×
10.05.2018
218.016.4d6f

Результат интеллектуальной деятельности: Погружная эжекционная установка

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазовой отрасли, в частности к скважинным струйным установкам, и предназначено для добычи пластовых флюидов из скважин с одновременным интенсифицирующим воздействием на прискважинную зону продуктивного пласта. Погружная эжекционная установка для добычи пластового флюида из скважины содержит установленный на внутренней колонне насосно-компрессорных труб (НКТ) эжекторный насос. При этом эжекторный насос включает корпус, в котором установлены соосно внутренней колонне (НКТ) сопло и камера смешения с диффузором, параллельно которой выполнены аксиальные каналы для подвода рабочего потока. При этом для подвода эжектируемого потока каналы в корпусе выполнены аксиальными, со стороны верхнего конца они сообщены с приемной камерой эжекторного насоса, а со стороны нижнего конца - со всасывающей полостью корпуса погружной эжекционной установки, в котором также расположена подвижная тарель. Тарель открывается при перепаде давления и выполняет функцию обратного клапана. При этом в качестве сопла используется сопло-кавитатор, состоящее из первого входного участка, выполненного в виде коноидального насадка для максимального значения коэффициента скорости и расхода движущейся жидкости, радиусом скругления, равным 2÷5 диаметрам наименьшего сечения (2÷5 d); второго цилиндрического участка диаметром d, длиной l=2÷3d; третьего конически расходящегося участка с углом раскрытия 1330' и длиной l=8÷12d. При этом кавитационный режим истечения в проточной части эжекторного насоса сводится к нахождению коэффициента эжекции, при котором возникает кавитация, по приведенному математическому выражению. Техническим результатом является повышение дебита скважины, увеличение коэффициента извлечения пластового флюида, возможность регулирования значения депрессии, снижение эксплуатационных затрат. 2 ил.

Изобретение относится к нефтегазовой отрасли, в частности к скважинным струйным установкам, и предназначено для добычи пластовых флюидов из скважин с одновременным интенсифицирующим воздействием на прискважинную зону продуктивного пласта.

Добыча пластового флюида с одновременным воздействием на прискважинную зону продуктивного пласта осуществляется путем совмещения технологий эжектирования флюида и обработки прискважинной зоны пласта виброимпульсным воздействием при организации кавитационного истечения в проточной части струйного насоса.

Известно устройство для добычи нефти (Патент №89605), включающее добычной насос, установленный в скважине на колонне насосно-компрессорных труб, при этом в качестве добычного насоса использован струйный насос, установленный в скважине на нижнем конце колонны насосно-компрессорных труб на глубине, обеспечивающей создание необходимой депрессии на пласт, и электронасос, установленный на устье скважины на верхнем конце колонны насосно-компрессорных труб для подачи жидкости в струйный насос. Реализация данного устройства обеспечивает качественное повышение дебита и коэффициента нефтеотдачи пласта.

Действительно, при добыче нефти предлагаемым устройством можно осуществлять регулирование депрессии, создаваемой струйным насосом, тем самым увеличивая дебит скважины. Но, в процессе длительной эксплуатации скважин и добычи нефти, отсутствует возможность интенсифицирующего воздействия на структуры пласта, в результате чего текущая добыча и коэффициент извлечения пластового флюида будут снижаться.

Наиболее близким по технической сущности является погружная эжекционная установка для очистки забоя скважин от песчанных пробок в условиях аномально низкого пластового давления (Патент №2563896). Устройство содержит установленные на колонне насосно-компрессорных труб (НКТ) эжекторный насос, включающий корпус, в котором установлены соосно внутренней колонне НКТ сопло и камера смешения с диффузором. В корпусе параллельно камере смешения выполнены осевые каналы для подвода рабочего потока и сообщенные с ними радиально расположенные поперечные боковые каналы для подвода эжектируемого потока. Со стороны верхнего конца осевые каналы сообщены с кольцевым пространством между внешней НКТ и внутренней НКТ, а со стороны нижнего конца - с рабочей камерой. В основании корпуса установлены опорная пята, сообщенная с соплом эжекторного насоса посредством подпружиненного толкателя с возможностью движения вверх и вниз под действием истекающей рабочей среды и функциональная вставка, внутри которой под углом 30° расположено не менее четырех генераторов кавитации. Повышается эффективность процесса разрушения песчаной пробки, снижается абразивное воздействие песчаной пульпы, создается более глубокая депрессия на пласт.

К недостаткам прототипа можно отнести отсутствие возможности воздействия на прискважинную зону продуктивного горизонта с целью интенсификации добычи пластового флюида, а также осуществление непосредственно процесса добычи пластового флюида.

Задачей настоящего изобретения является разработка погружной эжекционной установки для добычи пластовых флюидов из скважин, с одновременным осуществлением интенсифицирующего воздействия на прискважинную зону продуктивного пласта.

Техническим результатом является повышение дебита скважины, увеличение коэффициента извлечения пластового флюида, возможность регулирования значения депрессии, снижение эксплуатационных затрат.

Указанный технический результат достигается тем, что погружная эжекционная установка для добычи пластового флюида из скважины, содержащая установленный на внутренней колонне насосно-компрессорных труб эжекторный насос, включающий корпус, в котором установлены, соосно внутренней колонне насосно-компрессорных труб, сопло и камера смешения с диффузором, параллельно которой выполнены аксиальные каналы для подвода рабочего потока, отличается тем, что для подвода эжектируемого потока каналы в корпусе выполнены аксиальными, со стороны верхнего конца они сообщены с приемной камерой эжекторного насоса, а со стороны нижнего конца - со всасывающей полостью корпуса погружной эжекционной установки, в котором также расположена подвижная тарель, открывающаяся при перепаде давления и выполняющая функцию обратного клапана, при этом в качестве сопла используется сопло-кавитатор, состоящее из первого входного участка, выполненного в виде коноидального насадка для максимального значения коэффициента скорости и расхода движущейся жидкости, радиусом скругления, равным 2÷5 диаметрам наименьшего сечения (2÷5 d); второго цилиндрического участка диаметром d, длиной lц=2÷3d; третьего конически расходящегося участка с углом раскрытия 13°30' и длиной lд=8÷12d, при этом кавитационный режим истечения в проточной части эжекторного насоса сводится к нахождению коэффициента эжекции, при котором возникает кавитация

где ϕ1=0,95 коэффициент скорости потока в сопле-кавитаторе 12;

ϕ4=0,925 коэффициент скорости потока на ходе в камеру смешения 4;

dкc - диаметр камеры смешения 4;

dc - диаметр активного сопла-кавитатора 12;

Рр - давление рабочей жидкости перед входом в сопло-кавитатор 12;

Рк - абсолютное давление, при котором в жидкости возникает кавитация;

Рн - давление нагнетания жидкости на устье скважины поверхностным насосом.

Добыча пластового флюида погружной эжекционной установкой с одновременным воздействием на прискважинную зону продуктивного пласта осуществляется за счет организации кавитационного истечения в проточной части эжекторного насоса. При кавитационном истечении из сопла энергия упругих гидравлических колебаний, возникающих при схлопывании кавитационных каверн, переносится в пласт, при этом происходит дробление кольматанта (механического, химического или биологического), а за счет депрессии на пласт - его вынос из прискваженной зоны в ствол скважины, а затем с добываемой продукцией на дневную поверхность. Таким образом, происходит улучшение фильтрационных характеристик пласта и, тем самым, интенсификация добычи пластовых флюидов.

Генерирование кавитационного истечения в проточной части эжекторного насоса осуществляется за счет установки сопла-кавитатора и сводится к нахождению коэффициента эжекции эжекторного насоса, при котором возникает кавитация:

где ϕ1=0,95 коэффициент скорости потока в сопле-кавитаторе 12;

ϕ4=0,925 коэффициент скорости потока на ходе в камеру смешения 4;

dкс - диаметр камеры смешения 4;

dc - диаметр активного сопла-кавитатора 12;

Рр - давление рабочей жидкости перед входом в сопло-кавитатор 12;

Рк - абсолютное давление, при котором в жидкости возникает кавитация;

Рн - давление нагнетания жидкости на устье скважины поверхностным насосом

Величины Рр, Рк, можно найти по известным формулам гидравлики.

На фиг. 1 представлена погружная эжекционная установка, которая содержит установленные на внутренней колонне насосно-компрессорных труб (НКТ) 1 эжекторный насос 2, включающий корпус 5, в котором установлены соосно внутренней НКТ 1 сопло-кавитатор 12 и камера смешения 4 с диффузором 3. В верхней части корпуса 5 параллельно камере смешения 4 выполнены осевые каналы 11 для подвода рабочего потока, в средней части корпуса 5 выполнены осевые каналы 6 для подвода эжектированного потока из всасывающей полости 7, расположенной в нижней части корпуса 5, через всасывающий патрубок 8 с отверстиями в приемную камеру 10. Всасывающая полость 7 отделяется от всасывающего патрубка 8 подвижной тарелью 9.

Осевые каналы 11 для подвода рабочего потока со стороны верхнего конца сообщены с кольцевым пространством 13 между внешней НКТ 14 и внутренней НКТ 1, а со стороны нижнего конца - со средней полостью корпуса 5 для подвода активного потока на сопло-кавитатор 12.

Осевые каналы 6 для подвода эжектируемого потока со стороны верхнего конца сообщены с приемной камерой 10, а со стороны нижнего конца - со всасывающей полостью 7.

На фиг. 2 представлен общий вид сопла-кавитатора 6, проточная часть которого состоит из трех участков: первого входного, выполненного в виде коноидального насадка для максимального значения коэффициента скорости и расхода движущейся жидкости, радиусом скругления, равным 2÷5 диаметрам наименьшего сечения (2÷5 d); второго цилиндрического участка диаметром d длиной lц=2÷3d; третьего конически расходящегося участка с углом раскрытия 13°30' и длиной lд=8÷12d.

Способ работы погружной эжекционной установки для добычи пластового флюида из скважин заключается в следующем.

Погружную эжекционную установку спускают в скважину на двух колоннах коаксиально расположенных НКТ - внешней 14 и внутренней 1, вследствие того, что для работы эжекторного насоса 2 необходимо иметь два канала: один для подачи рабочей среды к соплу-кавитатору 12 эжекторного насоса 2 и второй для подъема эжектрируемого пластового флюида на поверхность.

Нагнетание рабочей жидкости в сопло-кавитатор 12 эжекторного насоса 2 осуществляют насосом, установленным на дневной поверхности (плунжерным или многоступенчатым центробежным). Рабочая жидкость по кольцевому пространству 13, образованному коаксиально расположенной сдвоенной колонной НКТ, поступает на осевые каналы подвода рабочего потока 11 и далее на прием сопла-кавитатора 12. За счет увеличения скорости при истечении жидкости из сопла-кавитатора 12, в приемной камере 10 создается зона пониженного давления, в результате чего подвижная тарель 9 поднимается вверх и пластовый флюид устремляется в отверстия всасывающего патрубка 8, затем в осевые каналы 6 для подвода эжекторного потока и в приемную камеру 10. В камере смешения 4 эжектируемый поток и рабочий поток смешиваются, поступают в диффузор 3 и затем по внутренней колонне НКТ 1 поступают на устье скважины. Происходит процесс добычи пластового флюида.

В случае периодической эксплуатации малодебитных скважин, когда подачу рабочего потока прекращают (при выключении поверхностного насоса) подвижная тарель 9 опускается, полностью запирает всасывающий патрубок 8, что препятствует обратным токам пластового флюида из внутренней колонны НКТ 1 в скважину и рабочего потока из кольцевого пространства 13 в скважину.

Для интенсифицирующей обработки продуктивного пласта вибрационным воздействием в проточной части эжекторного насоса 2 генерируется кавитационное истечение путем подбора геометрических параметров сопла-кавитатора 12, камеры смешения 4, и технологических параметров: коэффициента эжекции, давления закачивания и расхода рабочей жидкости поверхностным насосом расчетным путем.

При работе эжекторного насоса 2, при движении рабочего потока по соплу-кавитатору 12, поток с наименьшими гидравлическими сопротивлениями входит в первый участок (фиг. 2), во второй цилиндрической его части значение скорости жидкости наибольшее, а давления наименьшее, возникают кавитационные каверны, заполненные паром и газом, которые затем, в третьем конически расходящемся участке сопла-кавитатора 12, начинают расти и схлопываться. Процесс разрушения кавитационных каверн интенсивно продолжается в камере смешения 4 и заканчивается в диффузоре 3 эжекторного насоса 2 в области потока с низкими скоростями и высоким давлением. Тем самым происходит непрерывный процесс образования и схлопывания кавитационных каверн, сопровождающийся образованием гидравлических ударов.

Происходит процесс воздействия на структуры продуктивного пласта флюидом.

Для того, чтобы обеспечить кавитационный режим работы эжекторного насоса 2 в скважине, надо определить необходимое давление нагнетания рабочей жидкости на устье скважины Рн при следующих заданных параметрах: при известном низком значении величины пластового давления Рпл, глубины скважины Нскв, коэффициента продуктивности скважины Кпрод и дебита скважинной жидкости Qcкв.

Для указанных условий алгоритм проведения расчета кавитационного режима работы эжекторного насоса сводится к нахождению коэффициента эжекции, при котором возникает кавитация:

где ϕ1=0,95 коэффициент скорости потока в сопле-кавитаторе 12;

ϕ4=0,925 коэффициент скорости потока на ходе в камеру смешения 4;

dкс - диаметр камеры смешения 4;

dc- диаметр активного сопла-кавитатора 12;

Рр - давление рабочей жидкости перед входом в сопло-кавитатор 12;

Рк - абсолютное давление, при котором в жидкости возникает кавитация;

Рн - давление нагнетания жидкости на устье скважины поверхностным насосом

Величины Рр, Рк, можно найти по известным формулам гидравлики.

При осуществлении данного способа предлагается оптимизация работы добывающих скважин путем воздействия на прискважинную зону продуктивного пласта в процессе добычи флюида. Увеличение коэффициента извлечения пластового флюида осуществляется за счет виброимпульсного воздействия на прискважинную зону продуктивного пласта, возникающего при организации кавитационного истечения в проточной части эжекторного насоса. Данный способ технически легко реализуем, менее материалозатратен по сравнению с существующими аналогом и прототипом и позволяет эксплуатировать скважины в осложненных условиях, таких как высокий газовый фактор, пескование скважины.


Погружная эжекционная установка
Погружная эжекционная установка
Погружная эжекционная установка
Погружная эжекционная установка
Источник поступления информации: Роспатент

Showing 411-420 of 471 items.
03.07.2020
№220.018.2dca

Устройство для определения места повреждения кабеля

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения на кабельных линиях электропередачи и связи. Устройство для определения места повреждения кабеля содержит импульсный измеритель, радиотелефон, источник радиоактивного излучения, установленный в...
Тип: Изобретение
Номер охранного документа: 0002725168
Дата охранного документа: 30.06.2020
06.07.2020
№220.018.2f97

Способ производства шоколадного батончика

Изобретение относится к кондитерской промышленности. Способ получения шоколадного батончика предусматривает введение просеянного какао-порошка в нагретое до температуры 40-42°C масло какао, перемешивание полученной смеси до однородной консистенции, добавление свежих подготовленных ягод...
Тип: Изобретение
Номер охранного документа: 0002725734
Дата охранного документа: 03.07.2020
06.07.2020
№220.018.2f9a

Способ получения функционализированной минералами структурированной воды

Изобретение относится к пищевой и фармацевтической промышленности. Предложен способ получения обогащенной минералами питьевой воды, предусматривающий добавление к воде обогащающих водорастворимых макро- и микроэлементов, при этом в качестве воды используют артезианскую, или талую, или...
Тип: Изобретение
Номер охранного документа: 0002725736
Дата охранного документа: 03.07.2020
06.07.2020
№220.018.2fc0

Способ получения обогащенного топленого сливочного масла

Изобретение относится пищевой промышленности, в частности к молочной. Способ получения обогащенного топленого сливочного масла предусматривает вытапливание сливочного масла при температуре 40-45°С, его кипячение на водяной бане с последующим удалением вручную денатурированного белка и воды с...
Тип: Изобретение
Номер охранного документа: 0002725735
Дата охранного документа: 03.07.2020
07.07.2020
№220.018.3060

Способ повышения прочности детали с покрытием

Изобретение относится к способу повышения прочности детали с покрытием. Осуществляют поверхностно-пластическое деформирование путем обкатки деформирующим элементом с последующим упрочнением покрытия ультразвуковой обработкой упрочняющим элементом. Одновременно с ультразвуковой обработкой...
Тип: Изобретение
Номер охранного документа: 0002725786
Дата охранного документа: 06.07.2020
11.07.2020
№220.018.3170

Способ разработки залежи и добычи битуминозной нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение нефтеотдачи за счет снижения вязкости битуминозной нефти и уменьшения предельного градиента давления. В способе разработки залежей битуминозной нефти осуществляют нагрев пласта электрическим проводником с...
Тип: Изобретение
Номер охранного документа: 0002726090
Дата охранного документа: 09.07.2020
11.07.2020
№220.018.3173

Способ гидродинамического воздействия на пласт и устройство для его осуществления

Изобретение относится к области эксплуатации скважин, в частности обработке и освоения при их сооружении или ремонте и может быть использовано для повышения эффективности добычи трудноизвлекаемых запасов углеводородов в сложных геолого-технологических условиях. Способ гидродинамического...
Тип: Изобретение
Номер охранного документа: 0002726087
Дата охранного документа: 09.07.2020
16.07.2020
№220.018.3323

Способ хранения плодов

Изобретение относится к технологии хранения растениеводческой продукции и может быть использовано при длительном хранении яблок и груш. Способ хранения плодов включает обработку плодового сырья электромагнитным полем низкой частоты. При этом перед обработкой электромагнитным полем низкой...
Тип: Изобретение
Номер охранного документа: 0002726434
Дата охранного документа: 14.07.2020
18.07.2020
№220.018.33de

Способ согласования магнитопроводов ротора и якоря в двухмерных электрических машинах-генераторах

Изобретение относится к электромашиностроению. Технический результат - минимизация вероятности заклинивания магнитопровода внутреннего якоря в магнитопроводе внешнего ротора двухмерных электрических машин-генераторов (ДЭМ-Г). Особенностью заявленного способа согласования магнитопроводов ротора...
Тип: Изобретение
Номер охранного документа: 0002726867
Дата охранного документа: 16.07.2020
18.07.2020
№220.018.343d

Установка для конвективной сушки семян тыквы

Установка предназначена для сушки семян бахчевых культур и может быть использована на предприятиях пищевой отрасли. Установка для конвективной сушки семян тыквы состоит из оснащенной патрубками для загрузки и выгрузки семян тыквы сушильной камеры, внутри которой расположены наклонное...
Тип: Изобретение
Номер охранного документа: 0002726666
Дата охранного документа: 15.07.2020
Showing 11-11 of 11 items.
01.06.2023
№223.018.74e2

Способ промывки скважины от глинисто-песчаной или проппантовой пробки

Изобретение относится к нефтегазодобывающей промышленности, а именно промывке скважины от уплотненной глинисто-песчаной или проппантовой пробки. Способ включает спуск в скважину на колонне насосно-компрессорных труб устройства выше пробки, нагнетание промывочной жидкости с подъемом жидкости...
Тип: Изобретение
Номер охранного документа: 0002796409
Дата охранного документа: 23.05.2023
+ добавить свой РИД