×
29.05.2018
218.016.5780

Результат интеллектуальной деятельности: Способ определения эффективности ингибиторов гидратообразования

Вид РИД

Изобретение

Аннотация: Изобретение относится к экспериментально-аналитическим методам прогнозирования эффективности ингибиторов гидратообразования и может быть использовано как экспресс-метод в нефтегазодобывающей и перерабатывающей промышленности. Способ включает нахождение температур гидратообразования в системе газ - чистая вода, замерзания водного раствора проверяемого ингибитора соответствующей концентрации и расчет температуры гидратообразования в системе газ - водный раствор ингибитора. Дополнительно устанавливают одинаковое давление для систем газ - чистая вода и газ - водный раствор ингибитора и при этом давлении определяют температуры: равновесную гидратообразования в системе газ - чистая вода, кристаллизации чистой воды, начала кристаллизации воды в замерзающем водном растворе ингибитора, после чего рассчитывают по формулам температуру начала гидратообразования в системе газ - водный раствор ингибитора и критерий эффективности ингибитора. Повышается точность определения эффективности ингибитора. 5 з.п. ф-лы, 1 ил.

Изобретение относится к экспериментально-аналитическим методам прогнозирования эффективности ингибиторов гидратообразования и может быть использовано как экспресс-метод в нефтегазодобывающей и перерабатывающей промышленности.

Известен способ предотвращения гидратообразования и осушки углеводородных газов, эффективность которого экспериментально определяется по величине снижения температуры начала гидратообразования от действия водного раствора ингибитора, в состав которого входят полигликоли (80-85% масс.) и едкий натр (2-3% масс.) [А.с. SU №1563741, B04D 53/26. Способ предотвращения гидратообразования и осушки углеводородных газов].

Общим признаком известного и предлагаемого способов является определение величины температуры гидратообразования в системе газ - водный раствор ингибитора соответствующей концентрации.

К недостаткам известного способа необходимо отнести то, что снижения температуры гидратообразования в системе газ - водный раствор ингибитора определяют экспериментально. Экспериментальное определение температуры гидратообразования в системе газ - водный раствор ингибитора требует специального прецизионного измерительного оборудования, которое обслуживается высококвалифицированными специалистами метрологами и которое в полевых условиях достаточно сложно применять. Обработка результатов измерений требует наличия специальной электронно-вычислительной техники, аппаратно-программных комплексов и пр. Все это в комплексе удорожает способ определения эффективности ингибиторов гидратообразования в процессах предотвращения гидратообразования и осушки углеводородных газов. Как следствие это приводит к повышенным затратам.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ определения эффективности ингибитора гидратообразования, включающий определение температур:

- замерзания раствора проверяемого ингибитора соответствующей концентрации;

- гидратообразования газов из воды без растворенного в ней ингибитора;

- исходя из этих данных, рассчитывают по формуле температуру гидратообразования газов в присутствии растворенного в воде ингибитора (А.с. SU №1723408, F27D 1/05, 3/12. Способ определения эффективности ингибитора гидратообразования):

ТИ = Т0 + 0,5⋅ТЗ - 136,58,

где ТИ - температура гидратообразования газов в присутствии растворенного в воде проверяемого вещества соответственной концентрации, К;

Т0 - температура гидратообразования газов из воды без растворенного в нем вещества, К;

ТЗ - температура замерзания раствора проверяемого вещества соответственной концентрации, К;

136,58 - половина значения температуры плавления льда, К.

Общими признаками известного и предлагаемого способов являются:

- определение температур гидратообразования в системе газ - чистая вода и замерзания водного раствора проверяемого ингибитора соответствующей концентрации; расчет по формуле температуры гидратообразования в системе газ - водный раствор ингибитора.

К недостаткам известного способа необходимо отнести то, что:

- температуру гидратообразования в системе газ - чистая вода находят без привязки к давлению системы, что приводит к значительным неточностям при определении эффективности ингибитора гидратообразования;

- температура замерзания водного раствора для многих типов ингибиторов не имеет строго фиксированных значений, причем диапазон между величинами начала и окончания замерзания тем больше, чем выше концентрация ингибитора, что приводит к значительным неточностям при определении эффективности ингибитора гидратообразования;

- расчет температуры гидратообразования в системе газ - водный раствор ингибитора по предлагаемой в аналоге формуле, в которую входят вышеперечисленные величины температур гидратообразования в системе газ - чистая вода, замерзания водного раствора ингибитора и половинное значение температуры плавления льда, принятое в качестве постоянной величины, не корректен, что обусловлено неточностями в определении величин первой и второй температур в формуле, а также температуры плавления льда, которая, как известно, зависит от давления окружающей среды.

Некорректное определение эффективности ингибитора гидратообразования в конечном итоге приводит к повышенным или пониженным расходам ингибитора для предупреждения образования гидратов или их ликвидации. Повышенные расходы приводят к увеличению эксплуатационных затрат, а пониженные - к осложнениям и авариям в технико-технологических системах, которые также влекут за собой дополнительные затраты на ликвидацию их последствий.

Задачей изобретения является совершенствование способа определения эффективности ингибиторов гидратообразования.

Техническим результатом предлагаемого изобретения является повышение точности определения эффективности ингибиторов гидратообразования.

Технический результат достигается тем, что в способе определения эффективности ингибиторов гидратообразования, включающем нахождение температур:

- гидратообразования в системе газ - чистая вода;

- замерзания водного раствора проверяемого ингибитора соответствующей концентрации;

- и расчет температуры гидратообразования в системе газ - водный раствор ингибитора,

новым является то, что

- дополнительно устанавливают одинаковое давление для систем газ - чистая вода и газ - водный раствор ингибитора, и при этом давлении определяют температуры:

- равновесную гидратообразования в системе газ - чистая вода,

- кристаллизации чистой воды;

- начала кристаллизации воды в замерзающем водном растворе ингибитора,

после чего рассчитывают по формулам:

температуру начала гидратообразования в системе газ - водный раствор ингибитора

Thn=Th(Tw-T),

где Thn - температура начала гидратообразования в системе газ - водный раствор ингибитора, К;

Th - равновесная температура гидратообразования в системе газ - чистая вода, К;

Tw - температура кристаллизации чистой воды, К;

Т - температура начала кристаллизации воды в замерзающем водном растворе ингибитора, К;

и критерий эффективности ингибитора

,

η=0 означает отсутствие ингибитора в системе, η>0 - присутствие ингибитора в системе, причем, чем больше величина η, тем реагент эффективнее.

Кроме того, равновесная температура гидратообразования в системе газ - вода рассчитывается по формулам:

- в диапазоне до первой квадрупольной точки, разграничивающей в этой системе фазовое состояние газ - водяной пар - лед от фазового состояния газ - пар - жидкая вода

,

где - равновесная температура гидратообразования в системе газ - чистая вода в диапазоне до первой квадрупольной точки, К;

где - установленное давление [Па] гидратообразования в диапазоне до первой квадрупольной точки;

α, b - коэффициенты, определяемые опытным путем;

- в диапазоне от первой до второй квадрупольной точки, разграничивающей в этой системе фазовое состояние газ - пар - жидкая вода от фазового состояния газ - его конденсат - пар - жидкая вода

,

где - равновесная температура гидратообразования в системе газ - чистая вода в диапазоне от первой до второй квадрупольной точки, К;

- установленное давление [Па] гидратообразования в диапазоне от первой до второй квадрупольной точки (если величина установленного давления больше величины во второй квадрупольной точке, то в расчете принимается последняя максимальная величина в точке);

с, d - коэффициенты, определяемые опытным путем.

Кроме того, численные значения коэффициентов α, b, с, d определены для:

- метана: a=4⋅10-17; b=9,3415 при от 1⋅105 до 2,57⋅106 Па;

с=10-7; d=0,1128 при от 2,58⋅106 до 65,4⋅106 Па;

- этана: a=3⋅10-26; b=12,8130 при от 1⋅105 до 0,51⋅106 Па;

с=6⋅10-10; d=0,1256 при от 0,52⋅106 до 3,4⋅106 Па;

- пропана: a=2⋅10-28; b=13,4980 при от 0,63⋅105 до 0,176⋅106 Па;

с=8⋅10-20; d=0,2052 при от 0, 77⋅106 до 0,55⋅106 Па;

- i-бутана: a=2⋅10-32; b=15,0760 при от 0,36⋅105 до 0,113⋅106 Па;

с=3⋅10-20; d=0,2078 при от 0,114⋅106 до 0,167⋅106 Па;

- диоксида углерода: a=10-21; b=11,0890 при от 1⋅105 до 1,24⋅106 Па;

с=8⋅10-10; d=0,1281 при от 2,58⋅106 до 65,4⋅106 Па;

- сероводорода: a=10-23; b=11,4690 при от 0,40⋅105 до 0,94⋅105 Па;

с=2⋅10-8; d=0,1064 при от 0,95⋅105 до 2,27⋅106 Па;

- азота: a=2⋅10-12; b=7,7171 при от 11,00⋅106 до 16,15⋅106 Па;

с=10-5; d=0,1015 при от 16,16⋅106 до 119,00⋅106 Па;

- аргона: a=8⋅10-12; b=7,4047 при от 1⋅105 до 9,24⋅106 Па;

с=10-7; d=0,1168 при от 9,25⋅106 до 188,00⋅106 Па;

- криптона: a=5⋅10-26; b=12,8900 при от 1⋅105 до 1,44⋅106 Па;

с=2⋅10-6; d=0,0990 при от 1,45⋅106 до 3,7⋅106 Па;

- ксенона: a=2⋅10-24; b=11,8380 при от 0,13⋅105 до 0,152⋅106 Па;

с=3⋅10-7;d=0,0993 при от 0,153⋅106 до 0,5⋅106 Па.

Кроме того, температура [К] начала кристаллизации воды в замерзающем водном растворе ингибитора рассчитывается по формуле:

,

где m - количество антигидратных реагентов, входящих в состав ингибитора;

Xi - массовая доля i-го антигидратного реагента в ингибиторе;

Ti - температура [К] начала кристаллизации воды в i-м антигидратном реагенте:

,

где α, β, γ - эмпирические коэффициенты для различных антигидратных реагентов.

Кроме того, численные значения эмпирических коэффициентов α, β, γ определены для следующих антигидратных реагентов

- метанола: α=-138,93; β=-40,15; γ=271,89;

- этанола: α=-10,40; β=-70,26; γ=275,93;

- пропанола: α=28,83; β=-63,80; γ=274,40;

- этиленгликоля: α=-160,62; β=11,44; γ=270,20;

- диэтиленгликоля: α=-131,77; β=13,14; γ=271,73;

- триэтиленгликоля: α=-101,47; β=7,41; γ=272,16;

- пропиленгликоля: α=-153,29; β=16,51; γ=269,72;

- глицерина: α=-116,58; β=14,74; γ=270,78;

- азотной кислоты: α=-332,73; β=-14,39; γ=271,75;

- серной кислоты: α=-618,46; β=50,86; γ=269,68;

- соляной кислоты: α=-1479,60; β=57,50; γ=269,69;

- уксусной кислоты: α=-15,27; β=-31,92; γ=273,29;

- аммиака: α=-937,69; β=28,37; γ=268,27;

- моноэтаноламина: α=-480,14; β=122,40; γ=262,47;

- диэтаноламина: α=-153,57; β=30,64; γ=269,65;

- триэтаноламина: α=-158,93; β=50,54; γ=268,65;

- гидрооксида калия: α=-670,91; β=25,91; γ=270,26;

- гидрооксида натрия: α=-498,06; β=-46,32; γ=272,43;

- пероксида водорода: α=-87,73; β=-65,31; γ=274,14;

- формальдегида: α=-29,81; β=-57,01; γ=273,12;

- хлорида лития: α=-1130,70; β=19,79; γ=270,55;

- хлорида магния: α=-840,22; β=16,46; γ=271,84;

- хлорида кальция: α=-840,90; β=126,63; γ=263,66;

- хлорида натрия: α=-212,97; β=-45,24; γ=272,86;

- перманганата кальция: α=-295,60; β=48,35; γ=269,16;

- нитрата кальция: α=-102,86; β=-16,29; γ=272,86.

Технический прием, заключающийся в дополнительном установлении одинакового давления для систем газ - чистая вода и газ - водный раствор ингибитора, приводит к равным барическим условиям сравниваемых систем, что повышает точность определения соответствующих им термических параметров и, как следствие, к повышению точности определения эффективности ингибиторов гидратообразования.

Технический прием, заключающийся в том, что при установленном давлении определяют равновесную температуру гидратообразования в системе газ - чистая вода, позволяет найти конкретный термобарический параметр гидратообразования для этой системы и ведет в дальнейшем к повышению точности определения эффективности ингибиторов гидратообразования.

Технический прием, заключающийся в том, что при установленном давлении определяют температуру кристаллизации чистой воды, позволяет найти конкретный термобарический параметр кристаллизации чистой воды в зависимости от величины установленного давления и, как следствие, повысить точность определения эффективности ингибиторов гидратообразования.

Технический прием, заключающийся в том, что при установленном давлении определяют температуру начала кристаллизации воды в замерзающем водном растворе ингибитора, позволяет найти строго фиксированное значение данной температуры и, как следствие, повысить точность определения эффективности ингибиторов гидратообразования.

Технический прием, заключающийся в расчете температуры начала гидратообразования в системе газ - водный раствор ингибитора по формуле

Thn=Th-(Tw-T),

где Thn - температура начала гидратообразования в системе газ - водный раствор ингибитора, К;

Th - равновесная температура гидратообразования в системе газ - чистая вода, К;

Tw - температура кристаллизации чистой воды, К;

Т - температура начала кристаллизации воды в замерзающем водном растворе ингибитора, К;

позволяет точно рассчитать смещение термических условий начала гидратообразования от Th до Thn от действия ингибитора при установленном давлении Ph. Это смещение графически представлено на фиг. 1. Чем оно больше, тем эффективнее ингибитор гидратообразования.

Технический прием, заключающийся в расчете критерия эффективности ингибитора по формуле

,

позволяет оценить действие ингибитора в системе газ - его водный раствор в безразмерной форме. Величина η=0 показывает, что ингибитор отсутствует в системе, η>0 - означает присутствие ингибитора. Чем больше величина η, тем реагент эффективнее. Сравнение величин критериев разных ингибиторов является экспресс-методом выбора из них оптимального.

Технический прием, заключающийся в том, что равновесная температура гидратообразования в системе газ - вода рассчитывается по формулам:

- в диапазоне до первой квадрупольной точки I (см. фиг.1), разграничивающей в этой системе фазовое состояние газ - водяной пар - лед от фазового состояния газ - пар - жидкая вода

,

где - равновесная температура гидратообразования в системе газ - чистая вода в диапазоне до первой квадрупольной точки, К;

- установленное давление [Па] гидратообразования в диапазоне до первой квадрупольной точки;

a, b - коэффициенты, определяемые опытным путем;

- в диапазоне от первой до второй квадрупольной точки II (см. фиг.), разграничивающей в этой системе фазовое состояние газ - пар - жидкая вода от фазового состояния газ - его конденсат - пар - жидкая вода

,

где - равновесная температура гидратообразования в системе газ - чистая вода в диапазоне от первой до второй квадрупольной точки, К;

где - установленное давление [Па] гидратообразования в диапазоне от первой до второй квадрупольной точки (если величина установленного давления больше величины во второй квадрупольной точке, то в расчете принимается последняя максимальная величина в точке);

с, d - коэффициенты, определяемые опытным путем

позволяет точно рассчитать температуры начала образования гидратов из газов в диапазонах равновесных термобарических условий, определяемых до первой квадрупольной точки и от первой до второй квадрупольной точки, найти для этих условий эффективность ингибитора по его критерию и величине смещения термических условий начала гидратообразования.

Численные значения коэффициентов α, b, с, d определены для следующих гидратообразующих газовых компонентов:

- метана: a=4⋅10-17; b=9,3415 при от 1⋅105 до 2,57⋅106 Па;

с=10-7; d=0,1128 при от 2,58⋅106 до 65,4⋅106 Па;

- этана: a=3⋅10-26; b=12,8130 при от 1⋅105 до 0,51⋅106 Па;

с=6⋅10-10; d=0,1256 при от 0,52⋅106 до 3,4⋅106 Па;

- пропана: a=2⋅10-28; b=13,4980 при от 0,63⋅105 до 0,176⋅106 Па;

с=8⋅10-10; d=0,1281 при от 0,177⋅106 до 0,55⋅106 Па;

- i-бутана: a=2⋅10-32; b=15,0760 при от 0,36⋅105 до 0,113⋅106 Па;

с=3⋅10-20; d=0,2078 при от 0,114⋅106 до 0,167⋅106 Па;

- диоксида углерода: a=10-21; b=11,0890 при от 1⋅105 до 1,24⋅106 Па;

с=8⋅10-10; d=0,1281 при от 2,58⋅106 до 65,4⋅106 Па;

- сероводорода: a=10-23; b=11,4690 при от 0,40⋅105 до 0,94⋅105 Па;

с=2⋅10-8; d=0,1064 при от 0,95⋅105 до 2,27⋅106 Па;

- азота: a=2⋅10-12; b=7,7171 при от 11,00⋅106 до 16,15⋅106Па;

c=10-5; d=0,1015 при от 16,16⋅106 до 119,00⋅106 Па;

- аргона: a=8⋅10-12; b=7,4047 при от 1⋅105 до 9,24⋅106 Па;

с=10-7; d=0,1168 при от 9,25⋅106 до 188,00⋅106Па;

- криптона: а=5⋅10-26; b=12,8900 при от 1⋅105 до 1,44⋅106 Па;

с=2⋅10-6; d=0,0990 при от 1,45⋅106 до 3,7⋅106 Па;

- ксенона: а=2⋅10-24; b=11,8380 при от 0,13⋅105 до 0,152⋅106 Па;

с=3⋅10-7; d=0,0993 при от 0,153⋅106 до 0,5⋅106 Па.

Технический прием, заключающийся в том, что равновесная температура [К] кристаллизации воды в диапазоне установленных давлений от 0,1 до 210 МПа, рассчитывается по эмпирической зависимости:

,

где Ph - величина установленного давления, МПа,

позволяет точно рассчитать температуру кристаллизации воды в зависимости от установленного давления и, как следствие, повысить точность определения смещения термических условий начала гидратообразования и эффективность ингибиторов гидратообразования.

Технический прием, заключающийся в том, что температура [К] начала кристаллизации воды в замерзающем водном растворе ингибитора рассчитывается по формуле:

,

где m - количество антигидратных реагентов, входящих в состав ингибитора;

Xi - массовая доля i-го антигидратного реагента в ингибиторе;

Ti - температура [К] начала кристаллизации воды в i-м антигидратном реагенте:

,

где α, β, γ - эмпирические коэффициенты для различных антигидратных реагентов

позволяет рассчитывать значения температур начала кристаллизации воды в растворе ингибитора, состоящего из одного или нескольких антигидратных реагентов, что расширяет возможности заявляемого способа.

Численные значения эмпирических коэффициентов α, β, γ определены для следующих типов антигидратных реагентов:

- метанола: α=-138,93; β=-40,15; γ=271,89;

- этанола: α=-10,40; β=-70,26; γ=275,93;

- пропанола: α=28,83; β=-63,80; γ=274,40;

- этиленгликоля: α=-160,62; β=11,44; γ=270,20;

- диэтиленгликоля: α=-131,77; β=13,14; γ=271,73;

- триэтиленгликоля: α=-101,47; β=7,41; γ=272,16;

- пропиленгликоля: α=-153,29; β=16,51; γ=269,72;

- глицерина: α=-116,58; β=14,74; γ=270,78;

- азотной кислоты: α=-332,73; β=-14,39; γ=271,75;

- серной кислоты: α=-618,46; β=50,86; γ=269,68;

- соляной кислоты: α=-1479,60; β=57,50; γ=269,69;

- уксусной кислоты: α=-15,27; β=-31,92; γ=273,29;

- аммиака: α=-937,69; β=28,37; γ=268,27;

- моноэтаноламина: α=-480,14; β=122,40; γ=262,47;

- диэтаноламина: α=-153,57; β=30,64; γ=269,65;

- триэтаноламина: α=-158,93; β=50,54; γ=268,65;

- гидрооксида калия: α=-670,91; β=25,91; γ=270,26;

- гидрооксида натрия: α=-498,06; β=-46,32; γ=272,43;

- пероксида водорода: α=-87,73; β=-65,31; γ=274,14;

- формальдегида: α=-29,81; β=-57,01; γ=273,12;

- хлорида лития: α=-1130,70; β=19,79; γ=270,55;

- хлорида магния: α=-840,22; β=16,46; γ=271,84;

- хлорида кальция: α=-840,90; β=126,63; γ=263,66;

- хлорида натрия: α=-212,97; β=-45,24; γ=272,86;

- перманганата кальция: α=-295,60; β=48,35; γ=269,16;

- нитрата кальция: α=-102,86; β=-16,29; γ=272,86.

Авторам неизвестны способы определения эффективности ингибиторов гидратообразования подобным образом.

Практическая реализация предлагаемого способа определения эффективности ингибиторов гидратообразования представлена примерами.

ПРИМЕР 1.

Определение эффективности ингибитора гидратообразования, состоящего из водного раствора одного антигидратного реагента - метанола, имеющего массовую концентрацию X1=0,6, в гидратообразующей системе вода - метан выполняют следующим образом.

Устанавливают одинаковое давление для ингибитора гидратообразования и гидратообразующей системы Ph=2,3⋅106 Па. Величина этого давления находится в диапазоне до первой квадрупольной точки (см. п. 3 формулы). При этом давлении определяют температуры:

- равновесную гидратообразования в системе метан - чистая вода по формуле:

- кристаллизации чистой воды по формуле:

- начала кристаллизации воды в замерзающем водном растворе ингибитора по формуле:

- начала гидратообразования в системе газ - водный раствор ингибитора по формуле:

Thn=Th-(Tw1)=272-(273-198)=197 К.

Критерий эффективности водного раствора метанола с массовой концентрацией Х1=0,6 и давлении Ph=2,3⋅106 Па составляет:

.

ПРИМЕР 2.

С целью повышения эффективности ингибитора гидратообразования его приготавливают из водного раствора двух антигидратных реагентов - метанола массовой концентрацией Х1=0,4 и аммиака массовой концентрацией Х2=0,2. Его применяют как и в примере 1 в гидратообразующей системе вода - метан. Определение эффективности нового ингибитора гидратообразования выполняют следующим образом.

Устанавливают одинаковое давление для ингибитора гидратообразования и гидратообразующей системы Ph=2,3⋅106 Па. Величина этого давления находится в диапазоне до первой квадрупольной точки (см. п. 3 формулы). При этом давлении определяют температуры:

- равновесную гидратообразования в системе газ - чистая вода по формуле:

- кристаллизации чистой воды по формуле:

- начала кристаллизации воды в замерзающем водном растворе антигидратного реагента - метанола по формуле:

Т1=α⋅X12+β⋅Х1+γ=-138,93⋅0,42-40,15⋅0,4+271,89=234 К;

- начала кристаллизации воды в замерзающем водном растворе антигидратного реагента - аммиака по формуле:

Т2=α⋅Х22+β⋅Х2+γ=-937,69⋅0,22+28,37⋅0,2+268,27=236 К;

- начала кристаллизации воды в водном растворе ингибитора, состоящего из двух антигидратных реагентов - метанола и аммиака:

- начала гидратообразования в системе газ - водный раствор ингибитора по формуле:

Thn=Th-(Tw-T)=272-(273-141)=140 К.

Критерий эффективности водного раствора ингибитора массовой концентрацией X=0,6, состоящего из двух антигидратных реагентов - метанола (Х1=0,4) и аммиака (Х2=0,2), при давлении Ph=2,3⋅106 Па составляет:

.

При одинаковых условиях (Ph=2,3⋅106 Па, Th=272 К) новый ингибитор, состоящий из двух антигидратных реагентов, эффективнее ингибитора, приведенного в примере 1, в 1,75 раза.

ПРИМЕР 3.

Определение эффективности ингибитора гидратообразования, состоящего из водного раствора одного антигидратного реагента - метанола, имеющего массовую концентрацию Х1=0,6, в гидратообразующей системе вода - однокомпонентный газ - метан выполняют следующий образом.

Устанавливают одинаковое давление для ингибитора гидратообразования и гидратообразующей системы Ph=4⋅106 Па. Величина этого давления находится в диапазоне от первой до второй квадрупольной точки. При этом давлении определяют температуры:

- равновесную гидратообразования в системе газ - чистая вода:

- кристаллизации чистой воды по формуле:

- начала кристаллизации воды в замерзающем водном растворе ингибитора по формуле:

Т2=α⋅X12+β⋅Х1+γ=-138,93⋅0,62-40,15⋅0,6+271,89=198 К;

- начала гидратообразования в системе газ - водный раствор ингибитора по формуле:

Thn=Th-(Tw-T2)=278-(272-198)=204 К.

Критерий эффективности водного раствора метанола с массовой концентрацией Х1=0,6 и давлении Ph=4⋅106 Па составляет:

.

ПРИМЕР 4.

С целью повышения эффективности ингибитора гидратообразования его приготавливают из водного раствора двух антигидратных реагентов - метанола массовой концентрацией Х1=0,4 и аммиака массовой концентрацией Х2=0,2. Его применяют как и в примере 1 в гидратообразующей системе вода - метан. Определение эффективности нового ингибитора гидратообразования выполняют следующим образом.

Устанавливают одинаковое давление для ингибитора гидратообразования и гидратообразующей системы Ph=4⋅106 Па. Величина этого давления находится в диапазоне до первой квадрупольной точки (см. п. 3 формулы).

При этом давлении определяют температуры:

- равновесную гидратообразования в системе газ - чистая вода по формуле:

- кристаллизации чистой воды по формуле:

;

- начала кристаллизации воды в замерзающем водном растворе антигидратного реагента - метанола по формуле:

T1=α⋅Х22+β⋅Х1+γ=-138,93⋅0,42-40,15⋅0,4+271,89=234 К;

- начала кристаллизации воды в замерзающем водном растворе антигидратного реагента - аммиака по формуле:

Т2=α⋅Х22+β⋅Х2+γ=-937,69⋅0,22+28,37⋅0,2+268,27=236 К;

- начала кристаллизации воды в водном растворе ингибитора, состоящего из двух антигидратных реагентов - метанола и аммиака:

- начала гидратообразования в системе газ - водный раствор ингибитора по формуле:

Thn=Th-(Tw-Т)=272-(273-141)=140 К.

Критерий эффективности водного раствора ингибитора массовой концентрацией X=0,6, состоящего из двух антигидратных реагентов - метанола (Х1=0,4) и аммиака (Х2=0,2), при давлении Ph=2,3⋅106 Па составляет:

.

При условиях (Ph=4⋅106 Па, Th=278 К) новый ингибитор, состоящий из двух антигидратных реагентов, эффективнее ингибитора, приведенного в примере 3, в 1,74 раза.

Из вышеприведенного заявочного материала следует, что предлагаемым способом возможно определять эффективность ингибиторов, состоящих из одного или нескольких антигидратных реагентов, применяемых в гидратообразующих системах. Она рассчитывается, во-первых, по температуре начала гидратообразования в системе газ - водный раствор ингибитора и, во-вторых, по критериальной зависимости. Эти два параметра эффективности определяются в широком диапазоне термобарических условий и фазового состояния гидратообразующей системы.


Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Способ определения эффективности ингибиторов гидратообразования
Источник поступления информации: Роспатент

Showing 81-90 of 471 items.
25.08.2017
№217.015.bdf2

Способ производства сладости типа козинака

Изобретение относится к кондитерской промышленности, а именно к производству восточных сладостей. Предложен способ производства сладости типа козинака, включающий уваривание сахара-песка с водой до вязкотекучего состояния, внесение патоки, варку в течение 30-60 мин до получения карамельной...
Тип: Изобретение
Номер охранного документа: 0002616784
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bdf3

Начинка маковая для кондитерских изделий

Изобретение относится к пищевой промышленности и может быть использовано в качестве состава для приготовления начинки при производстве мучных кондитерских изделий. Начинка маковая для кондитерских изделий включает мак, сахар-песок, мед натуральный, смесь из протертых вяленых бананов и инжира,...
Тип: Изобретение
Номер охранного документа: 0002616783
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be04

Пищевая композиция для производства сдобного печенья

Изобретение относится к производству мучных кондитерских изделий. Пищевая композиция для производства сдобного печенья включает муку пшеничную, муку из хлопьев зародышей пшеницы ВИТАЗАР, взятую с мукой пшеничной в соотношении 1:6, воду в количестве, обеспечивающем влажность готового теста...
Тип: Изобретение
Номер охранного документа: 0002616804
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be06

Состав для производства крекера

Изобретение относится к кондитерской промышленности. Состав для производства крекера включает муку гречневую, муку каштановую, взятую в соотношении с мукой гречневой 1:2, порошок из плодов шиповника, дрожжи, безглютеновый заменитель яиц, пан-соль, масло кукурузное рафинированное, корректор муки...
Тип: Изобретение
Номер охранного документа: 0002616831
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be0f

Композиция для производства крекера функционального назначения

Изобретение относится к кондитерской промышленности, в частности к производству крекеров. Композиция для производства крекера функционального назначения включает муку пшеничную, сахар-песок, жидкую ржаную закваску, биокомплекс «Рекицен-РД», пан-соль и воду, в количестве, обеспечивающем...
Тип: Изобретение
Номер охранного документа: 0002616787
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be1c

Пищевая композиция для производства фитохлебцев

Изобретение относится к пищевой промышленности, в частности к производству вафельных хлебцев. Пищевая композиция для производства фитохлебцев включает пшеничную муку, яичный порошок, молочно-белковый наполнитель, растительный компонент, вкусовой компонент, соду пищевую, воду, жировой компонент,...
Тип: Изобретение
Номер охранного документа: 0002616790
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be24

Сдобное печенье функционального назначения

Изобретение относится к пищевой промышленности, в частности к производству мучных кондитерских изделий. Сдобное печенье функционального назначения включает в мас. %: смесь муки пшеничной и каштановой, взятых в соотношении 4:1 - 42-53, маргарин - 25-34, яичный порошок – 1,3-2,5, дрожжи...
Тип: Изобретение
Номер охранного документа: 0002616788
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be58

Функциональная композиция для производства конфет

Изобретение относится к области пищевой промышленности, в частности к кондитерской, и может быть использовано для производства сахаристых кондитерских изделий, предназначенных для лиц, в том числе занимающихся спортом и испытывающих невысокие силовые нагрузки. Функциональная композиция для...
Тип: Изобретение
Номер охранного документа: 0002616789
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be7f

Кондитерские сухие духи

Изобретение относится к кондитерской промышленности, а именно к вкусоароматическим добавкам, и может быть использовано в пряничном производстве. Кондитерские сухие духи включают: корицу - 15-17 мас.%; бадьян - 10-13 мас.%; орех мускатный - 2,5-3 мас.%; кардамон - 2,8-3,2 мас.%; цедру цидонии -...
Тип: Изобретение
Номер охранного документа: 0002616795
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be81

Вальцовый станок с межвальцовым устройством

Изобретение предназначено для измельчения продуктов растительного происхождения. Вальцовый станок содержит мелющие вальцы, межвальцовое устройство, выполненное в виде размещенной между мелющими вальцами пластины с шириной, равной длине мелющих вальцов. Пластина шарнирно закреплена в нижней...
Тип: Изобретение
Номер охранного документа: 0002616800
Дата охранного документа: 18.04.2017
Showing 21-27 of 27 items.
06.07.2019
№219.017.a837

Сепаратор для отделения жидкости из газового потока

Изобретение предназначено для сепарации жидкости из газового потока. Сепаратор включает цилиндрический корпус с вихревым устройством на входе, каплесъемником на выходе и телом вращения - вытеснителем между ними и каналы отбора жидкости. Вихревое устройство выполнено из осевого завихрителя и...
Тип: Изобретение
Номер охранного документа: 0002359737
Дата охранного документа: 27.06.2009
06.07.2019
№219.017.a83a

Газодинамический сепаратор

Изобретение относится к оборудованию для низкотемпературной обработки газов, например многокомпонентных природных и нефтяных углеводородных газов, может быть использовано для низкотемпературной подготовки, переработки, осушки, отбензинивания многокомпонентных углеводородных газов. Сепаратор...
Тип: Изобретение
Номер охранного документа: 0002353422
Дата охранного документа: 27.04.2009
06.07.2019
№219.017.a840

Способ газодинамической сепарации

Способ газодинамической сепарации относится к технике низкотемпературной обработки многокомпонентных углеводородных газов (природных и нефтяных), а именно для осушки газа путем конденсации из него водного и (или) углеводородных компонентов, и может быть использован в системах сбора, подготовки...
Тип: Изобретение
Номер охранного документа: 0002352878
Дата охранного документа: 20.04.2009
13.07.2019
№219.017.b341

Способ определения равновесных термобарических условий образования и диссоциации газовых гидратов

Изобретение относится к способам определения равновесных термобарических условий образования и диссоциации газовых гидратов, нахождение которых является важным при предотвращении образования и ликвидации техногенных гидратов, а также добычи газа на месторождениях природных гидратов....
Тип: Изобретение
Номер охранного документа: 0002694272
Дата охранного документа: 11.07.2019
13.12.2019
№219.017.eccf

Способ депрессионной добычи газа из гидратов

Изобретение относится к депрессионным методам добычи газа из гидратов и может быть применено при разработке природных гидратных месторождений на суше и в море. Техническим результатом является интенсификация добычи газа. Способ депрессионной добычи газа из гидратов, включает снижение давления,...
Тип: Изобретение
Номер охранного документа: 0002708771
Дата охранного документа: 11.12.2019
12.04.2023
№223.018.4367

Шарнир равных угловых скоростей

Изобретение относится к области машиностроения. Шарнир равных угловых скоростей содержит внешнюю и внутреннюю части шарнира, внутренняя часть шарнира представляет собой два стержня, сообщенных между собой посредством шарнирного соединения с выполненным на торце первого стержня сферическим...
Тип: Изобретение
Номер охранного документа: 0002793483
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.4966

Способ подготовки углеводородного газа

Изобретение относится к способам очистки добываемого углеводородного газа путем удаления из него водного компонента и может быть использовано при подготовке газа к транспорту. Способ подготовки углеводородного газа включает ввод жидкого ингибитора гидратообразования в поток подготавливаемого...
Тип: Изобретение
Номер охранного документа: 0002738791
Дата охранного документа: 16.12.2020
+ добавить свой РИД