×
25.06.2018
218.016.664b

Результат интеллектуальной деятельности: Способ получения лигатур алюминия с цирконием

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цветной металлургии и может быть использовано при получении лигатуры Al-Zr электрохимическим способом, пригодной для промышленного производства. В качестве источника циркония используют оксид циркония, который смешивают с солевой смесью, содержащей оксид алюминия, с последующим расплавлением полученной смеси в электролизере, расплавленную оксидно-солевую смесь, содержащую ионы циркония и алюминия, подвергают электролизу при катодной плотности тока 0.20-0.75 А/см и температуре 700-950°C с использованием жидкого алюминиевого катода, при этом электролизу подвергают оксидно-солевую смесь, содержащую, мас. %: фторид калия (KF) до 56, фторид натрия (NaF) до 50, фторид алюминия (AlF) 40-62, оксид алюминия (AlO) до 4 и оксид циркония (ZrO) до 2.5. Изобретение позволяет электрохимическим способом получить лигатуру Al-Zr с содержанием циркония до 15 мас. % за счет повышения скорости электролиза. 2 з.п. ф-лы, 2 ил., 2 пр., 1 табл.

Изобретение относится к металлургии цветных металлов, в частности к промышленному получению алюминиевых лигатур с содержанием циркония до 15 мас. %.

Сплавы алюминия с цирконием (Al-Zr) широко применяются в электротехнике, автомобилестроении, роботостроении, аэрокосмической и других отраслях, в то время как лигатуры Al-Zr востребованы при производстве многофункциональных алюминиевых сплавов, в том числе сплавов Al-Zr. Преимущество алюминиевых лигатур заключается в уменьшении затрат на транспортировку готовой продукции и повышенное извлечение из исходного сырья ценного компонента - циркония. Составы лигатур Al-Zr стандартизированы (ГОСТ Р 53777-2010, CEN Standard) и содержат до 15 мас. % циркония.

В настоящее время наиболее распространенным и простым способом опытно-промышленного производства лигатур Al-Zr является прямое смешение и прессование чистых порошков циркония и алюминия в брикеты с содержанием циркония до 70-80 мас. %, с последующим растворением этих брикетов в алюминии с целью получения лигатуры с необходимым содержанием циркония [1].

Несмотря на простоту и возможность получения лигатур Al-Zr заданного состава с высоким извлечением циркония (98-99%), способ обладает рядом существенных недостатков, среди которых использование дорогих реагентов, таких как порошки чистого циркония и чистого алюминия, необходимость использования и периодической замены, то есть регенерации покровно-рафинирующего солевого флюса, представляющего собой расплавленную солевую смесь, или инертной атмосферы. По этой причине стоимость получаемых лигатур высока.

Более дешевым представляется способ получения лигатур Al-Zr с содержанием циркония до 6 мас. %, заключающийся в алюминотермическом восстановлении солей циркония (K2ZrF6, Na3ZrF6, ZrCl3) в расплавленной солевой смеси, например NaCl-KCl-Na3AlF6, NaCl-KCl-NaF, LiCl-CaF2, при температуре 750-950°C в аргоне или на воздухе [2, 3, 4]. Извлечение циркония из солей в лигатуру Al-Zr в зависимости от варианта исполнения данного способа составляет от 85 до 90-95%.

Основными недостатками данного способа являются использование относительно дорогих реагентов, таких как соли циркония и чистый алюминий, а также необходимость периодической замены, то есть регенерации расплавленной солевой смеси ввиду накопления в ней оксидов.

Известен способ получения лигатур Al-Zr путем алюминотермического восстановления оксида циркония (ZrO2) с использованием расплавленной солевой смеси KCl-NaF-AlF3 при температуре 850-1150°C, либо расплавленной оксидно-солевой смеси CaF2-CaO при температуре 1600-1650°C [5, 6].

Преимуществом этого способа является использование наиболее дешевого и доступного источника циркония - оксида циркония. Однако варианты исполнения известного способа обладают такими недостатками, как относительно высокая температура, низкое извлечение циркония (30-85%) в лигатуру Al-Zr и необходимость периодической замены солевой или оксидно-солевой смеси. В случае использования оксидно-солевого флюса CaF2-CaO лигатуру приходится отделять от него при помощи дополнительных операций.

Известен электрохимический способ получения лигатурных сплавов Al-Zr и Al-Mg-Zr с содержанием циркония до 57 мас. %, включающий анодное растворение циркония при плотности тока до 4 мА/см2 и металлотермическое восстановление образующихся ионов циркония [7]. В данном способе, который назван электрохимическим, ионы циркония задают в расплавленную солевую смесь хлоридов щелочных металлов, анодно растворяя в ней металлический цирконий. Ионы циркония химически восстанавливаются алюминием или магнием до циркония. Таким образом, электролиз в данном способе применяют лишь для анодного растворения металлического циркония в расплавленной солевой смеси хлоридов щелочных металлов.

Несмотря на высокое содержание циркония в лигатурах и низкую температуру процесса (700-750°C), способ осуществляется в расплавленной солевой смеси хлоридов щелочных металлов в реакторах с защитной инертной атмосферой. Основными недостатками способа являются крайне низкие скорость (до 4 мА/см2) и производительность (до 34 г/ч⋅м2) процесса, использование гигроскопичных солей (хлориды цезия, кальция и лития), использование дорогого чистого циркония и использование защитной инертной атмосферы, а также сложность выполнения операций по извлечению лигатуры из реактора. Перечисленные недостатки делают способ неперспективным и энергетически неэффективным для крупнотоннажного производства лигатур Al-Zr в промышленных масштабах.

Задача изобретения заключается в разработке электрохимического способа получения лигатур Al-Zr с содержанием циркония до 15 мас. %, пригодного для промышленного производства лигатур Al-Zr.

Для этого предложен способ, включающий использование в качестве источника циркония его оксид ZrO2, который смешивают с солевой смесью, содержащей оксид алюминия, с последующим расплавлением полученной смеси, расплавленную оксидно-солевую смесь, содержащую ионы циркония и алюминия, подвергают электролизу при катодной плотности тока 0.20-0.75 А/см2 и температуре 700-950°C с использованием алюминиевого катода, при этом электролизу подвергают оксидно-солевую смесь, содержащую (мас. %):

фторид калия (KF) до 56

фторид натрия (NaF) до 50

фторид алюминия (AlF3) 40-62
оксид алюминия (Al2O3) до 4
оксид циркония (ZrO2) до 2.5

В частном случае исполнения электролиз ведут, подгружая в расплавленную смесь оксид циркония.

В частном случае исполнения лигатуры алюминия с цирконием получают непрерывно путем периодической выгрузки лигатуры из электролизера и загрузки в электролизер алюминия и оксида циркония.

В отличие от способа по прототипу в заявленном способе ионы циркония и алюминия задают путем смешивания оксида циркония с оксидно-солевой смесью с последующим ее расплавлением, а электролиз применяют по его основному назначению, то есть для прямого электрохимического осаждения на жидком алюминиевом катоде цирконий и алюминий, получая лигатуры.

Электролиз данной смеси ведут с использованием жидкого алюминиевого катода при катодной плотности тока 0.20-0.75 А/см2 и температуре 700-950°C, в ходе которого оксиды алюминия и циркония электролитически разлагаются на кислород, цирконий и алюминий. Кислород выделяется на аноде, в то время как алюминий и цирконий выделяются на алюминии, формируя лигатуру Al-Zr. После проведения электролиза лигатуру Al-Zr частично либо полностью извлекают из электролизера, а расплавленную оксидно-солевую смесь используют для получения следующей партии лигатуры.

Экспериментальным путем было показано, что наиболее выгодным с точки зрения стабильности процесса и расходования материалов представляется ведение электролиза в расплавленной вышеуказанной оксидно-солевой смеси, солевые компоненты которой, а также их соотношение обеспечивают достаточную растворимость оксидов Al2O3 и ZrO2 в образующейся оксидно-солевой смеси. Снижение температуры электролиза ниже 700°C приводит к нестабильности катодного процесса, особенно при высоких катодных плотностях тока, а повышение температуры электролиза выше 950°C приводит к резкому снижению катодных выходов при электровыделении алюминия и циркония, снижению извлечения циркония из его оксида и повышению удельных энергозатрат.

В зависимости от температуры и состава расплавленной оксидно-солевой смеси KF-NaF-AlF3-Al2O3-ZrO2 величина максимальной катодной плотности тока, необходимой для электролиза, подбирается индивидуально при помощи стационарных поляризационных измерений. Для указанного диапазона составов оксидно-солевых смесей она составила 0.20-0.75 А/см2. Ведение электролиза расплавленной оксидно-солевой смеси KF-NaF-AlF3-Al2O3-ZrO2 при катодной плотности тока выше максимальной (для конкретного состава смеси и условий) приводит к нестабильности катодного процесса и досрочной остановке электролиза. Снижение катодной плотности тока ниже 0.20 А/см2 приводит к резкому снижению катодных выходов по току при электровыделении алюминия и циркония, снижению извлечения циркония из его оксида и повышению удельных энергозатрат. Содержание циркония в извлекаемой лигатуре определяется длительностью электролиза, током электролиза, соотношением компонентов расплавленной оксидно-солевой смеси, соотношением масс жидкого алюминиевого катода и расплавленной оксидно-солевой смеси. Подбор выше перечисленных параметров позволяет получать лигатуры алюминия с постоянным заданным содержанием циркония. Извлечение циркония из его оксида превышает 96%. При этом способ характеризуется относительно высокой скоростью процесса, о чем свидетельствует катодная плотность тока 0.20-0.75 А/см2 при электролизе, а также высокой, до 1.6-6.3 кг/ч⋅м2 производительностью.

Технический результат, достигаемый заявленным способом, заключается в повышении скорости и производительности электрохимического получения лигатур алюминия с содержанием циркония до 15 мас. %.

Кроме того, в отличие от известных способов заявленным способом может быть организовано непрерывное получение лигатуры без необходимости остановки электролиза, а также без замены или регенерации расплавленной оксидно-солевой смеси.

Изобретение иллюстрируется таблицей, в которой приведены варианты состава оксидно-солевой смеси и параметров электролиза, их влияние на содержание циркония в лигатуре Al-Zr, а также его извлечение из оксида ZrO2. Изобретение иллюстрируется также фиг. 1 и фиг. 2, где при разном увеличении представлены микрофотографии шлифа лигатуры AlZr15 в ГОСТ Р 53777-2010, EN АМ-94004 в CEN Standard с содержанием циркония 14.8-15.5 мас. %.

Пример 1. Способ реализован в лабораторном электролизере, который размещают в печи сопротивления. В корундовый тигель электролизера загружают 400 г алюминия и 200 г предварительно очищенной от влаги и примесей оксидно-солевой смеси (мас. %):

фторида калия (KF) 40
фторида натрия (NaF) 10
фторида алюминия (AlF3) 45
оксида алюминия (Al2O3) 3
оксида циркония (ZrO2) 2

Электролизер нагревают до температуры 825°C, доводя алюминий и оксидно-солевую смесь до плавления. После этого в расплавленную оксидно-солевую смесь электролизера помещают графитовый анод, а в жидкий алюминий - графитовый токоподвод, экранированный от расплавленной смеси корундовой трубкой. Далее ведут электролиз расплавленной смеси при токе 8 А и катодной плотности тока 0.45 А/см2 в течение 150 мин. Для повышения содержания циркония в лигатуре в ходе электролиза в расплавленную оксидно-солевую смесь подгружают оксид ZrO2 со скоростью 2 грамма за полчаса, что определяется условиями электролиза. По окончании электролиза из электролизера извлекают анод и токоподвод к алюминию, сливают расплавленную смесь в графитовую изложницу и алюминиевую лигатуру с цирконием - в металлическую. Элементный состав оксидно-солевой смеси и лигатуры Al-Zr определяют при помощи химического анализа. По аналогичной схеме проведена серия электролизных испытаний, условия проведения и результаты которых приведены в таблице.

Пример 2. Непрерывное получение лигатуры Al-Zr (без охлаждения расплавленной оксидно-солевой смеси) производится следующим образом. Опытным путем в зависимости от параметров электролиза определяется время получения лигатуры с заданным содержанием циркония. По достижении этого времени часть лигатуры Al-Zr (до 90% от общей массы) извлекается из электролизера, и электролиз расплавленной оксидно-солевой смеси продолжают, подгружая оксид ZrO2. Для сокращения времени получения следующей партии лигатуры в электролизер загружают чистый алюминий массой, преимущественно соответствующей массе извлеченной лигатуры.

Такой вариант исполнения способа реализован в крупно-лабораторном графитовом электролизере на силу тока до 100 А. В графитовый тигель электролизера загружают 4 кг алюминия и 4 кг предварительно очищенной от влаги оксидно-солевой смеси, содержащей (мас. %):

фторида калия (KF) 37.5
фторида натрия (NaF) 7.5
фторида алюминия (AlF3) 51
оксида алюминия (Al2O3) 2
оксида циркония (ZrO2) 2

Электролизер нагревают до температуры 790°C, доводя алюминий и оксидно-солевую смесь в нем до плавления. После этого в расплавленную оксидно-солевую смесь электролизера помещают графитовый анод, а подвод тока к жидкому алюминию осуществляется через дно графитового тигля электролизера. Далее ведут электролиз расплавленной смеси при токе 80 А и катодной плотности тока 0.4 А/см2, подгружая по 20 г (0.5 мас. %) оксида ZrO2 каждые полчаса. Первую частичную выгрузку лигатуры Al-Zr массой 1.8-2.2 кг производят через 7 часов, загружая 2 кг чистого алюминия в электролизер. Вторую и последующие выгрузки лигатуры Al-Zr производят через 4 часа. Содержание элементов в слитках лигатуры Al-Zr составляет (мас. %): циркония - 5.0-5.3; кремния - 0.05; железа - 0.1; меди - менее 0.001. Данный состав соответствует стандартизированным составам лигатур AlZr5 (А) и AlZr5 (В) (ГОСТ Р 53777-2010) и EN АМ-94001 (CEN Standard).

Аналогично была получена представленная на микрофотографии шлифа лигатура AlZrl5 в ГОСТ Р 53777-2010, EN АМ-94004 в CEN Standard с содержанием циркония 14.8-15.5 мас. %.

Таким образом, разработан новый производительный электрохимический способ получения лигатур Al-Zr с содержанием циркония до 15 мас. %, пригодный для промышленного производства.

Источники информации

1. Патент РФ №2232827, 03.02.2003. Знаменский Л.Г. Способ приготовления лигатуры алюминий-тугоплавкий металл, публ. 20.07.2004. Бюл. №20.

2. Яценко С.П., Скачков В.М., Варченя П.А. Получение лигатур на основе алюминия методом высокотемпературных обменных реакций в расплавах солей // Расплавы. 2010. №2. С. 89-94.

3. Патент РФ №2482209, 19.03.2012. Махов С.В., Москвитин В.И., Попов Д.А. Способ получения лигатуры алюминий-цирконий (варианты), публ. 20.05.2013. Бюл. №14.

4. Огородов Д.В., Попов Д.А., Трапезников А.В. Способы получения лигатуры Al-Zr (обзор) // Труды ВИАМ, 2015, №11, с. 2.

5. Напалков В.И., Махов С.В. Легирование и модифицирование магния и алюминия // М.: МИСИС, 2002, 376 с; Расплавы, 2015, №2, 60-64.

6. Агафонов С.Н., Красиков С.А., Ведмидь Л.Б., Жидовинова С.В., Пономаренко А.А. Металлотермическое восстановление циркония из оксидов // Цветные металлы. 2013. №12 (852). С. 66-70.

7. Патент РФ №2515730, 16.11.2012. Елшина Л.А. Электрохимический способ получения лигатурных алюминий-циркониевых сплавов, публ. 20.05.2014. Бюл. №14.

где ik - катодная плотность тока, А/см2;

М - отношение массы расплавленной смеси к массе алюминия, г/г;

ϕZr - содержание циркония в лигатуре Al-Zr, мас. %;

ηZr - извлечение циркония из его оксида при получении лигатуры Al-Zr, %.


Способ получения лигатур алюминия с цирконием
Источник поступления информации: Роспатент

Showing 71-80 of 94 items.
10.04.2019
№219.016.feea

Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте

Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава....
Тип: Изобретение
Номер охранного документа: 0002684356
Дата охранного документа: 08.04.2019
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.507b

Электрохимический способ получения нанопорошков диборида титана

Изобретение относится к электрохимическому способу получения нанопорошков диборида титана, может быть использовано в получении неоксидной керамики для высокотемпературных агрегатов типа электролизера для производства алюминия. Нанопорошки диборида титана получают импульсной анодно-катодной...
Тип: Изобретение
Номер охранного документа: 0002465096
Дата охранного документа: 27.10.2012
24.05.2019
№219.017.5dcc

Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин...
Тип: Изобретение
Номер охранного документа: 0002688944
Дата охранного документа: 23.05.2019
09.06.2019
№219.017.7dd6

Тепловая батарея

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в источниках электропитания как средств управления, так и активного питания силовых электрических агрегатов. Согласно изобретению тепловая батарея содержит...
Тип: Изобретение
Номер охранного документа: 0002457586
Дата охранного документа: 27.07.2012
22.06.2019
№219.017.8e32

Способ получения керамики со структурой майенита

Способ получения керамики со структурой майенита может быть использован для получения керамики, входящей в состав электрохимических устройств. Способ характеризуется тем, что порошки прекурсоров получают из раствора нитратов с использованием смеси исходных компонентов нитрата алюминия и...
Тип: Изобретение
Номер охранного документа: 0002459781
Дата охранного документа: 27.08.2012
27.06.2019
№219.017.92ec

Способ оценки степени интеграции остеозамещающих материалов

Изобретение относится к медицине, а именно к количественной оценке степени остеоинтеграции материалов, а также их влиянию на репаративную регенерацию костной ткани. Способ оценки степени интеграции остеозамещающих материалов включает оценку степени интеграции имплантата по...
Тип: Изобретение
Номер охранного документа: 0002692668
Дата охранного документа: 25.06.2019
27.06.2019
№219.017.9894

Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных...
Тип: Изобретение
Номер охранного документа: 0002692543
Дата охранного документа: 25.06.2019
13.07.2019
№219.017.b36b

Электрохимическое устройство для дозирования кислорода в газовой среде и одновременного контроля кислородосодержания газа на входе и выходе из кислородного насоса

Изобретение относится к области электротехники, а именно к электрохимическому устройству для дозирования кислорода в газовой среде и одновременного контроля его содержания на входе и выходе из кислородного насоса, и может быть использовано для очистки газовых смесей от кислорода, а также для...
Тип: Изобретение
Номер охранного документа: 0002694275
Дата охранного документа: 11.07.2019
Showing 51-59 of 59 items.
24.06.2020
№220.018.29ed

Способ переработки нитридного ядерного топлива

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает конверсию компонентов нитридного топлива в хлориды при температуре не...
Тип: Изобретение
Номер охранного документа: 0002724117
Дата охранного документа: 22.06.2020
12.04.2023
№223.018.4532

Элементарная ячейка литий-ионного аккумулятора и аккумулятор на ее основе

Изобретение относится к материалам литий-ионных аккумуляторов с высокой удельной энергией. Элементарная ячейка аккумулятора состоит из токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов – катионпроводящие по...
Тип: Изобретение
Номер охранного документа: 0002759843
Дата охранного документа: 18.11.2021
12.05.2023
№223.018.5464

Способ электроосаждения сплошных осадков кремния из расплавленных солей

Изобретение относится к получению сплошных осадков кремния для использования в качестве фоточувствительных материалов, устройств микроэлектроники и накопления энергии. Способ электроосаждения сплошных осадков кремния из расплавленных солей включает электролиз в инертной атмосфере галогенидного...
Тип: Изобретение
Номер охранного документа: 0002795477
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.590c

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
15.05.2023
№223.018.590d

Способ электролитического получения кремния из расплавленных солей

Изобретение относится к металлургии полупроводниковых материалов, в частности, к электролитическому получению кремния из расплавленных солей. Способ включает электролиз расплавленного галогенидного электролита, в качестве которого используют смесь солей мас.% 10-60 KCl и 40-90 CsCl с добавкой...
Тип: Изобретение
Номер охранного документа: 0002760027
Дата охранного документа: 22.11.2021
16.05.2023
№223.018.5ee2

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
16.05.2023
№223.018.5ee4

Способ и электрохимическая ячейка для синтеза электролита для получения рения

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-CsReCl состоит из анодного и катодного узлов, которые разделены между...
Тип: Изобретение
Номер охранного документа: 0002756775
Дата охранного документа: 05.10.2021
23.05.2023
№223.018.6e10

Способ электролитического синтеза гексахлоррената цезия

Изобретение относится к электролитическому получению гексахлоррената цезия, который может быть использован для приготовления электролитов, пригодных для электроосаждения рения. Синтез гексахлоррената цезия осуществляется путем электрохимической реакции ионизации металлического рения в растворе...
Тип: Изобретение
Номер охранного документа: 0002758363
Дата охранного документа: 28.10.2021
16.06.2023
№223.018.7d6a

Способ определения содержания глинозема в криолит-глиноземном расплаве и электрохимическое устройство для его осуществления

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием...
Тип: Изобретение
Номер охранного документа: 0002748146
Дата охранного документа: 19.05.2021
+ добавить свой РИД