×
08.07.2018
218.016.6e98

СПОСОБ ИЗГОТОВЛЕНИЯ ГЕТЕРОСТРУКТУРЫ InGaAsP/InP ФОТОПРЕОБРАЗОВАТЕЛЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии буферного слоя InP из триметилиндия и фосфина и слоя InGaAsP, где 0,59<х<0,80 и 0,55<у<0,92, из триметилиндия, триэтилгаллия, арсина и фосфина путем последовательного выращивания субслоев InGaAsP толщиной не более 100 нм. При этом после выращивания каждого субслоя InGaAsP прекращают подачу триметилиндия, триэтилгаллия, арсина и фосфина на (5-30) с. Изобретение обеспечивает повышение качества контроля стыковки кристаллов. 2 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к электронной технике, а более конкретно к способам изготовления фотопреобразователей на основе гетероструктуры InGaAsP/InP.

Твердые растворы соединений А3В5 находят широкое применение в различных областях оптоэлектроники, в частности в лазерах и фотодетекторах, работающих при комнатной температуре в спектральном ИК-диапазоне. Основным недостатком твердых растворов InxGa1-xAsyP1-y, ограничивающих их применение, является наличие достаточно протяженных областей несмешиваемости и неустойчивости (область спинодального распада 0,59<x<0,8, 0,55<у<0,92). Распад определяется внутренними напряжениями и сильно зависит от толщины материала, так как при малых толщинах внутренние напряжения компенсируются пластической деформацией. Применительно к фотопреобразователям необходимы толщины активных слоев не менее длины волны поглощения (не менее 1 мкм), что невозможно изготовить известными способами, так как характеристики слоя деградируют вследствие распада. Выращивание твердых растворов А3В5 во всем диапазоне составов позволит существенно расширить спектральный диапазон фотопреобразователей.

Известен способ изготовления полупроводникового фоточувствительного прибора методом газофазной эпитаксии из металлоорганических соединений (см. заявка US 2001048118, МПК С23С 16/30, H01L 21/205, H01L 31/0304, опубликована 29.09.2005), заключающийся в выращивании на подложке InP повторяющихся слоев InGaAs: стресс-компенсирующего слоя с накоплением в нем сжимающих напряжений, имеющего состав, который постепенно изменяется по толщине в направлении роста, и фоточувствительного слоя. Фоточувствительный слой выращивают толщиной, большей толщины стресс-компенсирующего слоя.

В известном способе при выращивании слоев с составами в области спинодального распада возникающие напряжения будут быстро накапливаться и приводить к распаду фоточувствительных слоев.

Известен способ изготовления полупроводникового фотодетектора (см. заявка JP 05283730, МПК H01L 21/20, H01L 31/10, опубликована 29.10.1993), путем выращивания на подложке InP пяти фоточувствительных слоев GaInAs (с краем собственного поглощения 1,75 мкм), не согласованных по постоянной кристаллической решетки с подложкой InP, при этом между фоточувствительными слоями выращивают четыре сверхрешетки для снятия накапливающихся упругих напряжений.

В известном способе выращивание рассогласованных фоточувствительных слоев и сверхрешеток усложняет конструкцию фотодетектора. Кроме того, отсутствует возможность выращивания полупроводниковых слоев, попадающих в область спинодального распада.

Известен способ изготовления фотоэлектрического детектора (патент CN 103646997, МПК H01L 31/18, опубликован 11.11.2015). Способ заключается в последовательном выращивании слоев: буферного слоя InP, десяти пар слоев InP/InGaAsP, обеспечивающих оптическую фильтрацию (оптический фильтр), двух светосогласующих слоев InGaAsP и трех светопоглощающих гетероструктур из InGaAs.

Недостатком известного способа является использование материалов, находящихся вне области спинодального распада и не обеспечивающих необходимый диапазон ширин запрещенной зоны.

Известен способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя (S. Ritchie, Р.С. Spurdens, N.P. Hewett, and М.R. Aylett, «Interference filters using indium phosphide - based epitaxial layers grown by metalorganic vapor phase epitaxy», Appl. Phys. Lett. 55 (17) 1989, pp. 1713-1714). Известный способ включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений (МОСГФЭ) на подложке InP в потоке очищенного водорода гетероструктуры из 81 чередующихся слоев In0,58Ga0,42As0,93P0,07 (Eg~0,8 эВ) и InP. Толщина каждого слоя составляла порядка 100 нм, а вся структура в целом имела толщину 10 мкм.

Известным способом выращивали слои InGaAsP, лежащие вне области спинодального распада (не имевшие необходимый спектральный диапазон чувствительности), при этом толщина барьерных слоев InP составляла более 100 нм, что не обеспечивает туннельную связь слоев твердых растворов, а в целом гетероструктура представляла набор не связанных между собой квантовых ям.

Наиболее близким по технической сущности и по совокупности существенных признаков к настоящему техническому решению является способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя, принятый в качестве прототипа (Р.В. Левин, А.Е. Маричев, Е.П. Марухина, М.З. Шварц, Б.В. Пушный, В.П. Хвостиков, М.Н. Мизеров, В.М. Андреев «Фотоэлектрические преобразователи концентрированного солнечного излучения на основе InGaAsP (1,0 эВ)/InP гетероструктур», ФТП, т. 49, в. 5, стр. 715-718, 2015) выращивания методом газофазной эпитаксии из металлорганических соединений при пониженном давлении твердых растворов In0.8Ga0.2As0.46P0.54 толщиной 0,5-1,5 мкм на подложках InP. Эпитаксиальная структура была выращена при давлении 100 мбар и температуре 600°C.

Способом-прототипом выращивали гетероструктуру из слоев твердых растворов In0.8Ga0.2As0,46P0.54, лежащих вне области спинодального распада, не обеспечивающих необходимый диапазон ширин запрещенной зоны (фоточувствительность фотопреобразователя в диапазоне длин волн 0,90-1,25 мкм).

Задачей настоящего изобретения являлась разработка способа изготовления гетероструктуры InGaAsP/InP фотопреобразователя, который бы позволял выращивать достаточно толстый стабильный фоточувствительный слой в области спинодального распада четырехкомпонентного твердого раствора InGaAsP, что обеспечивает фоточувствительность фотопреобразователя в диапазоне длин волн 1,25-1,55 мкм.

Поставленная задача решается тем, что способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении и при температуре эпитаксии буферного слоя InP из триметилиндия (TMIn) и фосфина (РН3) и слоя InGaAsP, из триметилиндия (TMIn), триэтилгаллия (TEGa), арсина (AsH3) и фосфина (РН3). Новым в способе является то, что выращивают слой InxGa1-xAsyP1-y, где 0,59<х<0,80 и 0,55<у<0,92, при соотношении молярных потоков F: (FAsH3+FPH3)/(FTEGa+FTMIn)=80-130, FTEGa/(FTEGa/FTMIn)=0,15-0,39 и FAsH3/(FAsH3+FPH3)=0,018-0,111) путем последовательного выращивания субслоев InxGa1-xAsyP1-y толщиной не более 100 нм, при этом после выращивания каждого субслоя InxGa1-xAsyP1-y прекращают подачу триметилиндия, триэтилгаллия, арсина и фосфина на (5-30) с.

Буферный слой InP может быть выращен при температуре (600-650)°C при соотношении молярных потоков РН3/TMIn=200-300 в течение (20-60) мин.

Слой InxGa1-xAsyP1-y предпочтительно выращивают суммарной толщиной более 1 мкм.

Настоящий способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя осуществляют следующим образом. Последовательно выращивают методом газофазной эпитаксии из металлоорганических соединений на предварительно протравленной подложке InP в травителе HBr : K2Cr2O7 : H2O в течение 5 мин, либо на так называемой "epi-ready" (без обработки) подложке n-InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии в диапазоне 600-650°C буферного слоя InP из триметилиндия (TMIn) и фосфина (РН3) при соотношении молярных потоков FPH3/FTMIn=200-300 в течение (20-60) мин. Использование при выращивании пониженного давления обусловило улучшение однородности по толщине растущих слоев за счет увеличения скорости движения газов без изменения потока массы, подаваемой в реактор смеси газов. Температурный диапазон 600-650°C обусловлен более эффективным (близким к 100%) разложением используемых гидридов: арсина (AsH3) и фосфина (РН3). Применяемый диапазон соотношений молярных потоков FPH3/FTMIn, равный 200-300, объясняется высокими структурными и электрофизическими свойствами выращиваемых слоев InP. Использование временного диапазона выращивания буферного слоя InP в течение 20-60 мин обусловлено скоростью роста и необходимостью обеспечения толщины слоя InP в диапазоне 0,5-1.5 мкм. Затем на буферном слое InP выращивают слой InxGa1-xAsyP1-y, где 0,59<х<0,80 и 0,55<у<0,92. Используемый диапазон составов объясняется спектральной чувствительностью фотопреобразователей с краем собственного поглощения в диапазоне 1,25-1,55 мкм, важном как для волоконных линий связи, так и для беспроводной передачи энергии на расстоянии из-за наличия окон прозрачности земной атмосферы. Слой InxGa1-xAsyP1-y формируют путем последовательного выращивания субслоев InxGa1-xAsyP1-y из триметилиндия, триэтилгаллия (TEGa), арсина (AsH3) и фосфина при соотношении молярных потоков (FAsH3+FPH3)/(FTEGa+FTMIn)=80-130, FTEGa/(FTEGa+FTMIn)=0,15-0,39 и FAsH3/(FAsH3+FPH3)=0,018-0,111 толщиной не более 100 нм, при этом после выращивания каждого субслоя InxGa1-xAsyP1-y прекращают подачу триметилиндия, триэтилгаллия, арсина и фосфина на (5-30) с. Диапазон соотношения молярных потоков F: (FAsH3+FPH3)/(FTEGa+FTMIn)=80-130 обусловлен высокими структурными и электрофизическими свойствами выращиваемых в этом диапазоне слоев твердых растворов InxGa1-xAsyP1-y с составами (0,59<х<0,80 и 0,08<у<0,55). Использование соотношений молярных потоков FTEGa/(FTEGa+FTMIn)=0,15-0,39 и FAsH3/(FAsH3+FPH3)=0,018-0,111 объясняется необходимостью получения слоев InxGa1-xAsyP1-y в необходимом диапазоне составов (0,59<х<0,80 и 0,55<у<0,92), при этом толщина этих слоев (не более 100 нм) обусловлена предельной толщиной слоев InxGa1-xAsyP1-y, при которой они остаются стабильными и не распадаются на равновесные составы. Использование границ временного интервала (5-30 с) пауз между ростом отдельных субслоев объясняется геометрией применяемого реактора и скоростью потока газов, необходимой для полной смены газовой смеси в зоне роста.

Пример 1. Гетероструктура InGaAsP/InP фотопреобразователя была выращена на подложке n-InP (001), которая во время роста вращалась со скоростью 100 об/мин, методом МОСГФЭ на установке AIXTRON-200 с реактором горизонтального типа при давлении в реакторе 100 мбар, в суммарном потоке через реактор 5,5 л/мин газа-носителя (водорода) с точкой росы не хуже 100°C из источников элементов: триметилиндия, триэтилгаллия, фосфина и арсина при температуре роста 600°C. Вначале был выращен буферный слой InP толщиной 500 нм из триметилиндия (TMIn) и фосфина (РН3) при соотношении молярных потоков FPH3/FTMIn=300 в течение 20 минут. На буферном слое InP последовательно выращивали двенадцать слоев InxGa1-xAsyP1-y, где х=0,8 и у=0,55, из триметилиндия, триэтилгаллия, арсина и фосфина при соотношении молярных потоков (FAsH3+FPH3)/(FTEGa+FTMIn)=130, FTEGa/(FTEGa+FTMIn)=0,15 и FAsH3/(FAsH3+FPH3)=0,018 толщиной 85 нм. Структуры преднамеренно не легировались. После выращивания каждого из слоев InGaAsP прекращали подачу в зону роста реагентов на время, равное 30 с, в реактор подавали только водород, а затем вновь возобновляли подачу реагентов для выращивания следующего слоя InGaAsP.

Пример 2. Гетероструктура InGaAsP/InP фотопреобразователя была выращена на подложке n-InP (001), которая во время роста вращалась со скоростью 100 об/мин, методом МОСГФЭ на установке AIXTRON-200 с реактором горизонтального типа при давлении в реакторе 100 мбар, в суммарном потоке через реактор 5,5 л/мин газа-носителя (водорода) с точкой росы не хуже 100°C из источников элементов: триметилиндия, триэтилгаллия, фосфина и арсина при температуре роста 650°C. Вначале был выращен буферный слой InP толщиной 1 мкм из триметилиндия и фосфина при соотношении молярных потоков FPH3/FTMIn=200 в течение 60 мин. На буферном слое InP последовательно выращивали пятнадцать слоев InxGa1-xAsyP1-y, где х=0,59, у=0,92, из триметилиндия, триэтилгаллия, арсина (и фосфина при соотношении молярных потоков (FAsH3+FPH3)/(FTEGa+FTMIn)=80, FTEGa/(FTEGa+FTMIn)=0,39 и FAsH3/(FAsH3+FPH3)=0,111 толщиной 70 нм. Структуры преднамеренно не легировались. После выращивания каждого из слоев InGaAsP прекращали подачу в зону роста реагентов на время, равное 5 с, в реактор подавали только водород, а затем вновь возобновляли подачу реагентов для выращивания следующего слоя InGaAsP.

Изготовленные гетероструктуры InGaAsP/InP фотопреобразователя имели стабильный фоточувствительный слой в области спинодального распада четырехкомпонентного твердого раствора InGaAsP. Фоточувствительность фотопреобразователя на основе гетероструктуры, изготовленной в примере 1, имела чувствительность в диапазоне длин волн 0,95-1,30 мкм, а фоточувствительность фотопреобразователя на основе гетероструктуры, изготовленной в примере 2, имела чувствительность в диапазоне длин волн 0,95-1,55 мкм.

Источник поступления информации: Роспатент

Showing 1-10 of 114 items.
20.04.2013
№216.012.3815

Автономная система электроснабжения на основе солнечной фотоэлектрической установки

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и...
Тип: Изобретение
Номер охранного документа: 0002479910
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.454b

Способ оптического детектирования магнитного резонанса и устройство для его осуществления

Изобретение относится к технике спектроскопии магнитного резонанса, а именно оптического детектирования магнитного резонанса (ОДМР), включающего оптическое детектирование электронного парамагнитного резонанса (ЭПР), и может найти применение при исследованиях конденсированных материалов и...
Тип: Изобретение
Номер охранного документа: 0002483316
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.554f

Способ активации мембранно-электродного блока

Активацию мембранно-электродного блока осуществляют подачей увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной...
Тип: Изобретение
Номер охранного документа: 0002487442
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5aff

Полупроводниковый приемник инфракрасного излучения

Полупроводниковый приемник инфракрасного излучения включает полупроводниковую подложку (1) AIIIBV с активной областью (2) в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV, первый омический контакт (4) и второй омический контакт (7). Первый...
Тип: Изобретение
Номер охранного документа: 0002488916
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.691c

Способ изготовления чипов многослойных фотоэлементов

Способ изготовления чипов многослойных фотоэлементов включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное создание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя. Способ также...
Тип: Изобретение
Номер охранного документа: 0002492555
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4f

Способ изготовления чипов каскадных фотоэлементов

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры...
Тип: Изобретение
Номер охранного документа: 0002493634
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7739

Фотоэлектрический концентраторный субмодуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический концентраторный субмодуль содержит фронтальный стеклянный лист (1), на тыльной стороне которого расположен первичный оптический концентратор в виде линзы (2) квадратной формы с длиной стороны квадрата, равной W, и фокусным...
Тип: Изобретение
Номер охранного документа: 0002496181
Дата охранного документа: 20.10.2013
Showing 1-10 of 60 items.
20.02.2013
№216.012.2880

Конструкция фотоэлектрического модуля

Изобретение относится к области солнечной энергетики. Конструкция фотоэлектрического модуля (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4), светопрозрачную тыльную панель (5), солнечные элементы (6) с фотоприемными площадками (15), совмещенными с фокальным пятном...
Тип: Изобретение
Номер охранного документа: 0002475888
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2ca5

Солнечная концентраторная фотоэлектрическая установка

Солнечная концентраторная фотоэлектрическая установка содержит концентраторные фотоэлектрические модули (2), размещенные на механической системе, азимутальный и зенитальный приводы, расположенные в электромеханическом шкафу, и систему ориентации концентраторных фотоэлектрических модулей (2) на...
Тип: Изобретение
Номер охранного документа: 0002476956
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ca6

Солнечная фотоэнергоустановка

Изобретение относится к солнечной фотоэнергетике и может найти применение как в мощных солнечных электростанциях, так и в качестве фотоэлектрической энергоустановки индивидуального пользования. Солнечная фотоэнергоустановка включает прямоугольные концентраторные фотоэлектрические модули (1),...
Тип: Изобретение
Номер охранного документа: 0002476957
Дата охранного документа: 27.02.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.09.2013
№216.012.691c

Способ изготовления чипов многослойных фотоэлементов

Способ изготовления чипов многослойных фотоэлементов включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное создание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя. Способ также...
Тип: Изобретение
Номер охранного документа: 0002492555
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4f

Способ изготовления чипов каскадных фотоэлементов

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры...
Тип: Изобретение
Номер охранного документа: 0002493634
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7739

Фотоэлектрический концентраторный субмодуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический концентраторный субмодуль содержит фронтальный стеклянный лист (1), на тыльной стороне которого расположен первичный оптический концентратор в виде линзы (2) квадратной формы с длиной стороны квадрата, равной W, и фокусным...
Тип: Изобретение
Номер охранного документа: 0002496181
Дата охранного документа: 20.10.2013
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
+ добавить свой РИД