измерения скорости космического аппарата за счет уменьшения случайной составляющей измерения частоты Доплера.

Достигается поставленная цель благодаря тому, что известный Доплеровский измеритель скорости космического аппарата, содержащий антенну и связанные с нею генератор последовательности радиоимпульсных сигналов и приемник, банк из n фильтров, входы каждого фильтра параллельно подключены к выходу приемника, и вычислительный блок, с выхода которого поступает результат измерения скорости космического аппарата, дополнительно снабженный генератором гармоник, входом соединенный с генератором последовательности радиоимпульсных сигналов, банком, из n измерителей Доплеровских частот, первый вход каждого из измерителей Доплеровских частот соединен с выходом соответствующего фильтра, а вторые входы измерителя Доплеровских частот соединены с соответствующими выходами генератора гармоник, блоком усреднения, входами подключенный к выходам измерителей Доплеровских частот, а выходом соединенный с вычислительным блоком, блоком постоянной памяти, выходами соединенный с вычислительным блоком и блоком усреднения.

На иллюстрациях представлено:

- Фиг. 1 - Блок-схема предлагаемого Доплеровского измерителя скорости космического аппарата, где показаны:

1. антенна;

2. генератор сигнала;

3. генератор n частотных гармоник;

4. приемник;

5. банк n фильтров;

6. банк измерителей доплеровских частот (ИДЧ);

7. блок усреднения (БУ);

8. вычислительный блок (ВБ);

9. блок постоянной памяти.

- Фиг. 2 - Спектральный состав последовательностей излученных и принятых радиоимпульсов.

Техническая сущность предлагаемого технического решения заключена в использовании более чем одной гармонической составляющей для измерения частоты Доплера FDi по каждой i-й гармонике, 0≤i≤|n| с последующим усреднением результатов частных измерений. Индекс 0 соответствует первой, основной/центральной, гармонике. Практически во всех опубликованных теоретических и прикладных работах в области Доплеровского измерения скорости, в т.ч. и в прототипе, используется одноосновная гармоническая составляющая, которая является несущей частотой. На это однозначно указывается, например в Winstead et al. «Doppler beam-sharpened radar altimeter» US Patent 7,911,375 March 22, 2011. Однако спектр излучаемого радиоимпульсного сигнала всегда насыщен достаточно большим количеством гармонических составляющих, размещенных по частоте на значение, кратное 1/Т, где Т - длительность периода излучаемых радиоимпульсов. На фиг. 2 представлен спектральный состав условного сигнала с симметричным спектром относительно центральной частоты ƒ0 с боковыми составляющими ƒi. Каждая из гармонических составляющих смещается на индивидуальное значение FDi, обусловленные движением КА.

Скорость КА на основании измерения Доплеровского смещения не только первой, но других гармонических составляющих выражается в общем виде:

где i - номер гармоники, i=1, 2…n; С - скорость света в свободном пространстве; ƒперi - частота i-ой гармоники сигнала, переданного НКУ; ƒпрi - частота i-ой гармоники принятого сигнала, .

Знак зависит от направления движения КА относительно НКУ. Для определенности будем считать, что КА удаляется.

Т.к. ƒперi>>FDi, то (1) можно преобразовать, опираясь на разложение в ряд Тейлора (1-FDiперi)-1≈1+FDiперi. Тогда

Индекс i=0 означает, что при реализации (2) используется основная/центральная гармоническая составляющая - несущая частота.

Пусть измерение производится по первой гармонике, i=1. Тогда

Но ƒпер1пер0+1/Т, где Т - период повторения радиоимпульсов, переносящих тестовый сигнал.

В общем виде

Т.к. Vri=Vr0, то можно выразить Доплеровские частоты на всех гармониках через FD0 центральной несущей:

Поэтому умножение измеренного значения FDi на соответствующий поправочный коэффициент (при условии , обеспечивает приведение результатов измерения на всех гармониках к единому масштабу. Массив коэффициентов Ki формируется заранее и хранится в узле постоянной памяти.

Обычно ƒпер0 задается с точностью, не влияющей на погрешность определения скорости. Тогда единственным источником погрешности является Δi - неточность измерения значений FDi. Отсюда

где ξi - погрешность измерения скорости, вызванная неточностью измерения частоты Доплера на i-й гармонике.

Основной причиной Δi в первую очередь является шум, поэтому можно считать Δi случайной составляющей с нулевым средним и дисперсией σ2. Усреднение результатов пространственных измерений частоты Доплера с учетом корректирующих коэффициентов Ki уменьшает дисперсию шума, что обеспечивает повышение точности измерения скорости движения КА.

Первое слагаемое (5) представляет собой усредненное значение FD0, подстановка которого в первое слагаемое (3) даст истинное значение скорости КА при i=0. Среднее значение случайной составляющей

Вторым слагаемым можно пренебречь, поскольку оно в ƒпер0T>>1 раз меньше первого. Поэтому

Оценим статистические характеристики . Как принято выше, математическое ожидание М[Δi]=0, поэтому математическое ожидание среднего также равно нулю, т.е. . Здесь M[x] - символ математического ожидания x.

Дисперсия среднего вычисляется по стандартной формуле дисперсии суммы независимых случайных величин

Считая, что D[Δ0]=D[Δ1]=⋅⋅⋅ получим

где под D[Δ0] понимается дисперсия измерения по одной центральной гармонике. Поэтому дисперсия случайной составляющей усредненного значения частоты Доплера при использовании n гармонических составляющих в n раз меньше дисперсии измерения по одной гармонике. Поэтому предложенное устройство в n раз точнее прототипа по случайной составляющей результата измерения скорости КА.

Работает устройство следующим образом.

Генератор 2 формирует последовательность радиоимпульсов с несущей частотой ƒ0, излучаемых в пространство с помощью антенны 1. Линейчатый спектральный состав излучаемой последовательности радиоимпульсов представлен на фиг. 2 сплошными линиями. Номер гармонической составляющей указан соответствующим индексом.

Принимаемый сигнал с выхода приемника 4 параллельно поступает на фильтры банка фильтров в составе n фильтров 5. Каждый из фильтров настроен на частоту индивидуальной гармонической составляющей. Ширина полосы пропускания каждого фильтра должна выбираться, исходя из максимального значения измеряемого Доплеровского смещения, не должна превосходить разности частот между соседними гармониками и ограничений, связанных с технической реализацией фильтра.

Радиосигнал с выхода приемника на промежуточной достаточно малой частоте поступает на ряд канальных фильтров Фi, которые выделяют 1, 2 и т.д. гармоники, отличающиеся от гармоник излученного тестового сигнала по частоте на соответствующее Доплеровское смещение. Значение Доплеровской частоты с выхода каждого фильтра измеряется соответствующим ИДЧ - измерителем Доплеровской частоты.

Исследуем статистические характеристики (5). Здесь погрешность измерения скорости

Математическое ожидание (М - символ математического ожидания)

Если M[Δi]=0, то М[ξi]=0, т.е. оценка (3) не смещенная. Считая, что по порядку величин ƒ0i≈ƒI, получим, что для частот порядка 10 ГГц коэффициент перед М[Δi] примерно равен 0,015, т.е. в математическом ожидании погрешность определения скорости составляет порядка 1,5% погрешности измерения частоты Доплера.

Процесс измерения скорости основывается на дискретном преобразовании Фурье. Пусть измерение производится по второй гармонике i=2. Тогда

Но ƒ0201+1/Т, где Т - период повторения радиоимпульсов, переносящих тестовый сигнал. Поэтому

Или в общем виде:

где константы , K2=K10, i - номер гармоники, i=1, 2…n;

Вместе с тем , т.е. для получения ƒD2 достаточно умножить значение ƒD1, полученное при измерении по первой гармонике, на постоянный коэффициент Mi. Этот коэффициент может быть достаточно большим, чтобы им пренебречь, а выравнивание Доплеровских частот необходимо для выполнения операции пространственного усреднения, направленного на уменьшение погрешности измерения Доплеровской частоты Δi.

В Блоке Усреднения БУ вычисляется среднее значение по стандартной формуле

Это усредненное значение используется при выполнении несложных математических вычислений, выполняемых в вычислительном блоке (ВБ) в соответствии с (8). Коэффициенты K1, K2 и Mi хранятся в блоке постоянной памяти ПЗУ. С выхода ВБ поступает измеренное значение скорости КА. Поскольку произведения под знаком суммы одинаковые числа, то

Если предположить, что частные погрешности Δi распределены по нормальному закону с нулевым средним то, при достаточно большом . Этот же результат можно получить при усреднении группы N последовательных измерений на одной первой гармонике, что потребует времени измерения TN=NT, где Т - время однократного измерения. Поэтому описанное пространственное усреднение снижает погрешность измерения частоты Доплера или уменьшает время измерения в N раз относительно традиционного последовательного измерения при сопоставимых значениях погрешности измерения, вызванной шумом в канале передачи и дискретным преобразованием в процессе измерения частоты.

Доплеровский измеритель скорости космического аппарата, содержащий антенну и связанные с нею генератор сигнала и приемник, банк из n фильтров, входы каждого фильтра параллельно подключены к выходу приемника, и вычислительный блок, с выхода которого поступает результат измерения скорости космического аппарата, дополнительно снабженный генератором гармоник, входом соединенный с генератором сигнала, банком из n измерителей доплеровских частот, первый вход каждого из измерителей доплеровских частот соединен с выходом соответствующего фильтра, а вторые входы измерителя доплеровских частот соединены с соответствующими выходами генератора гармоник, блоком усреднения, входами подключенный к выходам измерителей доплеровских частот, а выходом соединенный с вычислительным блоком, блоком постоянной памяти, в котором хранятся корректирующие коэффициенты, при этом выход блока постоянной памяти соединен с вычислительным блоком и блоком усреднения.
ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА
ДОПЛЕРОВСКИЙ ИЗМЕРИТЕЛЬ СКОРОСТИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 221-230 of 624 items.
13.01.2017
№217.015.7b27

Вертолётный радиоэлектронный комплекс

Изобретение относится к области радиоэлектроники и позволяет осуществлять дистанционный контроль источников радиоизлучений (ИРИ). Достигаемый технический результат - повышение помехоустойчивости и достоверности приема сигналов источников радиоизлучений и обмена аналоговой и дискретной...
Тип: Изобретение
Номер охранного документа: 0002600333
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8009

Гидроакустический зонд для измерения скорости звука в море

Изобретение относится к гидроакустическим измерениям и может быть использовано для измерения вертикального распределения скорости звука в море с передачей измерительной информации на судно по гидроакустическому каналу связи. Сущность: после сброса гидроакустического зонда в морскую воду...
Тип: Изобретение
Номер охранного документа: 0002599916
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8405

Аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя

Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность...
Тип: Изобретение
Номер охранного документа: 0002601532
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.84d9

Устройство выравнивания аэродромного грузоподъемного механизма

Изобретение относится к области средств механизации, применяемых на аэродроме. Устройство выравнивания аэродромного грузоподъемного механизма содержит опорную платформу и установленные на ней датчик выравнивания опорной платформы в горизонтальное положение, выносные опорные гидравлические...
Тип: Изобретение
Номер охранного документа: 0002602884
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.85e5

Способ формирования импульсной характеристики воздушного объекта с повышенной информативностью на участках его пространственно-углового замирания

Изобретение относится к радиолокационным методам и может быть реализовано и применено в системах отождествления аэродинамических летательных аппаратов, использующих наряду с другими признаками векторный отличительный признак, именуемый импульсной характеристикой (ИХ) объекта и формируемый на...
Тип: Изобретение
Номер охранного документа: 0002603694
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86cb

Способ пеленгования источника радиоизлучения

Изобретение относится к области радиотехнических систем определения угловых координат источника сигнала. Достигаемый результат - повышение точности пеленгования источника радиоизлучения широкополосного сигнала при сохранении единственности измерения сигналов на выходах пеленгационных каналов....
Тип: Изобретение
Номер охранного документа: 0002603356
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8864

Наземный пункт управления, сбора, обработки и передачи информации на базе шасси специального транспортного средства и буксируемого прицепа

Изобретение относится к транспортным средствам, в частности к мобильным наземным пунктам управления беспилотными летательными аппаратами (БЛА). Наземный пункт управления предложен на базе шасси транспортного средства и кузова-фургона прицепа. Транспортное средство содержит кузов-фургон,...
Тип: Изобретение
Номер охранного документа: 0002602518
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8969

Мягкий судоподъемный понтон

Изобретение относится к судоподъемным средствам и может быть использовано при выполнении работ по подъёму затонувших объектов. Мягкий судоподъемный понтон содержит надувную цилиндрическую оболочку, систему продувки оболочки, узлы подвески и буксировки понтона. Система подвески выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002602444
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89c7

Способ формирования опорного сигнала для совместной обработки сигналов стандартной и высокой точности системы глонасс

Изобретение относится к области радиолокации и радионавигации. Достигаемый технический результат заключается в увеличении отношения сигнал/шум в результате совместной обработки сигнала стандартной и высокой точности системы ГЛОНАСС и уменьшении количества вычислений при синтезе...
Тип: Изобретение
Номер охранного документа: 0002602509
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8ae7

Устройство для компенсации саморазряда аккумуляторных батарей

Изобретение относится к электротехнике и может быть применено в устройствах для подзаряда аккумуляторных батарей, находящихся на хранении, с целью компенсации их саморазряда. Технический результат направлен на повышение надежности устройства. Технический результат достигается тем, что в...
Тип: Изобретение
Номер охранного документа: 0002604204
Дата охранного документа: 10.12.2016
Showing 51-56 of 56 items.
10.11.2019
№219.017.e07d

Способ питания нагрузки постоянным током в автономных системах электропитания космических аппаратов для широкого диапазона мощности нагрузки и автономная система электропитания для его реализации

Изобретение относится к области космической техники и может быть использовано при проектировании космических аппаратов. Преобразователи напряжения, зарядные и разрядные устройства выполняют в виде единичных модулей. Модули рассчитывают исходя из наименьшей потребительской потребности...
Тип: Изобретение
Номер охранного документа: 0002705537
Дата охранного документа: 08.11.2019
10.12.2019
№219.017.ebaa

Способ ликвидации космических аппаратов, уведенных с рабочих орбит в плотные слои атмосферы, и устройство для фрагментации космических аппаратов в плотных слоях атмосферы

Изобретение относится к области космической техники, а именно к способам и устройствам очистки околоземного космического пространства от космического мусора, и может быть использовано для уничтожения космических аппаратов (КА) в плотных слоях атмосферы. При ликвидации модульный КА прекращает...
Тип: Изобретение
Номер охранного документа: 0002708407
Дата охранного документа: 06.12.2019
10.12.2019
№219.017.ebc3

Способ увода прекративших активное существование космических аппаратов с рабочих наклонных и экваториальных орбит в плотные слои атмосферы

Изобретение относится к области космической техники, а именно к способам и устройствам очистки околоземного космического пространства от космического мусора. Способ увода прекративших активное существование космических аппаратов (КА) включает возбуждение силы Ампера непосредственно на борту...
Тип: Изобретение
Номер охранного документа: 0002708406
Дата охранного документа: 06.12.2019
12.12.2019
№219.017.ec7a

Способ удержания геостационарного космического аппарата

Изобретение относится к космической технике. В способе удержания космического аппарата (КА) в заданном диапазоне долгот и широт рабочей позиции на орбите рассчитывают коррекции наклонения на двух номинально противоположных активных участках (АУ), рассчитывают текущие векторы эксцентриситета на...
Тип: Изобретение
Номер охранного документа: 0002708468
Дата охранного документа: 09.12.2019
21.03.2020
№220.018.0e23

Контрольно-проверочная аппаратура космического аппарата

Изобретение относится к области радиотехники, в частности к автоматизированным электрическим испытаниям бортовых ретрансляционных комплексов телекоммуникационных космических аппаратов (КА) в процессе проектирования, производства на заводе-изготовителе, а также при заводских, приемо-сдаточных и...
Тип: Изобретение
Номер охранного документа: 0002717293
Дата охранного документа: 19.03.2020
14.05.2020
№220.018.1c34

Способ ориентации космического аппарата

Изобретение относится к космической технике. В способе ориентации космического аппарата (КА) ориентируют КА относительно направления на Солнце и Землю. После обеспечения ориентации КА относительно направления на Солнце в заданном диапазоне углов с использованием автономного контура управления...
Тип: Изобретение
Номер охранного документа: 0002720577
Дата охранного документа: 12.05.2020
+ добавить свой РИД