×
10.05.2018
218.016.4358

Результат интеллектуальной деятельности: Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с. Затем проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 минут до 10 минут при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин. Способ обеспечивает получение чистой гидрофильной поверхности подложек ситалла без загрязнений в виде отдельных частиц или в виде пленки. 3 з.п. ф-лы, 1 табл.

Изобретение относится к плазменной технологии и может использоваться для очистки подложек из ситалла, которые в дальнейшем применяются для изготовления различных элементов и устройств микроэлектроники.

Заявленное изобретение относится к области плазменной очистки в высокочастотной (ВЧ) плазме пониженного давления подложек из ситалла. Этот материал, прошедший обработку, широко используются для изготовления различных микроэлектронных элементов и устройств, применяемых в ракетно-космическом и наземном приборостроении. К изделиям из ситалла предъявляются высокие требования к чистоте поверхности перед выполнением дальнейших технологических операций.

Подложки ситалла проходят достаточно сложный технологический цикл, связанный с нарезанием материала на отдельные пластины, шлифованием и полированием пластин и очисткой их поверхности. Для очистки поверхности подложки после финишной полировки применяют методы химической и плазмохимического травления, гидромеханической отмывки и вакуум-термической обработки. Однако каждый из методов в отдельности имеет свои недостатки и не обеспечивают чистоту поверхности подложек, требуемую при выполнении дальнейших технологических процессов.

Известны различные способы химической очистки поверхности полупроводниковых пластин и диэлектриков (поликристаллический корунд, ситалл, кварц, сапфир и т.п.) (RU 2395135, заявка 2009105201/28, 16.02.2009, опубл. 20.07.2010; SU 17747469, заявка 4851538, 16.07.1990, опубл. 15.07.1992). Недостатком химических способов очистки является невозможность получения чистой гидрофильной поверхности без загрязнений, образование тонкой пленки на поверхности обработанных подложек, предварительно прошедших операцию финишной полировки; необходимость промывки и сушки (отжига) подложек после химической очистки; длительность процесса, высокая стоимость химических реактивов.

Наиболее близким способом к предлагаемому способу и принятому за прототип является способ плазмохимической обработки подложек из сапфира и ситалла (RU 2541436, заявка 2013150231/28, 11.11.2013, опубл. 10.02.2015). По данному способу после предварительной протирки изделий спиртом со всех сторон, включая протирку спиртом всех торцов подложки, производят предварительный обдув изделий нейтральным газом и помещают изделия в камеру плазменной установки в межэлектродное пространство взаимно перпендикулярно и параллельно стенкам рабочей камеры. Затем производят очистку изделий в ВЧ-разряде в среде доминирования кислорода при мощности 500-600 Вт, давлении 106,67-120,99 Па в течение 10-20 мин. Проверка качества обработки поверхности проводится по свидетелю методом краевого угла смачивания по окончании очистки. По данному способу в качестве рабочего газа может использоваться смесь кислорода с азотом (80-85% O2, 15-20% N2).

Недостатками данного способа является следующее. Предварительный обдув изделий нейтральным газом не устраняет полностью на поверхности ситалловой подложки остатки органики, пыли, масляных пленок, других загрязнений. Резкое плазменное воздействие на поверхность подложки уже на начальной стадии обработки мощностью 500-600 Вт на такую поверхность приводит к образованию на подложке тонкой (1-50 нм) пленки, заметной при исследованиях поверхности методами атомсиловой микроскопии. Дальнейшая обработка подложки в указанных диапазонах мощностей и давлений может повышать адгезионную прочность этой пленки к поверхности подложки, что ухудшает характеристики ситалловой подложки в дальнейших технологических операциях. Использование в плазменной очистке смеси кислород-азот (80-85% O2, 15-20% N2) также приводит к образованию на активированной плазмой поверхности оксидных или нитридных соединений и тонких пленок с высокой адгезией к поверхности ситалла, что ухудшает технические характеристики в конечных изделиях. В случае использования неизолированных электродов ВЧ плазменной системы возможна эрозия материала электрода на ситалловую подложку.

Задачей предлагаемого способа обработки подложек из ситалла в струе высокочастотной плазмы пониженного давления является получение чистой гидрофильной поверхности подложки ситалла без видимых следов загрязнений в виде отдельных частиц или в виде пленки.

Поставленная задача решается за счет того, что после промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с, затем проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 мин до 10 мин при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин. В качестве технологического газа используется Ar или смесь Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 при частоте высокочастотного генератора от 1,76 МГц до 13,56 МГц.

Улучшение качества обработки подложки достигается очисткой поверхности от остатков материалов финишной полировки после химической очистки, удаления остатков реактивов и образовавшихся химических соединений после химической очистки; приданием поверхности гидрофильных свойств. Гарантированная повторяемость процесса достигается установленными диапазонами оптимальной очистки поверхности подложки ситалла (мощности струи высокочастотной плазмы, плотности теплового потока на поверхность подложки ситалла, расхода технологического газа, давления процесса, времени очистки, места расположения подложки). Повышение выхода годной продукции обеспечивается уровнем современной техники, позволяющей поддерживать с высокой точностью установленные параметры разряда в режимах оптимальной обработки подложек ситалла. Снижение себестоимости выпускаемой продукции обеспечивается одновременной обработкой промышленной партии подложек, сокращением времени обработки подложек и неограниченным ресурсом высокочастотных (ВЧ) плазмотронов.

Пример реализации предлагаемого способа.

Подложки из ситалла, прошедшие финишную полировку и химическую очистку любым известным способом, промываются деионизованной водой и размещаются в кварцевых кассетах. Кварцевые кассеты с подложками размещаются на карусельном устройстве в вакуумном блоке установки с высокочастотным струйным плазмотроном на расстоянии от среза плазмотрона L от 60 мм до 120 мм. Проводится откачка вакуумного блока до предварительного давления (p) от 1,0 Па до 2,0 Па. Включением высокочастотного генератора в диапазоне частот от 1,76 МГц до 13,36 МГц при мощности генератора Рвчг от 100 Вт до 120 Вт в плазмотроне возбуждается ВЧ-разряд. Способ реализуется на разрешенных частотах для плазменных генераторов 1,76 МГц, 5,28 МГц и 13,56 МГц. При увеличении мощности генератора (Рвчг) свыше 1000 Вт и расхода технологического газа (G) свыше 0,04 г/с, образуется струя плазмы, которая воздействует на поверхность подложки. Увеличением расхода технологического газа от 0,05 г/с до 0.06 г/с при мощности генератора 1500 Вт происходит плавный нагрев подложки в течение от 1 мин до 2 мин, и частичное обезгаживание ситалла, удаление легколетучих органических соединений с поверхности подложки. После плавного нагрева подложки в течение от 5 мин до 10 мин проводится очистка поверхности подложки ситалла при расходе газа 0,06-0,08 г/с при давлении в вакуумном блоке от 19 Па до 26,6 Па. После обработки расход газа плавно уменьшается до 0,04 г/с течение 1 мин для избежания резкого термодинамического удара. По завершении очистки карусельным устройством обработанная подложка выводится из зоны обработки (из струи плазмы), а в рабочую зону перемещается следующая подложка. После обработки последней загруженной в карусельное устройство подложки проводится остужение подложек в вакууме в течение 5-10 мин, затем извлечение обработанной партии из вакуумного блока. В вакуумном блоке возможно расположить более десяти подложек для обработки в едином технологическом цикле.

Оптимально время обработки одной подложки составляет 5-10 мин. При использовании смеси газа Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 оптимальное время составляет от 3 до 5 мин. При обработке в течение менее 3-х мин эффект очистки не наблюдается. Дальнейшее увеличение времени обработки свыше 5 мин заметной разницы по качеству очищаемой поверхности не дает.

Контроль качества очистки проводится по измерению краевого угла смачиваемости α. Измерение α проводится по растеканию капли дионизованной воды на поверхности подложки и вычислению угла между поверхностью подложки и касательной, построенной к капле, до и после обработки подложки.

Примеры режимов заявляемого способа и результаты обработки ситалловых подложек представлены в таблице 1. Угол смачиваемости поверхности ситалла до обработки составляет от 60° до 70°. После очистки в струе высокочастотного разряда угол смачиваемости α изменяется от 1,5° до 2°.

Основным механизмом, приводящим к очистке поверхности в плазме высокочастного разряда при указанных давлениях, является термический нагрев подложки и рекомбинация ионов Ar на поверхности. Около обрабатываемой поверхности подложки в ВЧ плазме пониженного давления образуется слой положительного заряда (СПЗ) толщиной до 1,5-2 мм. В структуре СПЗ выделяются область двойного электрического слоя (дебаевский слой) и область колебаний электронного газа. Роль каждой из этих областей различна. Проходя сквозь СПЗ к поверхности образца, ионы плазмы набирают энергию преимущественно в области колебаний электронного газа. В дебаевском слое ионный поток фокусируется на неоднородностях микрорельефа поверхности, на которых происходит рекомбинация ионов с выделением энергии рекомбинации. Для Ar она составляет 15,6 эВ.

В результате происходит удаление остатков материалов финишной полировки, удаления остатков реактивов и образовавшихся химических соединений после химической очистки. Установленные в представленном способе диапазоны параметров р, Рвчг, G, t на частотах ВЧ генератора от 1,76 МГц до 13,56 МГц обеспечивают в месте размещения обрабатываемых подложка на расстоянии L от 60 до 120 мм значения энергии ионов и теплового потока плазмы, необходимые для эффективной очистки подложки от загрязнений.

При обработке подложки при значениях р, Рвчг, G, меньших указанных диапазонов оптимальной обработки, значения энергии ионов и теплового потока плазмы недостаточно для проведения эффективной очистки. Превышение р, Рвчг, G могут приводить, кроме очистки поверхности, к изменению структуры и морфологии поверхности, что не всегда приемлемо для дальнейших технологических процессов, в которых используются подложки из ситалла.

При использование в качестве технологического газа смеси Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 за счет диссоциация молекулы кислорода (O2→O+O+е) образуются атомы кислорода, которые обладают высокой реакционной способностью с углеродсодержащими соединениями и вступают в реакцию с органикой. Образующиеся в результате очистки CO, CO2 и H2O являются стабильными соединениями, которые удаляются из реакционной камеры вакуумными насосами. В результате более высокой реакционной способности смеси Ar+O2 по сравнению с обработкой в чистом аргоне проводится очистка поверхности подложки за более короткий промежуток времени от 5 мин до 6 мин. Превышение в смеси технологического газа кислорода более 20% может приводить к травлению поверхности, что не является задачей данного изобретения. Меньшее количество кислорода в смеси не приводит к сокращению времени обработки.

Из приведенных данных видно, что предлагаемый способ обеспечивает получение чистой гидрофильной поверхности подложки ситалла без загрязнений в виде отдельных частиц или в виде пленки.

Источник поступления информации: Роспатент

Showing 11-20 of 71 items.
10.05.2018
№218.016.476c

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем...
Тип: Изобретение
Номер охранного документа: 0002650851
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4b60

Способ измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой

Изобретение относится к измерительной лазерной технике и может найти применение в при измерении угловой скорости лазерного гироскопа со знакопеременной частотной подставкой. Технический результат – повышение точности. Для этого обеспечено формирование на основе выходного сигнала вращения...
Тип: Изобретение
Номер охранного документа: 0002651612
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.5701

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Приемник импульсных лазерных сигналов содержит фоточувствительный элемент, схему обработки сигнала, выполненный в виде полупрозрачной шторки оптический затвор, привод шторки и логический модуль. Шторка...
Тип: Изобретение
Номер охранного документа: 0002655006
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570b

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит передающий канал, включающий лазерный излучатель с передающим объективом и схемой запуска, и приемный канал, включающий фотоприемное устройство с приемным объективом. Причем...
Тип: Изобретение
Номер охранного документа: 0002655003
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7ef4

Лазерный излучатель

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазерный излучатель содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов, между источником накачки и активным элементом введена призма, в поперечном сечении...
Тип: Изобретение
Номер охранного документа: 0002664768
Дата охранного документа: 22.08.2018
29.03.2019
№219.016.ee10

Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе

Изобретение относится к приборостроению и может быть использовано для определения ошибок ориентации измерительных осей гироскопов и маятниковых акселерометров в БИНС после температурных, вибрационных или ударных воздействий, а также в процессе эксплуатации. Способ определения ошибок ориентации...
Тип: Изобретение
Номер охранного документа: 0002683144
Дата охранного документа: 26.03.2019
25.04.2019
№219.017.3b2e

Способ компенсации влияния медленного меандра на показания лазерного гироскопа

Изобретение относится к приборостроению и измерительной технике. Сущность изобретения заключается в том, что способ компенсации влияния медленного меандра на показания лазерного гироскопа содержит этапы, на которых предварительно проводят климатические испытания лазерного гироскопа и определяют...
Тип: Изобретение
Номер охранного документа: 0002685795
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3d27

Оптический приемник

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя...
Тип: Изобретение
Номер охранного документа: 0002686386
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3d72

Приемник лазерного излучения

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с...
Тип: Изобретение
Номер охранного документа: 0002686406
Дата охранного документа: 25.04.2019
24.05.2019
№219.017.5d79

Способ измерения угловых перемещений зеемановским лазерным гироскопом

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Способ измерения угловых перемещений зеемановским лазерным гироскопом включает в себя создание частотной подставки с помощью наложения магнитного поля на активный элемент кольцевого лазера с эллиптической или круговой...
Тип: Изобретение
Номер охранного документа: 0002688952
Дата охранного документа: 23.05.2019
Showing 11-15 of 15 items.
10.09.2015
№216.013.7932

Способ ионно-плазменной очистки внутренней поверхности резонатора газового лазера

Изобретение относится к области квантовой электроники, в частности к способам очистки газоразрядных приборов, например резонаторов моноблочных газовых лазеров, в процессе технологической обработки. Способ ионно-плазменной очистки внутренней поверхности резонатора газового лазера включает...
Тип: Изобретение
Номер охранного документа: 0002562615
Дата охранного документа: 10.09.2015
20.04.2016
№216.015.3729

Способ создания анодной окисной плёнки холодного катода газового лазера в тлеющем разряде постоянного тока

Изобретение относится к области квантовой электроники и может быть использовано при изготовлении газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Способ создания анодной окисной пленки холодного катода газового лазера в тлеющем разряде постоянного тока,...
Тип: Изобретение
Номер охранного документа: 0002581610
Дата охранного документа: 20.04.2016
25.08.2017
№217.015.c1e5

Способ упрочнения оптического контакта диэлектрических поверхностей лазерного гироскопа и генератор струи плазмы для его реализации

Изобретение относится к способу и устройству для низкотемпературного упрочнения оптического контакта диэлектрических поверхностей газоразрядных приборов, в частности резонаторов моноблочных газовых лазеров, в процессе их технологической сборки. Заявленное устройство содержит диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002617697
Дата охранного документа: 26.04.2017
13.02.2020
№220.018.0251

Способ изготовления окисной пленки холодного катода газового лазера в тлеющем разряде постоянного тока

Изобретение относится к области квантовой электроники и может быть использовано при изготовлении газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Технический результат, заключающийся в расширении области применения способа с целью обеспечения повышенной...
Тип: Изобретение
Номер охранного документа: 0002713915
Дата охранного документа: 11.02.2020
04.06.2020
№220.018.23e9

Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии

Изобретение относится к области бесконтактных оптических измерений и может быть использовано для измерения профиля поверхности оптических деталей. Способ заключается в том, что формируют пучок непрерывного одномодового излучения лазера с длиной волны λ, делят его в интерферометре по схеме Физо...
Тип: Изобретение
Номер охранного документа: 0002722631
Дата охранного документа: 02.06.2020
+ добавить свой РИД