×
29.05.2018
218.016.58ad

Результат интеллектуальной деятельности: Способ создания лазерного излучения и лазер, реализующий этот способ

Вид РИД

Изобретение

№ охранного документа
0002653567
Дата охранного документа
11.05.2018
Аннотация: Изобретение относится к лазерной технике. Для создания лазерного излучения используют газоразрядную камеру, установленную на ее выходе ионно-оптическую систему для формирования ускоренного пучка ионов, лазерный резонатор, в котором устанавливают узел перезарядки, представляющий проводящее геометрическое тело, одна из границ которого является гладкой плоской поверхностью. Размещают газоразрядную камеру и ионно-оптическую систему вне лазерного резонатора. Из ионов, поступающих из газоразрядной камеры, в ионно-оптической системе формируют ускоренный пучок ионов, падающий на указанную плоскую поверхность, и осуществляют перезарядку этого пучка ионов в пучок возбужденных атомов, исходящих из указанной плоской поверхности, установленной под таким малым углом к пучку ионов, чтобы пучок возбужденных атомов, выходящих из указанной поверхности, находился внутри лазерного резонатора. Технический результат заключается в обеспечении возможности снижения длины волны и повышения энергии лазерного излучения. 2 н.п. ф-лы, 1 ил.

Область техники, к которой относится изобретение

Изобретение относится к области квантовой электроники, и, более точно, к области лазерной техники, и может быть использовано для создания лазерного излучения на основе различных возбужденных атомов и для построения лазеров, позволяющих существенно снизить длину волны лазерного излучения и вследствие этого повысить энергию лазерного излучения. Это является весьма важным для многих применений лазеров, где является критической длина волны лазерного излучения, например, при изготовлении микро- и нано-интегральных схем.

Уровень техники

Известны способы создания лазерного излучения с использованием возбужденных атомов и реализующие эти способы газовые лазеры, содержащие газоразрядную камеру и лазерный резонатор (см., например, патент на полезную модель RU 104785 от 2010 г., опубликованный в 2011 г., МПК H01S 3/00, автор Привалов В.Е.). В известных газовых лазерах на возбужденных атомах газоразрядная камера установлена в лазерном резонаторе. Вследствие этого общий недостаток этих лазеров состоит в том, что рабочие уровни возбужденных атомов оказываются настолько широкими, что требуется высокая мощность для возбуждения атомов.

В качестве способа-прототипа и реализующего его лазера-прототипа выбираем известные способ и лазер, являющиеся наиболее близкими к предлагаемым способу и лазеру и не содержат никаких второстепенных признаков, которые могли бы в чем-то улучшить эти прототипы. Такими способом-прототипом и способом-лазером являются способ и лазер, описанные в статье Javan A., Benneett W.R., Herriott D.R. "Population Inversion and Continious Optical Maser Oscillation in a Gas discharge Containing a He-Ne Mixture. - "Physical Review Letteres", 1961, v. 6, No. 3, pp. 106-110. Способ-прототип и лазер-прототип, представленные в этой статье, описаны также в статье A.M. Леонтовича «Оптический генератор» в «Физическом энциклопедическом словаре», 1963 г. в 5-ти томах, М.: «Советская энциклопедия», 1963 г., том 3, С. 528-530, рис. 6, на котором лазер-прототип назван «оптическим генератором Джавана». Недостаток способа-прототипа и лазера-прототипа заключается в том, что они не обеспечивают низкую длину волны лазерного излучении.

Раскрытие (сущность) изобретения

Задачей предлагаемого изобретения является разработка способа получения лазерного излучения на основе возбужденных атомов и лазера, реализующего этот способ, которые по сравнению с прототипом обеспечили бы технический результат в виде одновременного достижения следующих целей:

- получение лазерного излучения на высокоэнергетических уровнях, например, водорода и гелия,

- получение лазерного излучения на атомных линиях, которые ранее невозможно было использовать для обеспечения необходимой длины волны излучения.

Это позволяет существенно снизить длину волны и повысить энергию лазерного излучения.

Этот технический результат достигается, во-первых, благодаря тому, что в способе создания лазерного излучения на основе возбужденных атомов, состоящем в использовании газоразрядной камеры и лазерного резонатора, на выходе газоразрядной камеры устанавливают ионно-оптическую систему для формирования ускоренного пучка ионов, причем размещают эту камеру и ионно-оптическую систему вне лазерного резонатора, в котором устанавливают узел перезарядки, представляющий проводящее геометрическое тело, одна из границ которого является гладкой плоской поверхностью, а затем из ионов, поступающих из газоразрядной камеры, в ионно-оптической системе формируют ускоренный пучок ионов, падающий на указанную плоскую поверхность, и осуществляют перезарядку этого пучка ионов в пучок возбужденных атомов, исходящих из указанной плоской поверхности, установленной под таким малым углом к пучку ионов, чтобы пучок возбужденных атомов, выходящих из указанной поверхности, находился внутри лазерного резонатора.

Этот же технический результат достигается благодаря тому, что в лазере на возбужденных атомах, содержащем газоразрядную камеру и лазерный резонатор, на выходе газоразрядной камеры установлена ионно-оптическая система для формирования и ускорения пучка ионов, причем газоразрядная камера и ионно-оптическую система установлены вне лазерного резонатора, в котором установлен узел перезарядки, представляющий проводящее геометрическое тело, одна из границ которого является гладкой плоской поверхностью, предназначенной для перезарядки пучка ионов, падающего на эту поверхность, в пучок возбужденных атомов, причем эта поверхность установлена под таким малым углом к пучку ионов, чтобы пучок возбужденных атомов, исходящих из этой поверхности, находился внутри лазерного резонатора.

Получение технического результата в предлагаемом изобретении обеспечивается благодаря предложенной перезарядке ускоренного пучка ионов в пучок возбужденных атомов, которая реализуется при помощи описанных аппаратных средств.

Перезарядка ионов происходит при их отражении от проводящей гладкой поверхности с участием части электронов твердого тела, находящихся над этой поверхностью и обладающих той же скоростью, что и ионы. Причем перезарядка ионов в возбужденное состояние атомов происходит с высокой эффективностью. Физика этой перезарядки, называемой резонансной, описана в обзоре H. Winter «Collisions of atom and ions with surfaces under grazing incidence» в журнале «Physics Reports», 2002, vol. 367, p.p. 387-582 и в статье P.A. Alexandrav, V.V. Beloshitsky «Charge exchange at grazing Reflection of swift ions from a solide surface» в журнале «Radiation Effect and Defects in Solids», 1991, vol. 117, p.p. 95-98. Однако предложенная в данном изобретении перезарядка пучка ионов в пучок возбужденных атомов на проводящей гладкой поверхности ранее для создания лазерного излучения не предлагалась. Указанная перезарядка дает преимущественное заселение возбужденного атомного состояния и, следовательно, возникновение усиления излучения, необходимое для работы лазера.

Краткое описание чертежей

На фигуре показана схема предлагаемого лазера.

Осуществление изобретения

Предлагаемый лазер содержит газоразрядную камеру 1 (ионный источник) со щелью 2 для выхода ионов, ионно-оптическую систему («ионную оптику») 3, представляющую собой пластину с отверстием 4 для выхода ускоренного пучка 5 ионов, лазерный резонатор 6 с зеркалами 7 и 8 и установленный в лазерном резонаторе 6 узел 9 перезарядки, представляющий проводящее геометрическое тело, одна из границ которого является гладкой плоской поверхностью 10, предназначенной для перезарядки пучка 5 ионов, падающего на эту поверхность 10, в пучок 11 возбужденных атомов, причем эта поверхность 10 установлена под таким малым углом α к пучку 5 ионов, чтобы пучок 11 возбужденных атомов, исходящих из этой поверхности 10, находился внутри лазерного резонатора 6. Этот малый угол α составляет примерно 2°-5°.

Узел 9 перезарядки может быть выполнен, например, в виде плоской пластины, одна из поверхностей которой является гладкой плоской поверхностью 10.

Корпус газоразрядной камеры 1 и невзаимодействующая с пучком 5 ионов часть корпуса узла 9 перезарядки заземлены. А на корпус ионно-оптической системы 3 подан потенциал Е.

Предлагаемый лазер работает следующим образом. Из газоразрядной камеры 1 через щель 2 ионы поступают в ионно-оптическую систему 3, которая формирует и ускоряет пучок 5 ионов. Ускоренный пучок 5 ионов через отверстие 4 в системе 3 падает на проводящую гладкую плоскую поверхность 10 узла 9 перезарядки, в результате чего в узле 9 происходит перезарядка пучка 5 ионов в пучок 11 возбужденных атомов, исходящих из поверхности 10. Поскольку поверхность 10 установлена под соответствующим малым углом α к пучку 5 ионов, то пучок 11 возбужденных атомов, выходящих из поверхности 10, находится внутри лазерного резонатора 6.

Предлагаемый способ создания лазерного излучения состоит в том, что на выходе газоразрядной камеры 1 устанавливают ионно-оптическую систему 3 для формирования ускоренного пучка 5 ионов, причем размещают эту камеру 1 и ионно-оптическую систему 3 вне лазерного резонатора 6, в котором устанавливают узел 9 перезарядки, представляющий проводящее геометрическое тело, одна из границ которого является гладкой плоской поверхностью 10, и затем из ионов, поступающих из газоразрядной камеры 1 через щель 2, в ионно-оптической системе 3 формируют ускоренный пучок 5 ионов, падающий на указанную плоскую поверхность 10, и осуществляют перезарядку этого пучка 5 ионов в пучок 11 возбужденных атомов, исходящих из указанной плоской поверхности, 10 установленной под таким мальм углом α к пучку 5 ионов, чтобы пучок 11 возбужденных атомов, выходящих из указанной поверхности 10, находился внутри лазерного резонатора 6.


Способ создания лазерного излучения и лазер, реализующий этот способ
Способ создания лазерного излучения и лазер, реализующий этот способ
Источник поступления информации: Роспатент

Showing 211-220 of 259 items.
09.06.2019
№219.017.7ef1

Устройство для получения нанодисперсных металлов в жидкой фазе

Изобретение относится к устройству для получения нанодисперсных металлов в жидкой фазе (воде, органических растворителях). Устройство содержит корпус с патрубками для подвода и отвода жидкой фазы с частицами диспергируемого металла и расположенными в корпусе и подключенными к источнику тока...
Тип: Изобретение
Номер охранного документа: 0002430999
Дата охранного документа: 10.10.2011
09.06.2019
№219.017.7f54

Способ определения эффективного коэффициента размножения ядерной установки

Изобретение относится к физике ядерных реакторов и может быть использовано для экспериментально-расчетного определения эффективного коэффициента размножения (k) активных зон ядерных установок (ЯУ). Измеряют поток нейтронов n(t) в ЯУ как сигнал детектора нейтронов v(t) с интервалом дискретности...
Тип: Изобретение
Номер охранного документа: 0002442234
Дата охранного документа: 10.02.2012
14.06.2019
№219.017.8311

Зарядная станция для электрического транспорта

Изобретение относится к области электротехники, в частности к системам зарядки гибридного и/или электрического транспорта. Техническим результатом является возможность зарядить несколько электрических легковых и грузовых автомобилей, а также автобусов/электробусов, без подключения к воздушным...
Тип: Изобретение
Номер охранного документа: 0002691386
Дата охранного документа: 13.06.2019
10.07.2019
№219.017.af7a

Способ установки первичного преобразователя шарикового расходомера

Изобретение предназначено для использования при измерении расхода воды в топливных каналах реактора большой мощности (РБМК) штатным прибором - шариковым расходомером. Первичный преобразователь расходомера, включающий в себя корпус (4) магнитоиндукционного преобразователя, втулку (12) с камерой...
Тип: Изобретение
Номер охранного документа: 0002422775
Дата охранного документа: 27.06.2011
10.07.2019
№219.017.b082

Способ получения радионуклида висмут-212

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. Описан способ получения радионуклида висмут-212 из азотнокислого раствора, содержащего смесь радионуклидов торий-228, торий-229 и их дочерних продуктов распада, и...
Тип: Изобретение
Номер охранного документа: 0002439727
Дата охранного документа: 10.01.2012
12.07.2019
№219.017.b311

Противовоспалительный препарат на основе кетопрофена и способ его получения

Изобретение относится к области фармакологии, а именно к составу и способу получения противовоспалительного препарата на основе кетопрофена в виде лиофилизата для приготовления суспензии частиц с размером от 200 до 300 нм. Противовоспалительный препарат содержит, масс. %: активный компонент -...
Тип: Изобретение
Номер охранного документа: 0002694221
Дата охранного документа: 10.07.2019
19.07.2019
№219.017.b665

Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока

Использование: для создания функциональных переключаемых электронных устройств. Сущность изобретения заключается в том, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока, включает...
Тип: Изобретение
Номер охранного документа: 0002694800
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b692

Способ изготовления термобатареи

Изобретение относится к области термоэлектрического преобразования тепловой энергии в электрическую и может быть применено для изготовления полупроводниковых термоэлементов и термоэлектрических батарей из них, используемых в конструкциях термоэлектрических генераторов. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002694797
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное...
Тип: Изобретение
Номер охранного документа: 0002694799
Дата охранного документа: 16.07.2019
27.07.2019
№219.017.b9ba

Способ получения радионуклеида лютеций-177

Изобретение относится к способу получения радионуклида Lu без носителя для использования в ядерной медицине. Способ включает в себя облучение мишени, содержащей Yb, потоком нейтронов в ядерном реакторе, в процессе облучения по реакции Yb(n,γ) Yb (1,9 час) β-→Lu в мишени нарабатывается целевой...
Тип: Изобретение
Номер охранного документа: 0002695635
Дата охранного документа: 25.07.2019
Showing 11-12 of 12 items.
12.02.2020
№220.018.01a0

Устройство ввода и отображения информации для использования под водой (варианты)

Изобретение относится к устройству ввода и отображения информации для использования под водой. Технический результат заключается в обеспечении возможности использования для ввода и отображения информации под водой сенсорного экрана на основе холестерических жидких кристаллов за счет...
Тип: Изобретение
Номер охранного документа: 0002713861
Дата охранного документа: 07.02.2020
29.06.2020
№220.018.2c89

Способ косвенного измерения отказоустойчивости облучаемых испытательных цифровых микросхем, построенных различными способами постоянного поэлементного резервирования, и функциональная структура испытательной микросхемы, предназначенной для реализации этого способа

Изобретение относится к способам косвенного измерения отказоустойчивости облучаемых цифровых испытательных микросхем, построенных различными способами постоянного поэлементного резервирования, и к испытательным микросхемам для реализации этих способов измерения. Технический результат - создание...
Тип: Изобретение
Номер охранного документа: 0002724804
Дата охранного документа: 25.06.2020
+ добавить свой РИД