×
10.05.2018
218.016.441b

Способ гидроочистки сырья гидрокрекинга

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам получения сырья гидрокрекинга. Описан способ гидроочистки, заключающийся в превращении нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч, объемном отношении водород/сырье 800-2000 нм/м в присутствии гетерогенного катализатора, содержащего, мас. %: [Ni(HO)][MoO(CHO)] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия АlВО со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-АlО - остальное. Входящий в состав катализатора борат алюминия АlВО со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, а бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см в ИК-спектрах. Катализатор содержит сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), и имеет удельную поверхность 130-180 м/г, объем пор 0,35-0,65 см/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника. Технический результат - получение сырья гидрокрекинга с низким содержанием серы и азота при гидроочистке нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота. 5 з.п. ф-лы, 2 табл., 7 пр.
Реферат Свернуть Развернуть

Изобретение относится к способам гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга.

Современные процессы гидрокрекинга, как правило, включают несколько последовательных стадий, на первой из которых осуществляется предварительная гидроочистка фракций с температурой начала кипения выше 360°С с получением сырья с пониженным содержанием серы, азота и полициклических ароматических соединений. Необходимость максимально возможного снижения содержания этих компонентов в сырье обусловлена тем, что они являются каталитическими ядами для катализаторов последующих стадий. Далее такое гидроочищенное сырье подается на гидрокрекинг, проводящийся на цеолитсодержащих катализаторах. Наиболее типичные примеры многостадийных процессов описаны в патентах [пат. РФ №2470989, 27.11.2011; пат. РФ №2565669, 20.10.2015; пат. РФ №2595041, 20.08.2016].

Основным недостатком описанных способов гидрокрекинга являются относительно низкие выходы получаемых продуктов, обусловленные быстрым отравлением катализаторов гидрокрекинга соединениями серы и азота вследствие недостаточно полного удаления этих соединений из сырья на стадии предварительной гидроочистки. В связи с этим разработка новых каталитических способов предварительной гидроочистки сырья гидрокрекинга является чрезвычайно важной и актуальной задачей.

Существующие заводские установки гидроочистки работают в достаточно узком интервале температур, расходов и давлений. Так для глубокой гидроочистки типичного сырья гидрокрекинга - нефтяных фракций с началом кипения 360°С - используется давление 4,5-9,0 МПа, расход сырья 1,0-1,5 ч-1, объемное отношение водород/сырье 400-600 нм33. Стартовая температура процесса гидроочистки не может выбираться в широких пределах и должна быть как можно ниже, поскольку от нее зависит скорость дезактивации и межрегенерационный пробег катализатора. Таким образом, основным инструментом, который позволяет изменять количество серы в получаемых продуктах без существенных изменений условий процесса гидроочистки и реконструкции установок, являются характеристики используемых катализаторов, из которых наиболее важной является каталитическая активность.

Чаще всего процессы гидроочистки нефтяного сырья проводят в присутствии катализаторов, содержащих оксиды кобальта и молибдена, нанесенные на оксид алюминия. Так, известен способ каталитической гидроочистки нефтяного сырья [РФ 2192923, B01J 27/188, C10G 45/08, 20.10.2002]. Процесс проводят при 200-480°С при давлении 0,5-20 МПа при расходе сырья 0,05-20 ч-1 и расходе водорода 100-3000 л/л сырья, при этом используют катализатор на основе оксида алюминия, который содержит в пересчете на содержание оксида, мас. %: 2-10 оксида кобальта СоО, 10-30 оксида молибдена МoО3 и 4-10 оксида фосфора Р2О5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.

Известен процесс гидроочистки тяжелого нефтяного сырья [заявка США №2014315712, B01J 21/04; B01J 23/85; B01J 23/883; 23.10.2014], согласно которому гидроочистку тяжелого углеводородного сырья проводят с использованием катализатора гидрообработки, имеющего специфические свойства, которые делают его эффективным при удалении азота и серы из исходного сырья. Катализатор состоит из носителя, представляющего собой частицы оксида алюминия, имеющего специфическое распределение пор по диаметру, которое достигается за счет использования псевдобемита в качестве исходного компонента и конкретных температур прокалки. Катализатор гидроочистки также содержит металл из 6 группы Периодической системы (например, молибден), металл из группы 8 (например, никель) и фосфор, которые нанесены на поверхность частиц оксида алюминия.

Известен способ гидроочистки газойля [пат. США №7618916, B01J 31/34, C10G 45/04, B01J 31/04; 17.11.2009], согласно которому гидроочистку проводят при парциальном давлении водорода от 3 до 8 МПа, температуре от 300 до 420°С, объемном расходе сырья от 0.3 до 5 ч-1 в присутствии катализатора, который включает в себя нанесенный на неорганический оксидный носитель как минимум один элемент, выбранный из металлов 6 группы Периодической таблицы с концентрацией от 10 до 40 мас. %, как минимум, один элемент, выбранный из металлов 8 группы Периодической таблицы с концентрацией от 1 до 15 мас. %, от 1,5 до 8 мас. % фосфора в пересчете на оксид, и от 2 до 14 мас. % углерода, при этом катализатор имеет удельную площадь поверхности от 150 до 300 м2/г, объем пор от 0,3 до 0,6 мл/г и средний диаметр пор от 65 до 140 Å.

Известен процесс гидроочистки углеводородного сырья [РФ №2402380, B01J 21/02, C10G 45/08, 27.10.2010], заключающийся в превращении нефтяных дистиллятов с высоким содержанием серы при температуре 320-400°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч-1, объемном отношении водород/сырье 100-1000 м33 в присутствии гетерогенного катализатора, содержащего биметаллическое комплексное соединение [М(H2O)х(L)у]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6H6O7; х=0 или 2; у=0 или 1; М - Со2+ и/или Ni2, в количестве 30-45 мас. %, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 14,0-23,0; СоО и/или NiO - 3,6-6,0; B2O3 - 0,6-2,6, Al2O3 - остальное, и имеющего объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм.

Основным недостатком вышеописанных способов проведения процесса гидроочистки является высокое содержание серы и азота в получаемых продуктах.

Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому способу получения малосернистого сырья гидрокрекинга является способ гидроочистки углеводородного сырья, описанный в пат. РФ №2626401, C10G 45/08, B01J 23/882, 09.11.2016, согласно которому гидроочистку вакуумного газойля проводят при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм33 в присутствии гетерогенного катализатора, содержащего, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; что после сульфидирования по известным методикам соответствует содержанию, мас. %: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Используемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Общим недостатком для прототипа и всех вышеперечисленных процессов гидроочистки является высокое остаточное содержание серы и азота в гидроочищенных продуктах.

Предлагаемое изобретение решает задачу создания эффективного способа получения сырья гидрокрекинга.

Технический результат - получение сырья гидрокрекинга с низким содержанием серы и азота при гидроочистке нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота.

Задача решается способом гидроочистки сырья гидрокрекинга, заключающимся в проведении гидроочистки нефтяных фракций, имеющих температуру начала кипения выше 360°С, при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм33 в присутствии гетерогенного катализатора, содержащего мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, а бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Используемый катализатор содержит сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), и имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

В качестве исходного сырья используют прямогонные и смесевые нефтяные фракции, имеющие температуру начала кипения выше 360°С, содержащие до 3,5% серы и 0,2% азота.

Основным отличительным признаком предлагаемого способа гидроочистки сырья гидрокрекинга по сравнению с прототипом является то, что процесс гидроочистки нефтяных фракций, имеющих температуру начала кипения выше 360°С, проводят при температуре 360-420°С, давлении 9,0-20,0 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм33 в присутствии катализатора, который содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; бор в форме поверхностных соединений - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Такой химический состав катализатора обеспечивает его максимальную активность в реакциях обессеривания и деазотирования.

Вторым отличительным признаком предлагаемого способа гидроочистки сырья гидрокрекинга является то, что используемый катализатор содержит бор в форме двух различных типов химических соединений: входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, и бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Наличие в катализаторе бората алюминия Al3BO6 способствует достижению текстурных характеристик катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту. Наличие в катализаторе поверхностных соединений бора способствует повышению дисперсности активного компонента, что обеспечивает увеличение активности в реакциях обессеривания и деазотирования.

Третьим отличительным признаком предлагаемого способа по сравнению с прототипом является то, что поверхностные соединения бора обеспечивают повышение кислотности катализатора за счет образования сильных бренстедовских кислотных центров, определенных методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовских кислотных центров средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль). Такие кислотные центры обеспечивают снижение содержания азота в продуктах гидроочистки.

Технический эффект предлагаемого способа гидроочистки сырья гидрокрекинга складывается из следующих составляющих:

1. Проведение гидроочистки в присутствии катализатора, в составе которого одновременно содержатся два различных типа соединений бора: борат алюминия Al3BO6 со структурой норбергита и поверхностные соединения бора, характеризующиеся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Борат алюминия Al3BO6, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, входит в состав носителя и способствует достижению текстурных характеристик носителя и катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту. Поверхностные соединения бора способствуют повышению дисперсности частиц активного компонента и ослаблению его связи с носителем, что обеспечивает повышение активности в целевых реакциях гидроочистки.

2. Проведение гидроочистки углеводородного сырья в присутствии катализатора, содержащего сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), обеспечивает максимальное удаление из сырья соединений азота, что приводит к увеличению степени обессеривания.

3. Наличие в составе катализатора биметаллических комплексных соединений [Ni(H2O)2]2[Mo4O11(C6H5O7)2] обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидроочистке, наиболее активного компонента - NiMoS фазы типа II в форме частиц оптимальной для катализа морфологии, локализованных в порах, доступных для всех подлежащих превращению молекул, входящих в нефтяные фракции с температурой начала кипения выше 360°С.

4. Использование в процессе гидроочистки улучшенного катализатора позволяет получать нефтепродукты с пониженным содержанием серы и азота по сравнению с прототипом.

Описание предлагаемого технического решения

Гидроочистку нефтяных фракций, имеющих температуру начала кипения выше 360°С, проводят при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм33 в присутствии гетерогенного катализатора, содержащего, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, а бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Используемый катализатор содержит сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), и имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Согласно известному решению [патент РФ №2626401]

Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм. Сформованные гранулы сушат при температуре 120°С и прокаливают при температуре 550°С. В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4Н2О и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 20°С в течение 60 мин. Затем катализатор сушат на воздухе при 100°С.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.

Далее проводят запись ИК-спектров, которые регистрировали на спектрометре Shimadzu FTIR-8300 в спектральном диапазоне 700-6000 см-1 с разрешением 4 см-1, проводили 300 сканов для накопления сигнала. Данные ИК-спектроскопии приведены в таблице 1.

Снимки ПЭМВР были получены на электронном микроскопе JEM-2010 (JEOL, Япония) с разрешающей способностью решетки 0,14 нм при ускоряющем напряжении 200 кВ. По данным ПЭМВР в составе катализатора присутствуют частицы бората алюминия Al3BO6 со структурой норбергита с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.

Катализатор сульфидируют прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300 по следующей программе:

- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течение 2 ч;

- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

- подача сульфидирующей смеси и увеличение температуры до 240°С со скоростью подъема температуры 25°С/ч;

- сульфидирование при температуре 240°С в течение 8 ч (низкотемпературная стадия);

- увеличение температуры реактора до 340°С со скоростью подъема температуры 25°С/ч;

- сульфидирование проводят при температуре 340°С в течение 8 ч.

В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга по варианту 1. В качестве сырья используют вакуумный газойль, имеющий интервал кипения 360-570°С, содержащий 0,95% серы и 0,16% азота. Гидроочистку проводят при давлении 16,0 МПа, объемном расходе сырья 0,75 ч-1, объемном отношении водород/сырье 1000 нм33, температуре 380°С.

Также проводят гидроочистку сырья гидрокрекинга по варианту 2. В качестве сырья используют вакуумный газойль, имеющий интервал кипения 360-570°С, содержащий 3,5% серы и 0,2% азота. Гидроочистку проводят при давлении 10,0 МПа, расходе сырья 0,7 ч-1, объемном отношении водород/сырье 1200 нм33, температуре 380°С.

Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.

Примеры 2-7 иллюстрируют предлагаемое техническое решение.

Пример 2

Сначала готовят борсодержащий носитель аналогично примеру 1. В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7, 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее температуру раствора поднимают до 90°С и растворяют в нем 44,63 г борной кислоты H3BO3. После полного растворения всех компонентов добавлением нагретой до 90°С дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты при 90°С в течение 60 минут. Затем катализатор сушат на воздухе при 100°С.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.

Пример 3

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 5,98 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

100 г полученного носителя пропитывают при 70°С по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты из примера 2. Затем катализатор сушат на воздухе при 100°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.

Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.

Пример 4

Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 14,63 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.

В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании и нагревании до 70°С последовательно растворяют 48,91 г лимонной кислоты С6Н8О7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4Н2О и 31,4 г основного карбоната никеля NiCO3⋅mNi(ОН)2⋅nH2O. Далее к раствору добавляют 11,15 г борной кислоты Н3ВО3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя пропитывают по влагоемкости 67 мл раствора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 0,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 0,5; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.

Пример 5

Готовят носитель так же, как в примере 3.

Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 42,23 г лимонной кислоты C6H8O7; 77,58 г парамолибдата аммония (NH4)6Mo7O24×4Н2О и 27,1 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3.

После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя при комнатной температуре пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас. %: [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] - 29,3; бор в форме поверхностных соединений - 0,8; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,65 см3/г, средний диаметр пор 15 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 10,0; Ni - 3,0; S - 6,7; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.

Пример 6

Готовят носитель так же, как в примере 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга диаметром 1,0 мм.

Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при нагревании до 80°С и перемешивании последовательно растворяют 56,9 г лимонной кислоты C6H8O7; 104,53 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 36,5 г основного карбоната никеля NiCO3⋅mNi(ОН)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 80°С, в колбу приливают 200 мл раствора биметаллического комплексного соединения [Ni(Н2О)2]2[Mo4O11(C6H5O7]2], также нагретого до 80°С. Пропитку продолжают в течение 20 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас. %: [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] - 35,8; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 130 м2/г, объем пор 0,35 см3/г, средний диаметр пор 10 нм и представляет собой частицы с сечением в виде круга с диаметром 1,0 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Мо - 14,0; Ni - 4,3; S - 9,4; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.

Пример 7

Готовят носитель так же, как в примере 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника диаметром 1,6 мм.

Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 30°С, в колбу приливают 133 мл раствора биметаллического комплексного соединения [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] и борной кислоты из примера 5, также нагретого до 30°С. Пропитку продолжают в течение 60 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.

Полученный катализатор содержит, мас. %: [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] - 30,6%; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Катализатор имеет удельную поверхность 175 м2/г, объем пор 0,6 см3/г, средний диаметр пор 14 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК -спектрах.

Далее катализатор сульфидируют аналогично примеру 1.

В результате получают катализатор, который содержит, мас. %: Mo - 11,7; Ni - 3,6; S - 7,9; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.

Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.

Таким образом, как видно из приведенных примеров, предлагаемый способ гидроочистки сырья каталитического крекинга позволяет достичь значительно меньшего остаточного содержания серы и азота в продуктах гидроочистки по сравнению с прототипом.

Источник поступления информации: Роспатент

Showing 1-10 of 60 items.
20.06.2013
№216.012.4c2f

Способ получения стирола

Изобретение относится к способу получения стирола каталитическим превращением соответствующего ацетофенона в реакторе проточного типа. Способ характеризуется тем, что процесс осуществляют в сверхкритическом двухкомпонентном растворителе с использованием гетерогенного гранулированного...
Тип: Изобретение
Номер охранного документа: 0002485085
Дата охранного документа: 20.06.2013
20.07.2013
№216.012.56ec

Способ получения 1-фенилэтанола и паразамещенных 1-фенилэтанола

Изобретение относится к способу получения 1-фенилэтанола или пара-замещенного 1-фенилэтанола, который применяют в качестве промежуточных соединений в различных областях органической химии. Способ заключается в каталитическом восстановлении замещенных ацетофенонов в реакторе проточного типа в...
Тип: Изобретение
Номер охранного документа: 0002487860
Дата охранного документа: 20.07.2013
27.10.2013
№216.012.78c4

Катализатор для термохимической рекуперации тепла в гибридной силовой установке

Изобретение относится к разработке катализаторов для осуществления термохимической конверсии углеводородных и кислородсодержащих топлив за счет тепла отходящих газов двигателей внутреннего сгорания, являющихся составной частью гибридных силовых установок. Описан катализатор для термической...
Тип: Изобретение
Номер охранного документа: 0002496578
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79f0

Нанокомпозит с активным лигандом, способ его приготовления и способ адресной инактивации вируса гриппа внутри клетки

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Заявляемые нанокомпозиты предназначены для направленного воздействия на генетический материал внутри клетки и подавления его дальнейшего функционирования. Нанокомпозиты, состоящие из наночастиц диоксида...
Тип: Изобретение
Номер охранного документа: 0002496878
Дата охранного документа: 27.10.2013
10.07.2014
№216.012.dd50

Способ получения 1,5,8-пара-ментатриена

Изобретение относится к способу получения 1,5,8-n-ментатриена в реакциях превращения карвона или карвеола в присутствии катализатора. Способ характеризуется тем, что реакцию превращения карвона или карвеола осуществляют в сверхкритическом двухкомпонентном растворителе, который включает в себя...
Тип: Изобретение
Номер охранного документа: 0002522434
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.f000

Катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса

Изобретение относится к катализаторам, используемым для получения элементарной серы по процессу Клауса. Предлагаемый катализатор получения элементарной серы по процессу Клауса на основе оксида алюминия представляет собой смесь χ-, γ-AlO и рентгеноаморфной фазы оксида алюминия в следующем...
Тип: Изобретение
Номер охранного документа: 0002527259
Дата охранного документа: 27.08.2014
10.10.2014
№216.012.fa9b

Платиновый катализатор, способ его приготовления, способ его регенерации и способ получения сульфата гидроксиламина

Изобретение относится к катализаторам для получения сульфата гидроксиламина путем селективного гидрирования оксида азота в сернокислой среде. Данный катализатор содержит платину в количестве 0,3-1 мас.%, нанесенную на непористый или пористый углеродный носитель. При этом нанесенная платина...
Тип: Изобретение
Номер охранного документа: 0002530001
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.0209

Способ получения галогензамещенных ароматических амиов

Изобретение относится к новому способу получения галогензамещенных ароматических аминов. Способ заключается в гидрировании галогензамещенных ароматических нитросоединений в среде изопропанола в присутствии оксида алюминия в качестве гетерогенного катализатора. Процесс осуществляют при подаче...
Тип: Изобретение
Номер охранного документа: 0002531919
Дата охранного документа: 27.10.2014
27.04.2015
№216.013.46c2

Способ получения ароматических диаминов, триаминов из ароматических нитросоединений

Изобретение относится к новому способу получения ароматических диаминов и триаминов, которые используются в качестве промежуточных продуктов для синтеза полимеров, пигментов, пестицидов, красителей, лекарственных препаратов. Способ заключается в восстановлении соответствующих ароматических ди-...
Тип: Изобретение
Номер охранного документа: 0002549618
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.47df

Способ приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза

Изобретение относится к способу приготовления нанесенных катализаторов методом импульсного поверхностного термосинтеза активного компонента из предшественников, представляющих собой взаимодействующие при повышенной температуре окислители и восстановители, находящиеся либо в разных соединениях,...
Тип: Изобретение
Номер охранного документа: 0002549906
Дата охранного документа: 10.05.2015
Showing 1-10 of 112 items.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
10.02.2013
№216.012.230c

Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(СНО)][МоО(СНО)] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, AlO -...
Тип: Изобретение
Номер охранного документа: 0002474474
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.3255

Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы. Описан катализатор, содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002478428
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
10.10.2014
№216.012.fa9b

Платиновый катализатор, способ его приготовления, способ его регенерации и способ получения сульфата гидроксиламина

Изобретение относится к катализаторам для получения сульфата гидроксиламина путем селективного гидрирования оксида азота в сернокислой среде. Данный катализатор содержит платину в количестве 0,3-1 мас.%, нанесенную на непористый или пористый углеродный носитель. При этом нанесенная платина...
Тип: Изобретение
Номер охранного документа: 0002530001
Дата охранного документа: 10.10.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfd

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534998
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfe

Способ гидроочистки углеводородного сырья

Изобретение относится к способу гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Изобретение касается способа гидроочистки, в котором осуществляют превращение углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа,...
Тип: Изобретение
Номер охранного документа: 0002534999
Дата охранного документа: 10.12.2014
+ добавить свой РИД