×
10.05.2018
218.016.389b

Результат интеллектуальной деятельности: ГЕТЕРОСТРУКТУРА МОЩНОГО ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА СПЕКТРАЛЬНОГО ДИАПАЗОНА 1400-1600 НМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к квантовой электронной технике, а точнее к мощным полупроводниковым лазерам. Гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм содержит подложку (1) из InP, на которой последовательно сформированы слой эмиттера (2) из InP n-типа проводимости, слой волновода (3) из AlGaInAs n-типа проводимости, активная область (4) на основе по меньшей мере двух слоев квантовых ям (5) из AlGaInAs, отделенных друг от друга разделительными слоями (6) из AlGaInAs, слой нелегированного волновода (7) из AlGaInAs, барьерный слой (8), содержащий по меньшей мере субслой (9) из AlInAs p-типа проводимости, слой волновода (11) из AlGaInAs p-типа проводимости, слой эмиттера (12) из InP p-типа проводимости и контактный слой (13) из GaInAsP p-типа проводимости. При этом суммарная толщина слоев волновода (3), (7), (11) составляет не менее 1,5 мкм. Гетероструктура обеспечивает повышение мощности изготовленного из нее лазера. 1 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к квантовой электронной технике, а точнее к мощным полупроводниковым лазерам с PN переходами.

Излучение мощных полупроводниковых лазеров спектрального диапазона 1400-1600 нм, изготовленных на основе твердых растворов AlGaInAs, GaInAsP, InP на подложке InP, испытывает сравнительно слабое поглощение в оптических волокнах, а также сравнительно безопасно для глаз человека. Поэтому такие лазеры востребованы в промышленности для различных целей, например, для накачки твердотельных лазеров и для измерения расстояний. Все эти задачи требуют высокую выходную оптическую мощность излучения полупроводниковых лазеров спектрального диапазона 1400-1600 нм, эффективность преобразования энергии и надежность. Одним из основных факторов, ограничивающих максимальную оптическую мощность излучения полупроводниковых лазеров спектрального диапазона 1400-1600 нм, является токовая утечка носителей заряда из активной области лазера в волноводные слои.

Известна гетероструктура инжекционного лазера (см. заявка US 20100150196, МПК H01S 5/00, опубликована 17.06.2010), состоящая из последовательно сформированных на подложке из GaAs первого ограничительного слоя, первого волноводного слоя, разделительного слоя, второго волноводного слоя, активной области для генерации лазерной моды, третьего волноводного слоя и второго ограничительного слоя. При этом первый, второй и третий волноводные слои имеют одинаковый показатель преломления, а первый ограничительный слой, разделительный слой, второй ограничительный слой имеют показатели преломления, меньшие показателей преломления первого, второго и третьего волноводных слоев. В известной гетероструктуре инжекционного лазера три волноводных слоя являются составными частями одного волновода, который поддерживает только одну лазерную моду. Размер лазерной моды увеличен за счет ее проникновения в ограничительные слои. Увеличенный размер лазерной моды позволил сузить расходимость лазерного пучка до величин меньше 24 градусов (по уровню 0,5). Использование разделительного слоя формирует плечо в профиле распределения лазерной моды, пространственно совпадающее с активной областью, за счет чего увеличивается фактор оптического ограничения.

Недостатком известной гетероструктуры инжекционного лазера является существенное проникновение лазерной моды в легированные ограничительные слои, что увеличивает оптические потери. Дальнейшее уменьшение расходимости лазерного пучка возможно только при увеличении толщин волноводных слоев и снижении скачка показателя преломления между волноводными и ограничительными слоями, что еще больше увеличивает проникновение лазерной моды в ограничительные слои. Недостатком известной гетероструктуры является использование подложки из GaAs и слоев из материала AlGaAs, что не позволяет получить лазерное излучение в спектральном диапазоне 1400-1600 нм.

Известна гетероструктура лазера (см. заявка US 20130287057, МПК H01S 5/20, опубликована 31.10.2013),состоящая из последовательно сформированных на подложке из GaAs ограничительного слоя n-типа проводимости, волноводного слоя n-типа проводимости, активной области, способной генерировать излучение, волноводного слоя p-типа проводимости и ограничительного слоя p-типа проводимости. При этом сумма толщин волноводного слоя n-типа проводимости, активного области и волноводного слоя p-типа проводимости больше 1 мкм, а толщина волноводного слоя p-типа проводимости меньше 150 нм. Кроме того, активная область, ограничительный слой n-типа проводимости, ограничительный слой p-типа проводимости, волноводный слой n-типа проводимости и волноводный слой p-типа проводимости таковы, что максимум интенсивности нулевой лазерной моды находится в области вне активной области, а разница показателей преломления волноводного слоя n-типа проводимости и ограничительного слоя n-типа проводимости лежит в диапазоне между 0,04 и 0,01.

Известная гетероструктура имеет асимметричный волновод. Основная часть лазерной моды распространяется по волноводному слою n-типа проводимости. Малый контраст показателя преломления между ограничительным слоем n-типа проводимости и волноводным слоем n-типа проводимости вызывает утекание лазерных мод высокого порядка из волновода и уменьшение их фактора оптического ограничения в активной области, за счет чего лазерные моды высокого порядка не участвуют в лазерной генерации. Расширение волновода позволяет сузить диаграмму направленности лазерного пучка в плоскости, перпендикулярной слоям структуры, до величин менее 50 градусов (ширина пучка, содержащая 95% оптической мощности).

В то же время в известном лазере малый контраст показателя преломления между ограничительным слоем n-типа проводимости и волноводным слоем n-типа проводимости делает гетероструктуру чувствительной к изменениям показателей преломления слоев в процессе работы лазера. Как указывалось выше, значительная часть нулевой лазерной моды распространяется по легированным волноводному слою n-типа проводимости и ограничительному слою n-типа проводимости, что приводит к высоким оптическим потерям; гетероструктура не применима в случае большого числа активных слоев, когда показатель преломления активной среды существенно влияет на волноводные свойства.

Известна гетероструктура лазера (см. заявка WO 2006034490, МПК H01S 05/024, опубликована 30.03.2006), состоящая из подложки, выполненной из InP, на которой находится активная область из AlGaInAs, заключенная между двух обкладочных слоев из InP, которые легированы примесями с концентрацией менее 1,5⋅1017 см-3. Между обкладочным слоем и активной областью, как минимум, с одной стороны находится пограничный слой из AlInAs, легированный примесью с концентрацией более 0,75⋅1017 см-3. В известной гетероструктуре толщина квантовых ям в активной области составляет от 5 до 8 нм.

В известной гетероструктуре активная область находится между обкладочными слоями, поэтому именно в них распространяется лазерная мода. Недостатком такого решения является повышение внутренних оптических потерь за счет распространения основной части лазерной моды в обкладочных слоях, легированных примесью с высокой концентрацией. Недостатком известной гетероструктуры является размещение легированного пограничного слоя вплотную к активной области, что в условиях диффузии легирующей примеси способно привести к падению темпа эффективной излучательной рекомбинации в квантовых ямах в активной области.

Наиболее близкой по технической сущности и по совокупности существенных признаков является гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм (см. Т. Garrod, D. Olson, М. Klaus, С. Zenner, С. Galstad, L. Mawst, D. Botez. - 50% continuous-wave wallplug efficiency from 1,53 mkm-emitting broad-area diode lasers. - APPLIED PHYSICS LETTERS, V. 105, 071101, 2014), принятая за прототип. Гетероструктура включает подложку из InP, на которой последовательно сформированы слой эмиттера из InP n-типа проводимости, слой волновод из GaInAsP n-типа проводимости с шириной запрещенной зоны 1,2 эВ, разделительный слой из GaInAsP, активную область на основе квантовой ямы из AlGaInAs толщиной 7 нм, два барьерных слоя AlGaInAs с шириной запрещенной зоны соответственно 1,23 эВ и 1,47 эВ, слой волновода из GaInAsP p-типа проводимости, слой эмиттера из InP p-типа проводимости и контактный слой из GaInAsP. Суммарная толщина волновода составляет 1 мкм. Барьерные слои расположены вплотную к квантовой яме с p-стороны гетероструктуры, обеспечивая снижение токовой утечки электронов из квантовой ямы.

Известная гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм позволяет обеспечивать высокий коэффициент полезного действия 50% в диапазоне небольших токов накачки 1-2 A. Недостатками гетероструктуры-прототипа является использование волновода из GaInAsP толщиной 1 мкм, который обеспечивает слабое ограничение электронов в квантовой яме, что способствует их утечке, и не позволяет обеспечить минимальные внутренние оптические потери. Недостатком гетероструктуры-прототипа является также использование нелегированных барьерных слоев, что усложняет транспорт дырок в квантовую яму.

Задачей заявляемого технического решения является повышение мощности лазеров на основе гетероструктуры путем уменьшения токовых утечек электронов из квантовой ямы, снижение внутренних оптических потерь и обеспечение эффективного транспорта дырок сквозь барьерные слои.

Поставленная задача решается тем, что гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм включает подложку из InP, на которой последовательно сформированы слой эмиттера из InP n-типа проводимости, слой волновода из AlGaInAs n-типа проводимости, активную среду на основе по меньшей мере двух слоев квантовых ям из AlGaInAs, отделенных друг от друга разделительными слоями из AlGaInAs, слой нелегированного волновода из AlGaInAs, барьерный слой, содержащий по меньшей мере субслой из AlInAs p-типа проводимости, слой волновода из AlGaInAs p-типа проводимости, слой эмиттера из InP p-типа проводимости и контактный слой из GaInAsP. При этом суммарная толщина слоев волновода составляет не менее 1,5 мкм.

Новым в гетероструктуре является выполнение слоев волновода из AlGaInAs суммарной толщиной не менее 1,5 мкм; введение дополнительного слоя нелегированного волновода; выполнение активной области на основе по меньшей мере двух слоев квантовых ям, отделенных друг от друга разделительными слоями; выполнение барьерного слоя из AlInAs, легированного примесью p-типа.

Барьерный слой гетероструктуры может содержать субслой из AlGaInAs p-типа проводимости, расположенный между слоем нелегированного волновода и субслоем из AlInAs p-типа проводимости, при этом ширина запрещенной зоны субслоя из AlGaInAs изменяется по линейному закону от 1,24 эВ до 1,5 эВ в направлении от подложки.

Выполнение волноводных слоев из AlGaInAs обеспечивает высокую степень локализации носителей заряда в квантовых ямах. Введение дополнительного слоя нелегированного волновода позволяет отодвинуть барьерный слой от активной области, обеспечивая более высокое технологическое качество барьерного слоя и не допуская диффузии легирующей примеси из барьерного слоя в активную область. Использование слоев волновода с суммарной толщиной более 1,5 мкм позволяет снизить долю лазерной моды, распространяющейся в сильно легированных эмиттерах до минимума, обеспечивающего минимальные внутренние оптические потери. По результатам расчетов распределения лазерной моды в волноводе и эмиттерах именно толщина 1,5 мкм является граничной, свыше которой доля лазерной моды в сильно легированных эмиттерах составляет менее 1% и, следовательно, сильное оптическое поглощение в эмиттерах практически не будет оказывать влияния на внутренние оптические потери. При уменьшении суммарной толщины слоев волновода менее 1,5 мкм начинается экспоненциальный рост доли лазерной моды, в сильно легированных эмиттерах и, следовательно, экспоненциальный рост внутренних оптических потерь. Использование нескольких квантовых ям в активной области, отделенных друг от друга разделительными слоями, позволяет сохранить высокое усиление для лазерной моды при минимальной концентрации носителей заряда в квантовых ямах для борьбы с Оже-рекомбинацией в них. Выполнение барьерного слоя из AlInAs, легированного примесью p-типа, позволяет как увеличить ширину запрещенной зоны барьерного слоя до максимального значения более 1,5 эВ, обеспечивая наибольшую эффективность барьерного слоя, так и обеспечить эффективный транспорт дырок сквозь барьерный слой в квантовые ямы.

Настоящая гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм поясняется чертежами, где:

на фиг. 1 схематично изображена в поперечном разрезе настоящая гетероструктура;

на фиг. 2 показаны зависимости ширины запрещенной зоны (кривая 14) и концентрации легирования (кривая 15) от координаты.

Изображенная на фиг. 1 гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм включает подложку 1 из InP, на которой последовательно сформированы эмиттер 2 из InP, легированного примесью n-типа, слой волновода 3 из AlGaInAs, легированного примесью n-типа, слои активной области 4, содержащие не менее двух квантовых ям 5 из AlGaInAs, находящихся между разделительными слоями 6 из AlGaInAs, слой нелегированного волновода 7 из AlGaInAs, барьерный слой 8, который содержит по меньшей мере субслой 9 из AlInAs, легированного примесью p-типа, и может содержать субслой 10 из AlGaInAs p-типа проводимости, расположенный между слоем нелегированного волновода 7 и субслоем 9 из AlInAs p-типа проводимости. Ширина запрещенной зоны субслоя 10 изменяется по линейному закону от 1.24 эВ до 1.5 эВ в направлении от подложки 1, на барьерном слое 8 сформирован слой волновода 11 из AlGaInAs p-типа проводимости, поверх которого последовательно расположены слой эмиттера 12 из InP, легированного примесью p-типа, и контактный слой 13 из GaInAsP, легированного примесью p-типа. Толщины слоев волновода 3, волновода 7 и волновода 11 выбирают такими, чтобы их суммарная толщина превышала 1,5 мкм.

Гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм может быть изготовлена методом MOC-гидридной эпитаксии.

Гетероструктура полупроводникового лазера спектрального диапазона 1400-1600 нм работает следующим образом. PN переход гетероструктуры смещают в прямом направлении, прикладывая внешнее напряжение с полярностью плюс - к p-части, минус - к n-части. В результате приложения прямого смещения через гетероструктуру течет ток накачки, который является электронным током в n-части и дырочным током - в p-части гетероструктуры. В квантовых ямах 5 активной области 4 происходит излучательная рекомбинация электронов и дырок, которая обеспечивает оптическое усиление для возникновения лазерной генерации. За счет оптического усиления в слоях волновода 3, 7, 11, эмиттерах 2, 12, активной области 4, и барьерном слое 8 возникает лазерная мода, доля которой в эмиттерах составляет менее 1% благодаря суммарной толщине слоев волновода более 1,5 мкм. За счет этого обеспечиваются низкие внутренние оптические потери для лазерной моды. Барьерный слой 8 с большой шириной запрещенной зоны создает энергетический барьер для электронов, но за счет того, что он легирован примесью p-типа, он не создает энергетического барьера для дырок, что одновременно предотвращает выброс электронов из активной области и обеспечивает эффективный транспорт дырок в активную область. Борьба с токовыми утечками дырок из активной области не требуется, поскольку эффективная масса дырок значительно превышает эффективную массу электронов и, вследствие этого, дырки более эффективно локализованы в активной области, чем электроны.

Пример. Методом MOC-гидридной эпитаксии на подложке из InP была выращена гетероструктура мощного полупроводникового лазера, содержащая последовательно: эмиттер из материала InP, легированного примесью n-типа (кремнием), толщиной 0,76 мкм; слой волновода n-типа проводимости из материала AlGaInAs, легированного примесью n-типа (кремнием), толщиной 1,05 мкм; активную область из материала AlGaInAs, состоящую из двух квантовых ям толщиной по 8 нм и трех разделительных слоев толщиной 20, 12 и 20 нм; слой нелегированного волновода из материала AlGaInAs толщиной 0,2 мкм; барьерный слой, содержащий субслой из материала AlInAs, легированного примесью p-типа (цинком), толщиной 20 нм и субслой из материала AlGaInAs, легированного примесью p-типа (цинком), при этом ширина запрещенной зоны изменяется по линейному закону от 1,24 эВ до 1,5 эВ в направлении от подложки, толщиной 50 нм; слой волновода p-типа проводимости из материала AlGaInAs, легированного примесью p-типа (цинком), толщиной 0,3 мкм; эмиттер из материала InP, легированного примесью p-типа (цинком), толщиной 1,2 мкм; контактный слой из материала GaInAsP легированного примесью p-типа (цинком), толщиной 0,3 мкм. Суммарная толщина слоев волновода n-типа проводимости, нелегированного волновода и волновода p-типа проводимости составляет 1,55 мкм.

Полупроводниковые лазеры на основе изготовленной гетероструктуры продемонстрировали максимальную мощность более 3 Вт в непрерывном режиме генерации при температуре теплоотвода 25°C, в то время как для прототипа (см. Т. Garrod, D. Olson, М. Klaus, С. Zenner, С. Galstad, L. Mawst, D. Botez. - 50% continuous-wave wallplug efficiency from 1,53 mkm-emitting broad-area diode lasers. - APPLIED PHYSICS LETTERS, V. 105, 071101, 2014) была достигнута максимальная мощность менее 2,5 Вт. Полученное повышение мощности связано со снижением внутренних оптических потерь, уменьшением токовых утечек электронов из активной области и обеспечением эффективного транспорта дырок сквозь барьерный слой.


ГЕТЕРОСТРУКТУРА МОЩНОГО ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА СПЕКТРАЛЬНОГО ДИАПАЗОНА 1400-1600 НМ
ГЕТЕРОСТРУКТУРА МОЩНОГО ПОЛУПРОВОДНИКОВОГО ЛАЗЕРА СПЕКТРАЛЬНОГО ДИАПАЗОНА 1400-1600 НМ
Источник поступления информации: Роспатент

Showing 71-80 of 114 items.
10.05.2018
№218.016.474a

Устройство для генерации второй гармоники оптического излучения

Изобретение относится к квантовой электронике, а именно к устройствам удвоения частоты оптического излучения. Устройство для генерации второй гармоники оптического излучения содержит активный элемент на основе нитрида алюминия. Активный элемент выполнен по меньшей мере из одной пары...
Тип: Изобретение
Номер охранного документа: 0002650597
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.5995

Устройство защиты литографического оборудования от пылевых металлических частиц

Изобретение относится к устройствам защиты рабочих элементов литографического оборудования от потоков пылевых частиц, в которых запыление элементов оптики продуктами распыления мишени при ее облучении лазерным излучением является критическим. Устройство включает узел (1) зарядки пылевых...
Тип: Изобретение
Номер охранного документа: 0002655339
Дата охранного документа: 25.05.2018
08.07.2018
№218.016.6e98

Способ изготовления гетероструктуры ingaasp/inp фотопреобразователя

Способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии буферного слоя InP из...
Тип: Изобретение
Номер охранного документа: 0002660415
Дата охранного документа: 06.07.2018
19.12.2018
№218.016.a8a8

Способ упрочнения поверхности вольфрамовой пластины

Изобретение относится к обработке и упрочнению поверхности вольфрамовой пластины, подвергающейся интенсивным тепловым нагрузкам, в частности, в установках термоядерного синтеза, в которых вольфрам используют в качестве материала первой стенки и пластин дивертора. Проводят воздействие на...
Тип: Изобретение
Номер охранного документа: 0002675194
Дата охранного документа: 17.12.2018
27.12.2018
№218.016.ac3c

Способ получения нанокомпозитного материала на основе алюминия

Изобретение относится к получению нанокомпозитного материала на основе алюминия. Способ включает приготовление шихты путем нанесения раствора нитрата металла-катализатора на поверхность частиц алюминия и его сушки, термического разложения нитрата металла-катализатора до оксида...
Тип: Изобретение
Номер охранного документа: 0002676117
Дата охранного документа: 26.12.2018
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.53af

Способ изготовления омических контактов фотоэлектрического преобразователя

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру AB основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку...
Тип: Изобретение
Номер охранного документа: 0002687851
Дата охранного документа: 16.05.2019
01.06.2019
№219.017.7275

Способ изготовления нитридного светоизлучающего диода

Способ изготовления нитридного светоизлучающего диода включает последовательное формирование на диэлектрической подложке слоя нитридного полупроводника n-типа проводимости, активного слоя нитридного полупроводника, слоя нитридного полупроводника р-типа проводимости. На полученной...
Тип: Изобретение
Номер охранного документа: 0002690036
Дата охранного документа: 30.05.2019
07.06.2019
№219.017.7543

Концентраторно-планарный солнечный фотоэлектрический модуль

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10),...
Тип: Изобретение
Номер охранного документа: 0002690728
Дата охранного документа: 05.06.2019
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
Showing 11-19 of 19 items.
23.02.2019
№219.016.c6fd

Устройство для квазистационарного гиперзвукового ударного сжатия малоплотных сред, основанное на эффекте усиления кумуляции ударных волн при цилиндрическом схождении в среде с уменьшающейся плотностью

Изобретение относится к области исследования ударной сжимаемости и оптических свойств материалов за сильными ударными волнами при числах Маха более 5. Устройство ударного сжатия малоплотных сред посредством формирования квазистационарного Маховского режима отражения от оси содержит...
Тип: Изобретение
Номер охранного документа: 0002680506
Дата охранного документа: 21.02.2019
20.04.2019
№219.017.3548

Инжекционный лазер

Использование: для создания инжекционного лазера. Сущность изобретения заключается в том, что инжекционный лазер включает выращенную на подложке лазерную гетероструктуру, содержащую активную область, заключенную между первым и вторым волноводными слоями, к которым с внешней стороны примыкают...
Тип: Изобретение
Номер охранного документа: 0002685434
Дата охранного документа: 18.04.2019
18.05.2019
№219.017.566b

Туннельно-связанная полупроводниковая гетероструктура

Изобретение относится к полупроводниковой технике, квантовой оптоэлектронике и может быть использовано для разработки мощных когерентных импульсных источников излучения на основе эпитаксиально-интегрированных гетероструктур. Сущность изобретения: туннельно-связанная полупроводниковая...
Тип: Изобретение
Номер охранного документа: 0002396655
Дата охранного документа: 10.08.2010
26.05.2019
№219.017.61a8

Микромеханическое устройство, способ его изготовления и система манипулирования микро- и нанообъектами

Изобретение может найти применение в области радиоэлектроники, машиностроения, нанотехнологии, электронной микроскопии, медицине. Изобретение направлено на уменьшение габаритов, на расширение функциональных возможностей за счёт обеспечения возможности манипулирования микро- и нанообъектами,...
Тип: Изобретение
Номер охранного документа: 0002458002
Дата охранного документа: 10.08.2012
13.06.2019
№219.017.8186

Импульсный инжекционный лазер

Импульсный инжекционный лазер содержит гетероструктуру раздельного ограничения, включающую асимметричный многомодовый волновод, ограничительные слои (3), (8) которого одновременно являются эмиттерами n- и р-типа проводимости с одинаковыми показателями преломления, активную область (6),...
Тип: Изобретение
Номер охранного документа: 0002691164
Дата охранного документа: 11.06.2019
06.07.2019
№219.017.a896

Импульсный инжекционный лазер

Изобретение относится к квантовой электронной технике, а именно к полупроводниковым лазерам. Лазер содержит гетероструктуру раздельного ограничения, включающую многомодовый волновод, ограничительные слои которого одновременно являются эмиттерами p- и n-типа проводимости с одинаковыми...
Тип: Изобретение
Номер охранного документа: 0002361343
Дата охранного документа: 10.07.2009
29.05.2020
№220.018.218c

Радиофотонный оптоволоконный модуль

Изобретение относится к радиофотонике. Радиофотонный оптоволоконный модуль включает лазерный источник оптического сигнала СВЧ импульсов, две сборки последовательно соединенных СВЧ фотодетекторов и три оптических разветвителя, вторичные оптоволокна первого оптического разветвителя оптически...
Тип: Изобретение
Номер охранного документа: 0002722085
Дата охранного документа: 26.05.2020
24.06.2020
№220.018.2a58

Лазер-тиристор

Настоящее изобретение относится к лазерной полупроводниковой технике. Лазер-тиристор на основе гетероструктуры содержит катодную область (1), включающую подложку n-типа (2), широкозонный слой n-типа (3), анодную область (4), включающую контактный слой р-типа (5), широкозонный слой р-типа (6),...
Тип: Изобретение
Номер охранного документа: 0002724244
Дата охранного документа: 22.06.2020
15.07.2020
№220.018.3274

Лазер-тиристор

Настоящее изобретение относится к квантовой электронной технике, а точнее к импульсным инжекционным источникам лазерного излучения. Лазер-тиристор, включающий подложку n-типа проводимости и имеющуюся на ней гетероструктуру, содержит катодную область (1), включающую подложку n-типа проводимости...
Тип: Изобретение
Номер охранного документа: 0002726382
Дата охранного документа: 13.07.2020
+ добавить свой РИД