×
09.06.2018
218.016.5f85

Результат интеллектуальной деятельности: Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов титан-ниобий-тантал-цирконий с эффектом памяти формы и может быть использовано в металлургии, машиностроении и медицине, в частности при изготовлении медицинских устройств типа «стент», «Кафа-фильтр» и прочих. Способ получения наноструктурной проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы включает гомогенизирующий отжиг, интенсивную пластическую деформацию и рекристаллизационный отжиг. Гомогенизирующий отжиг слитка проводят в вакууме при температуре 600°C в течение 16 ч. Интенсивную пластическую деформацию осуществляют путем многостадийной прокатки при температуре 15-30°C с обеспечением достижения в полученной заготовке накопленной степени деформации в 400%. Рекристаллизационный отжиг осуществляют в вакууме при температуре 550°C, затем заготовку нарезают на прутки электроэрозионным методом, проводят многостадийную ротационную ковку прутков при температуре 250°C и многостадийное волочение при температуре 80-100°C и степени деформации не более 80% с получением проволоки. При этом после каждой стадии ротационной ковки и волочения осуществляют отжиг в вакууме при температуре 550°C. Повышается прочность при сохранении пластичности наноструктурной проволоки титан-ниобий-тантал-цирконий с эффектом памяти формы. 4 ил., 1 табл., 3 пр.

Изобретение относится к деформационно-термической обработке сплавова титан-ниобий-тантал-цирконий с эффектом памяти формы. Может быть использовано в металлургии, машиностроении и медицине. Особенно привлекательно его использование в медицинских устройствах типа «стент», «Кафа-фильтр» и прочих.

Известен способ получения ультрамелкозернистых титановых сплавав с эффектом памяти формы, включающий термомеханическую обработку, сочетающую деформацию и рекристаллизационный отжиг. Перед термомеханической обработкой осуществляют предварительную закалку сплава, а деформацию осуществляют в два этапа, причем на первом этапе проводят интенсивную пластическую деформацию с накопленной истинной степенью деформации ε более 400% в интервале температур 300-550°C, а на втором этапе проводят деформацию прокаткой или экструзией, или волочением со степенью деформации не менее 20% при температурах 20-500°C, а отжиг проводят при температурах 350-550°C в течение 0,5-2,0 часов (Патент РФ №2266973, МПК C22F 1/18, опубл. 27.12.2005 г.).

Недостатком известного способа является высокая степень анизотропии структуры и свойств материала из-за неоднородной морфологии зерен в продольном и поперечном сечении заготовки, большая доля малоугловых границ. Такой материал обладает повышенной прочностью, но ограниченной пластичностью, не обеспечивающий высокой стойкости к усталостному разрушению.

Известен способ получения сверхупругого титан-никелевого сплава (JP 58161753, МПК C22F 1/10, опубл. 26.09.83 г.), включающий предварительную закалку крупнозернистого сплава, последующую холодную деформацию прокаткой со степенью деформации более 20% и отжиг при температуре 250-550°C.

Недостатками способа являются относительно низкие степени деформации (ε менее 100%) и ограничения по степени измельчения микроструктуры, не позволяющие достигать наиболее высоких механических и функциональных свойств.

Наиболее близким к предложенному является способ получения сплавов TiNb (Ta и/или Zr) и его их обработки (Патент РФ №2485197, МПК C22F 1/18, опубл. 20.06.2013 г.). Способ обработки сплава включает горячую обработку давлением слитка сплава на основе титана при начальной температуре 900-950°C и конечной температуре 700-750°C, термомеханическую обработку путем многопроходной холодной деформации с суммарной степенью обжатия от 31 до 99%, последеформационного отжига при температуре 500-600°C и завершающего закалочного охлаждения в воде. После механическое псевдоупругое циклирование полученной заготовки в условиях одноосного растяжения до достижения 2% деформации в течение 50-100 циклов и снятия нагрузки.

К недостаткам этого способа относится обработка на первых этапах давлением, без вакуума. При нагреве сплава более 400 градусов не в вакууме или инертной среде замечено поглощение кислорода титаном и танталом, что негативно сказывается на усталостных свойствах конечного продукта - проволоки.

Задачей изобретения является получение проволоки из сплавов титан-ниобий-тантал-цирконий, а именно Ti-30Nb-13Ta-5Zr, Ti-30Nb-10Ta-5Zr, Ti-20Nb-10Ta-5Zr с эффектом памяти формы с одновременным улучшением функциональных свойств за счет создания нанокристаллической структуры и минимизацией поглощения кислорода и азота в процессе производства проволоки.

Техническим результатом является повышение прочности и сохранение пластичности наноструктурной проволоки титан-ниобий-тантал-цирконий с эффектом памяти формы. Структура, образующаяся после механического воздействия на сплав, из нанокристаллических аустенитных зерен, в которой объемная доля зерен с размером не более 100 нм и с коэффициентом формы зерен не более 2 во взаимно перпендикулярных плоскостях составляет не менее 85%, причем более чем 50% зерен имеют большеугловые границы, разориентированные относительно соседних зерен на углы от 10° до 90°.

Технический результат достигается тем, что в способе получения наноструктурной проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы, включающем гомогенизирующий отжиг, интенсивную пластическую деформацию и рекристаллизационный отжиг, минимизируется образование оксидов титана и тантала, а также образованием наноразмерных зерен. Согласно изобретению гомогенизирующий отжиг слитка проводят в вакууме при температуре 600°C в течение 16 ч, интенсивную пластическую деформацию осуществляют путем многостадийной прокатки при температуре 15-30°C с обеспечением достижения в полученной заготовке накопленной степени деформации в 400%, а рекристаллизационный отжиг осуществляют в вакууме при температуре 550°C, затем заготовку нарезают на прутки электроэрозионным методом, проводят многостадийную ротационную ковку прутков при температуре 250°C и многостадийное волочение при температуре 80-100°C и степенью деформации не более 80% с получением проволоки, при этом после каждой стадии ротационной ковки и волочения осуществляют отжиг в вакууме при температуре 550°C.

Повышение прочности материала обусловлено очень малым размером зерна (не более 100 нм) в структуре, что обеспечивает увеличение напряжения течения при пластической деформации согласно известному соотношению Холло-Петча (Большие пластические деформации и разрушение металлов. Рыбин В.В. М.: Металлургия, 1986, 224 с.). Значительное повышение прочности достигается также большим количеством зерен с большеугловыми границами (не менее 50%), которые в сравнении с малоугловыми и специальными границами обеспечивают наибольший вклад в упрочнение (Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.). При этом формирование зерен с коэффициентом формы не более 2 (соотношение ширины и длины зерна 1:2) снижает неоднородность пластического течения металла, уровень микронапряжений, тем самым предотвращает раннюю локализацию деформации, приводящую к разрушению материала.

На сегодняшний день наибольшей популярностью пользуется сплав NiTi для изготовления медицинских изделий типа Стент. Однако входящий в состав никель токсичен. Существуют исследования сплавов с эффектом памяти формы, которые не содержат никеля. Перспективными видятся сплавы TiNbTa и TiNbZr. Сплав с Zr обладает большим модулем Юнга, чем необходимо в стентах и Кафа-фильтрах, но при добавлении Та модуль Юнга сплава входит в нужные границы.

Сплав является довольно технологичным и позволяет проводить механическую обработку при комнатной температуре, при снятии наклепа при помощи отжига.

Пример конкретной реализации изобретения

Пример 1

В качестве заготовки использовали слиток (100*20*40) мм сплава Ti-30Nb-13Ta-5Zr. На первом этапе обработки проводили гомогенизирующий отжиг при температуре 600°C в вакуумной среде в течение 16 часов.

На втором этапе обработки проводили прокатку заготовки при температуре 20°C, количество проходов n=15. В общей сложности накопленная степень деформации составила ε=400%. В результате была получена цельная заготовка длиной 500 мм, шириной 64 мм и высотой 2,5 мм.

Далее проведен рекристализационный отжиг при температуре, равной 550°C в вакуумной среде.

После отжига заготовку разрезали на прутки электроэрозионной резкой.

В результате обработки получили пруток квадратного сечения 2,5 мм длиной 500 мм.

Прутки были подвергнуты многостадийной ротационной ковке при температуре 250°C. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе, а также от количества используемых бойков разного диаметра. В предложенном примере использовалось три стадии до достижения диаметра в 1,5 мм.

На последнем этапе осуществляют пластическую деформацию заготовки многостадийным волочением. Обработку проводят при температуре 20°C. Степень деформации не более 80% не приводит к существенному изменению структуры. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе и размера используемых фильер. В предложенном примере выходной размер 280 мкм.

Механические характеристики проволоки, полученной в данном примере, представлены на рис. 1.

Пример 2

В качестве заготовки использовали слиток (100*20*40) мм сплава Ti-30Nb-13Ta-5Zr. На первом этапе обработки проводили гомогенизирующий отжиг при температуре 800°C в вакуумной среде в течение 16 часов. Был отмечен при исследованиях излишний рост зерен.

На втором этапе обработки проводили прокатку заготовки при температуре 20°C, количество проходов n=15. В общей сложности накопленная степень деформации составила ε=400%. В результате была получена цельная заготовка длиной 500 мм, шириной 64 мм и высотой 2,5 мм.

Далее проведен рекристализационный отжиг при температуре, равной 550°C в вакуумной среде.

После отжига заготовку разрезали на прутки электроэрозионной резкой.

В результате обработки получили пруток квадратного сечения 2,5 мм длиной 500 мм.

Прутки были подвергнуты многостадийной ротационной ковке при температуре 250°C. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе, а также от количества используемых бойков разного диаметра. В предложенном примере использовалось три стадии до достижения диаметра в 1,5 мм.

На последнем этапе осуществляют пластическую деформацию заготовки многостадийным волочением. Обработку проводят при температуре 20°C. Степень деформации не более 80% не приводит к существенному изменению структуры. После каждого прохода был проведен рекристализационный отжиг при температуре 550°C. Количество проводимых стадий зависит от необходимого диаметра на выходе и размера используемых фильер. В предложенном примере выходной размер 280 мкм.

Механические характеристики проволоки, полученной в данном примере, представлены на рис. 2.

Отмечено снижение прочности и пластичности проволоки по отношению к образцу, выполненному по примеру 1.

Пример 3

В качестве заготовки использовали слиток (100*20*40) мм сплава Ti-30Nb-13Ta-5Zr. На первом этапе обработки проводили гомогенизирующий отжиг при температуре 600°C в вакуумной среде в течение 16 часов.

На втором этапе обработки проводили прокатку заготовки при температуре 20°C, количество проходов n=15. В общей сложности накопленная степень деформации составила ε=400%. В результате была получена цельная заготовка длиной 500 мм, шириной 64 мм и высотой 2,5 мм.

Далее проведен рекристализационный отжиг при температуре, равной 650°C в вакуумной среде.

После отжига заготовку разрезали на прутки электроэрозионной резкой.

В результате обработки получили пруток квадратного сечения 2,5 мм длиной 500 мм.

Прутки были подвергнуты многостадийной ротационной ковке при температуре 250°C. После каждого прохода был проведен рекристализационный отжиг при температуре 650°C. Количество проводимых стадий зависит от необходимого диаметра на выходе, а также от количества используемых бойков разного диаметра. В предложенном примере использовалось три стадии до достижения диаметра в 1,5 мм.

На последнем этапе осуществляют пластическую деформацию заготовки многостадийным волочением. Обработку проводят при температуре 20°C. Степень деформации не более 80% не приводит к существенному изменению структуры. После каждого прохода был проведен рекристаллизационный отжиг при температуре 650°C. Количество проводимых стадий зависит от необходимого диаметра на выходе и размера используемых фильер. В предложенном примере выходной размер 280 мкм.

Механические характеристики проволоки, полученной в данном примере, представлены на рис. 3. Отмечено существенное снижение пластичности при сходных характеристиках прочности по отношению к Примеру 1.

Снижение температур гомогенизирующего отжига и рекристаллизационного отжига недостаточно для выравнивания структуры и снятия внутренних напряжений. Изменение температурных режимов при механической обработке затрудняет проведение деформации либо вовсе приводит к утрате целостности образца.

Сочетание пластической деформации и промежуточного отжига способствует дальнейшей эволюции полученной после проката структуры: формированию новых субзеренных границ, их трансформации в зеренные, тем самым увеличению доли большеугловых границ, формированию новых нанокристаллических зерен, снижению плотности решеточных дислокаций за счет одновременно протекающих процессов возврата и динамической рекристаллизации.

Из полученной проволоки были изготовлены образцы для исследования микроструктуры. Для приготовления тонких фольг было проведено механическое утонение до толщины 150 мкм и последующее электролитическое полирование на установке Tenupol-5 (Struers) при комнатной температуре в электролите, состоящем из хлорной кислоты (HClO4) и бутанола (C4H9OH).

Исследования микроструктуры показывают, что в результате обработки по предложенному способу в сплаве титан-ниобий-тантал-цирконий происходит существенное измельчение структуры и формируется нанокристаллическая структура, в которой до 90% составляют зерна со средним размером 80-100 нм по светлому и темному полю и с коэффициентом формы зерен не более 2 во взаимно-перпендикулярных плоскостях (рис. 4). Погрешность измерений составила не более 5%.

Исследования показали, что предложенный способ деформационно-термической обработки сплава титан-ниобий-тантал-цирконий, сочетающий отжиги, прокатку, и последующую ротационную ковку, и волочение позволил получить максимальную обратимую деформацию - 3% (табл. 1). Достигнутые показатели по совокупности механических и функциональных свойств находятся выше уровня прототипа, так как минимизировано образование оксидов, делающих проволоку более хрупкой.

Таким образом, предложенное изобретение позволяет сформировать в сплаве титан-ниобий-тантал-цирконий с эффектом памяти формы нанокристаллическую структуру, а также минимальное количество оксидов титана и тантала, что обеспечивает материалу повышенную прочность, пластичность и улучшенные эксплуатационные характеристики.

Способ получения наноструктурной проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы, включающий гомогенизирующий отжиг, интенсивную пластическую деформацию и рекристаллизационный отжиг, отличающийся тем, что гомогенизирующий отжиг слитка проводят в вакууме при температуре 600°C в течение 16 ч, интенсивную пластическую деформацию осуществляют путем многостадийной прокатки при температуре 15-30°C с обеспечением достижения в полученной заготовке накопленной степени деформации в 400%, а рекристаллизационный отжиг осуществляют в вакууме при температуре 550°C, затем заготовку нарезают на прутки электроэрозионным методом, проводят многостадийную ротационную ковку прутков при температуре 250°C и многостадийное волочение при температуре 80-100°C и степени деформации не более 80% с получением проволоки, при этом после каждой стадии ротационной ковки и волочения осуществляют отжиг в вакууме при температуре 550°C.
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы
Источник поступления информации: Роспатент

Showing 71-80 of 108 items.
20.05.2019
№219.017.5d26

Способ обескремнивания нефелинового концентрата и устройство для его осуществления

Изобретение относится к области металлургии, в частности к переработке нефелинового концентрата с получением из него синтетического боксита, содержащего до 80% AlO и до 1,5% SiO. Способ включает приготовление шихты из концентрата и углерода и карботермическую восстановительную плавку шихты в...
Тип: Изобретение
Номер охранного документа: 0002688083
Дата охранного документа: 17.05.2019
11.07.2019
№219.017.b28b

Способ изготовления тонкой проволоки из биосовместимого сплава tinbtazr

Изобретение относится к способам изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr для кава-фильтров и стентов. Способ включает выплавку заготовки и ее деформационно-термическую обработку. Возможность получения изделий повышенной прочности, пластичности и улучшенных...
Тип: Изобретение
Номер охранного документа: 0002694099
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
14.08.2019
№219.017.bf38

Борированный порошок для плазменного напыления

Изобретение относится к материалу для нанесения покрытия, в частности борированному порошку для плазменного напыления. Может использоваться для формирования износостойких покрытий. Частицы борированного порошка для плазменного напыления, состоят из ядра и борсодержащей оболочки, которая...
Тип: Изобретение
Номер охранного документа: 0002697147
Дата охранного документа: 12.08.2019
16.08.2019
№219.017.c0a8

Способ регистрации следовых количеств веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в...
Тип: Изобретение
Номер охранного документа: 0002697477
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0ae

Способ получения биоцемента для заполнения костных дефектов на основе дикальцийфосфата дигидрата и сульфата кальция двуводного

Изобретение относится к медицине и касается получения биоцемента для заполнения костных дефектов. Для этого цементный раствор получают в результате смешения порошка трикальцийфосфата и сульфата кальция полуводного с водным раствором дигидроортофосфата магния 4-водного - раствор 50-66% соли...
Тип: Изобретение
Номер охранного документа: 0002697396
Дата охранного документа: 14.08.2019
23.08.2019
№219.017.c2d7

Способ изготовления керамики на основе композита нитрид кремния - нитрид титана

Изобретение относится к способу получения керамического композита из нитрида кремния, упрочненного нитридом титана, обладающего совокупностью физико-механических свойств, таких как высокая прочность и твердость, низкий коэффициент термического расширения, износостойкость и электрическая...
Тип: Изобретение
Номер охранного документа: 0002697987
Дата охранного документа: 21.08.2019
01.11.2019
№219.017.dc2d

Способ плазменного напыления с насадкой к плазмотрону и устройство для его осуществления

Изобретение относится к области металлургии, к напылению плазменных покрытий и может быть использовано для формирования износостойких, коррозионностойких и функциональных покрытий с минимальным содержанием оксидов, формирующихся в процессе напыления. Способ и устройство напыления покрытий при...
Тип: Изобретение
Номер охранного документа: 0002704680
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc41

Высокопрочная дисперсионно-твердеющая азотосодержащая коррозионно-стойкая аустенитная сталь

Изобретение относится к области металлургии, а именно к высокопрочным дисперсионно-твердеющим азотосодержащим коррозионно-стойким аустенитным сталям, используемым для изготовления высоконагруженных конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит...
Тип: Изобретение
Номер охранного документа: 0002704703
Дата охранного документа: 30.10.2019
04.11.2019
№219.017.de5f

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in...
Тип: Изобретение
Номер охранного документа: 0002705084
Дата охранного документа: 01.11.2019
Showing 41-43 of 43 items.
21.05.2023
№223.018.6984

Способ получения антибактериальных металлических фильтров из сферического порошка коррозионно-стойкой стали с серебром

Изобретение относится к области металлургии. Способ получения антибактериальных металлических фильтров включает выплавку слитка коррозионно-стойкой стали 03Х17Н10М2 с добавлением 0,2 мас.% серебра, гомогенизационный отжиг слитков, первичную деформацию литых заготовок, ротационную ковку,...
Тип: Изобретение
Номер охранного документа: 0002794905
Дата охранного документа: 25.04.2023
01.06.2023
№223.018.750c

Устройство для получения металлического порошка

Устройство относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, несколько устройств для подачи пруткового материала в плазменный...
Тип: Изобретение
Номер охранного документа: 0002749403
Дата охранного документа: 09.06.2021
16.06.2023
№223.018.7b57

Способ получения проволоки из сплава титан-ниобий-тантал для применения в производстве сферического порошка

Изобретение относится к металлургии, в частности к способам изготовления проволоки TiNbTa из биосовместимого сплава для производства сферического порошка. Способ получения проволоки из сплава титан-ниобий-тантал для производства сферического порошка включает выплавку слитков сплава из исходных...
Тип: Изобретение
Номер охранного документа: 0002751065
Дата охранного документа: 07.07.2021
+ добавить свой РИД