×
10.05.2018
218.016.3896

Нанокомпозитное твердое горючее для прямоточного воздушно-реактивного двигателя

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к созданию нанокомпозитного твердого горючего для прямоточного воздушно-реактивного двигателя, которое может применяться в различных ракетных системах, например, противоракетной, противовоздушной обороны, ракетных систем залпового огня и другого назначения. Твердое горючее содержит полимерную матрицу из полиолефина с включенным в нее нанодисперсным порошком алюминия. В качестве нанодисперсного порошка алюминия используют неоксидированные наночастицы алюминия, размер которых не превышает 20 нм, при соотношении компонентов, мас.%: неоксидированные наночастицы алюминия 5260, полимер матрицы 4048. Технический результат изобретения заключается в увеличении скорости и полноты сгорания твердого горючего. 4 з.п. ф-лы, 6 пр., 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к твердым горючим для прямоточных воздушно-реактивных двигателей (ПВРД) с дозвуковой и сверхзвуковой скоростью газов в камере сгорания.

Твердые топлива, содержащие в своем составе как горючее, так и окислитель, представляют особый интерес для ПВРД высокоскоростных реактивных систем, поскольку могут иметь существенно более высокую плотность по сравнению с традиционными компонентами топлива, такими как керосин или его производные. Кроме того, реактивные системы на твердых топливах более просты в эксплуатации, более долговечны, как правило, готовы к немедленному использованию и характеризуются более высокой пожаровзрывобезопасностью. При этом твердые горючие на основе ультрадисперсных порошков металлов более стабильны и нечувствительны к детонации по сравнению с другими видами твердых топлив.

Известно твердое топливо для прямоточного воздушно-реактивного двигателя, в котором горючее представляет собой полимерную матрицу из полиолефина с включенным в нее дисперсным металлическим порошком (патент США №6736912). Известное топливо содержит в качестве окислителя кристаллический фторированный углерод, а в состав топлива также входит полимерное связующее - полибутадиены с концевыми карбоксильными группами и полистирол.

Основным недостатком этого топлива для ПВРД является относительно низкая величина теплоты сгорания в расчете на единицу массы топлива и обусловленная этим невысокая величина удельного импульса.

В патенте РФ №2288207 описана композиция твердого горючего, предназначенная для сжигания в до-, сверх- или гиперзвуковом воздушном потоке ПВРД, содержащая полимерную матрицу из полеолефинов (содержание - не менее 36% по массе), ультрадисперсного порошка металлов, в частности алюминия, и карборана. Высокая плотность, а также значительная теплота сгорания указанного твердого горючего достигается, в том числе, за счет высокого содержания металлического порошка (до 50% по массе).

Однако при таком содержании дисперсного металлического порошка резко возрастает время, необходимое для полного сгорания топлива, так как горение микродисперсных частиц - процесс существенно более медленный по сравнению с чисто газофазным горением. Ввиду этого объем камеры сгорания ПВРД, необходимый для обеспечения приемлемой полноты сгорания, может оказаться слишком велик, особенно если скорость газов в ней сверхзвуковая.

Известно твердое топливо для прямоточного воздушно-реактивного двигателя, в котором горючее представляет собой полимерную матрицу из полиолефина с включенным в нее нанодисперсным порошком алюминия (патент РФ №2580735). Известная твердотопливная композиция содержит в качестве окислителя нитрат аммония, а в качестве металлического горючего - смесь в равных долях микродисперсного и нанодисперсного порошков алюминия с размером частиц более 0,1 мкм. Общее содержание металлического горючего в известной твердотопливной композиции не превышает 22%.

Основным недостатком известного твердого горючего является использование в его составе оксидированных порошков алюминия, в которых поверхности металлических частиц покрыты оболочкой из тугоплавкого оксида алюминия, температура плавления которого более чем в 2 раза превышает температуру плавления свободного неоксидированного алюминия. Для разрушения оболочки при горении твердого горючего требуется дополнительное тепло и время.

Поэтому процесс сгорания известного топлива характеризуется недостаточно высокой скоростью и полнотой сгорания горючего, а также значительным временем задержки его воспламенения, и, как следствие, при использовании этого горючего в прямоточных воздушно-реактивных двигателях требует существенного увеличения размеров камеры сгорания.

Техническая проблема заключается в создании для ПВРД с компактной камерой сгорания твердого горючего, обладающего высокой скоростью и полнотой сгорания, как в дозвуковых, так и в сверхзвуковых воздушных потоках.

Техническим результатом изобретения является увеличение скорости и полноты сгорания твердого топлива, что обеспечивает возможность проектирования компактной камеры сгорания для высокоскоростного ПВРД.

Технический результат изобретения достигается тем, что в твердом горючем для прямоточного воздушно-реактивного двигателя, содержащем полимерную матрицу из полиолефина с включенным в нее нанодисперсным порошком алюминия, в качестве нанодисперсного порошка алюминия используют неоксидированные наночастицы алюминия, размер которых не превышает 20 нанометров, при соотношении компонентов, мас.%:

неоксидированные наночастицы алюминия 52-60
полимер матрицы 40-48

Для полимерной матрицы может быть использован атактический (аморфный) полистирол, полиэтилен высокого давления, поли-альфа-метилстирол или 1,4-цис-полибутадиен.

Технический результат при использовании изобретения достигается за счет того, что повышенное содержание в твердом горючем металлического алюминия (более 50%) в виде неоксидированных наночастиц диаметром не более 20 нм позволяет повысить плотность твердого горючего, а также осуществить дисперсионное горение алюминия в воздушном потоке, чем обеспечивается высокая скорость и полнота сгорания горючего в дозвуковых и сверхзвуковых воздушных потоках.

Использование атактического полистирола обеспечивает более равномерное распределение наночастиц алюминия в объеме полимерной матрицы за счет меньшей вязкости при перемешивании, что приводит к повышению скорости горения предложенного твердого топлива. Аналогичный результат обеспечивает использование полиэтилена высокого давления, поли-альфа-метилстирола и 1,4-цис-полибутадиен.

Сущность изобретения поясняется с использованием конкретных примеров его реализации и проиллюстрирована графиком зависимости времени горения микрочастиц оксидированного алюминия и наночастиц неоксидированного алюминия от температуры.

Особенностью дисперсионного горения наночастиц алюминия является, как известно, их механическое разрушение с образованием отдельных алюминиевых кластеров диаметром в несколько нанометров. Известно, что дисперсионный механизм горения реализуется только при достаточно высоких значениях скорости нагрева наночастиц алюминия - не менее 106 К/с (см. например, Ohkura Y., Rao P.М. and Zheng X. // Combustion and Flame. - 2011. - Iss. 158. - P. 2544-2548 или Levitas V.I., Dikici B. and Pantoya M.L. // Combustion and Flame. - 2011. - Iss. 158. - P. 1413).

При горении предложенного нанокомпозитного твердого горючего необходимая скорость нагрева наночастиц алюминия, выброшенных в воздушный поток при газификации связующего, обеспечивается за счет химических реакций, протекающих на поверхности частиц при их контакте с кислородом воздуха. Как показали расчеты, для наночастиц неоксидированного алюминия диаметром менее 20 нм скорость нагрева достигает 1015 К/сек, что существенно превосходит значения скорости нагрева, при которых становится возможным дисперсионное горение (Timothy Campbell et. al. // PHYSICAL REVIEW LETTERS. - 1999. V. 82 - P. 4856-4869).

Учитывая, что кластеры алюминия, образующиеся в результате механического разрушения при интенсивном нагреве исходных наночастиц, являются фактически очень большими молекулами, характер горения продуктов такой термической газификации нанокомпозитного твердого горючего в смеси с воздухом близок к чисто газофазному. В частности, за счет термической активации газофазных химических реакций происходит существенное ускорение процесса горения с повышением температуры.

Расчеты авторов, результаты которых приведены на графике, показывают, что время горения стехиометрической кластер воздушной смеси, содержащей кластеры алюминия диаметром около 2 нм в интервале температур 1100-2100 К, уменьшается более чем на четыре порядка, что характерно именно для газофазных реагирующих смесей. Расчеты проведены для двух уровней давления: 0,1 МПа (сплошные линии) и 1 МПа (штриховые линии). В расчете учитывалось только испарение кластеров, так как данных о константах скоростей реакций окисления непосредственно кластеров в литературе нет.

На упомянутом выше графике приведены результаты расчета, выполненного авторами, времени горения одиночной микрочастицы оксидированного алюминия в воздухе с помощью корреляционной формулы Бекстеда (см. Бекстед М.В. // Физика горения и взрыва. - 2005. - Т. 41. - №5. - с. 55-69) при давлении 0,1 МПа (сплошные линии) и 1,0 МПа (штриховые линии). Диаметр частиц - 5, 10 и 20 мкм приближенно соответствует размерам промышленных порошков АСД-6, АСД-4 и АСД-1.

Как видно из представленных результатов, при температурах выше 1200-1300 К, время горения кластер-воздушной смеси заметно меньше, по сравнению со временем парофазного горения микрочастиц. Причем, если время горения кластер-воздушной смеси резко падает с ростом температуры, то время горения отдельных частиц почти не зависит от температуры.

Представленные результаты позволяют сделать оценку области целесообразного применения предлагаемого горючего. В первую очередь, это сверхзвуковые и гиперзвуковые ПВРД безгазогенераторной схемы, рассчитанные на высокую скорость полета.

Технология изготовления горючего состоит из следующих этапов:

1 этап - получение неоксидированных наночастиц алюминия в разбавителе;

2 этап - смешение разбавителя с наночастицами алюминия и жидкого преполимера матрицы, образование их эмульсии;

3 этап - струйное распыление эмульсии в инертной газовой среде, в процессе которой происходит испарение летучих углеводородов разбавителя и осаждение жидкого преполимера с неоксидированными наночастицами алюминия;

4 этап - полимеризация преполимера с внедренными в него неоксидированными наночастицами алюминия.

Наиболее важным для раскрытия существа изобретения является первый этап - этап плазменного разложения производимых промышленностью комплексных органоалюминиевых соединений в бескислородной среде, который описан более подробно. Для получения неоксидированных наночастиц алюминия сначала испаряют органоалюминиевое соединение и смешивают его с аргоном, затем газовую смесь пропускают через разрядную ячейку с разрядом. Образующуюся плазменную струю охлаждают распылением из микрофорсунок жидкого разбавителя (толуол, бензол), в процессе охлаждения плазмы образуются неоксидированные наночастицы алюминия в жидком разбавителе.

Остальные этапы получения твердого горючего практически не отличаются от аналогичных этапов известных способов получения твердого горючего.

Ниже приведены примеры композиций твердого нанокомпозитного горючего.

Пример 1:

Связующее: аморфный полистирол (40% по массе). Наполнитель: неоксидированный наноалюминий (60% по массе). Плотность ρ=1657 кг/м3. Стехиометрический коэффициент L0=7,5 кг возд./кг гор. Теплота сгорания в расчете на ед. объема HV=57251 МДж/м3.

Пример 2:

Связующее: аморфный полистирол (48% по массе). Наполнитель: неоксидированный наноалюминий (52% по массе). Плотность ρ=1539 кг/м3. Стехиометрический коэффициент L0=8,26 кг возд/кг гор. Теплота сгорания в расчете на ед. объема HV=54226 МДж/м3.

Пример 3:

Связующее: 1,4-цис-полибутадиен (48% по массе). Наполнитель: неоксидированный наноалюминий (52% по массе). Плотность ρ=1372 кг/м3. Стехиометрический коэффициент L0=8,83 кг возд/кг гор. Теплота сгорания в расчете на ед. объема HV=50171 МДж/м3.

Пример 4:

Связующее: 1,4-цис-полибутадиен (40% по массе). Наполнитель: неоксидированный наноалюминий (60% по массе). Плотность ρ=1522 кг/м3. Стехиометрический коэффициент L0=7,8 кг возд./кг гор. Теплота сгорания в расчете на ед. объема HV=53967 МДж/м3.

Пример 5:

Связующее: полиэтилен (40% по массе). Наполнитель: неоксидированный наноалюминий (60% по массе). Плотность ρ=1524 кг/м3. Стехиометрический коэффициент L0=8,1 кг возд./кг гор. Теплота сгорания в расчете на ед. объема HV=54786 МДж/м3.

Пример 6:

Связующее: поли-альфа-метилстирол (40% по массе). Наполнитель: неоксидированный наноалюминий (60% по массе). Плотность ρ=1677 кг/м3. Стехиометрический коэффициент L0=7,6 кг возд./кг гор. Теплота сгорания в расчете на ед. объема HV=58400 МДж/м3.

Приведенные выше композиции по своей плотности и объемной теплоте сгорания превосходят известные в качестве твердых горючих ПВРД высокоплотные тяжелые углеводороды, такие как Антрацен (ρ=1250 кг/м3, HV=49980 МДж/м3), ДАМСТ (ρ=1078 кг/м3, HV=43328 МДж/м3), Бинор (ρ=1120 кг/м3, HV=46198 МДж/м3), соответствующие показатели которых известны (см. «Интегральные прямоточные воздушно-реактивные двигатели на твердых топливах» под редакцией Л.С. Яновского, М.:, 2006, стр. 145-154).

Применение композиций твердого нанокомпозитного горючего с неоксидированными наночастицами алюминия позволит существенно повысить скорость и полноту сгорания топлива в дозвуковых и сверхзвуковых воздушных потоках и будет способствовать сокращению длины камеры сгорания ПВРД в 1,5-2 раза в условиях крейсерского полета.


Нанокомпозитное твердое горючее для прямоточного воздушно-реактивного двигателя
Нанокомпозитное твердое горючее для прямоточного воздушно-реактивного двигателя
Нанокомпозитное твердое горючее для прямоточного воздушно-реактивного двигателя
Нанокомпозитное твердое горючее для прямоточного воздушно-реактивного двигателя
Источник поступления информации: Роспатент

Showing 1-10 of 204 items.
10.02.2013
№216.012.23f8

Система регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины

Изобретение относится к системе регулирования осевых сил на радиально-упорном подшипнике ротора турбомашины и позволяет уменьшить воздействие осевой силы на радиально-упорный подшипник передней части составного ротора турбомашины путем перераспределения по заданному закону избыточной силы на...
Тип: Изобретение
Номер охранного документа: 0002474710
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2458

Способ мультиантенной электростатической диагностики газотурбинных двигателей на установившихся и неустановившихся режимах работы

Изобретение относится к области диагностики технического состояния газотурбинных двигателей. Технический результат - повышение эффективности и оперативности диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002474806
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2baa

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель и способ функционирования двигателя

Пульсирующий детонационный прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру смешения, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, воспламенитель топливовоздушной смеси и систему подачи топлива. Система подачи топлива...
Тип: Изобретение
Номер охранного документа: 0002476705
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c7c

Способ диагностики турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области авиационной техники. По замерам полетной информации определяют величину R идеальной тяги двигателя как R=R- GV, где R - условная тяга реактивного сопла, соответствующая полному расширению в нем выхлопной струи до атмосферного давления, G - расход воздуха на входе...
Тип: Изобретение
Номер охранного документа: 0002476915
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.33c5

Способ изготовления интегрального блиска с охлаждаемыми рабочими лопатками, интегральный блиск и охлаждаемая лопатка для газотурбинного двигателя

Отдельные охлаждаемые лопатки из монокристаллического сплава соединяют с дисковой частью из гранулируемого сплава в единую деталь горячим изостатическим прессованием (ГИП) в зоне, где длительные прочности этих сплавов одинаковы при одной и той же температуре в длительном рабочем режиме...
Тип: Изобретение
Номер охранного документа: 0002478796
Дата охранного документа: 10.04.2013
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
20.06.2013
№216.012.4d6c

Газодинамический воспламенитель

Изобретение может быть использовано в авиационных и ракетных двигателях и стендовых газоструйных устройствах. Газодинамический воспламенитель содержит полый корпус, стержневой газоструйный излучатель со сверхзвуковым кольцевым соплом, резонатор с цилиндрической полостью, соединительную камеру с...
Тип: Изобретение
Номер охранного документа: 0002485402
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5497

Газогенератор гтд

Газогенератор газотурбинного двигателя содержит двухступенчатый центробежный компрессор, камеру сгорания и, по меньшей мере, одну осевую ступень турбины, связанную с компрессором по оси в единый ротор, установленный в статоре на подшипниках качения. Рабочие колеса ступеней компрессора и турбины...
Тип: Изобретение
Номер охранного документа: 0002487258
Дата охранного документа: 10.07.2013
10.08.2013
№216.012.5d9f

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания и способ управления ее работой

Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического...
Тип: Изобретение
Номер охранного документа: 0002489588
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6526

Способ определения коэффициента сухого трения фрикционных пар при быстро осциллирующих перемещениях

Изобретение относится к области исследований и физических измерений. Сущность: одну неподвижную деталь фрикционной пары, выполняющую функцию демпфера, прижимают с варьируемым регулируемым усилием к другой подвижной детали этой пары, совершающей на резонансной частоте быстро осцилирующее...
Тип: Изобретение
Номер охранного документа: 0002491531
Дата охранного документа: 27.08.2013
Showing 1-10 of 27 items.
10.05.2013
№216.012.3e2d

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит топливную форсунку, размещенную в носовой части двигателя перед воздухозаборником, и расположенные за ним камеру сгорания и сопло, а также устройство возбуждения молекул кислорода резонансным лазерным излучением в камере сгорания....
Тип: Изобретение
Номер охранного документа: 0002481484
Дата охранного документа: 10.05.2013
27.10.2013
№216.012.7a65

Поршневой двигатель с компрессионным зажиганием и способ его работы

Изобретение относится к области двигателестроения и позволяет расширить диапазон рабочих режимов двигателя с компрессионным зажиганием за счет повышения устойчивости воспламенения топливовоздушной смеси в цилиндре ДВС. Техническим результатом является упрощение конструкции двигателя и снижение...
Тип: Изобретение
Номер охранного документа: 0002496995
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a67

Двигатель внутреннего сгорания и способ его работы

Изобретение относится к области двигателестроения и обеспечивает низкоэмиссионное сгорание топливовоздушной смеси, снижает риск взрыва топливовоздушной смеси. Техническим результатом является упрощение конструкции двигателя, повышение надежности и снижение токсичности продуктов сгорания....
Тип: Изобретение
Номер охранного документа: 0002496997
Дата охранного документа: 27.10.2013
27.01.2014
№216.012.9c6b

Камера сгорания газотурбинного двигателя и способ ее работы

Камера сгорания газотурбинного двигателя содержит корпус, жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха, снабженную устройством воздействия на поток вторичного воздуха в полости кольцевого канала между стенками...
Тип: Изобретение
Номер охранного документа: 0002505749
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b45e

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке

Способ сжигания углеводородного топлива в газотурбинных двигателе или установке, содержащих камеру сгорания, заключается в поступлении на ее вход потока углеводородного топлива и потока воздуха, сжатого в компрессоре до высокого давления. Топливовоздушную смесь воспламеняют, а полученные при...
Тип: Изобретение
Номер охранного документа: 0002511893
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bab7

Камера сгорания газотурбинного двигателя и способ ее работы

Камера сгорания газотурбинного двигателя содержит корпус, расположенную в корпусе перфорированную жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха и устройство зажигания топливовоздушной смеси. Система подачи потоков...
Тип: Изобретение
Номер охранного документа: 0002513527
Дата охранного документа: 20.04.2014
27.07.2014
№216.012.e4e9

Способ получения водорода

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным...
Тип: Изобретение
Номер охранного документа: 0002524391
Дата охранного документа: 27.07.2014
27.09.2014
№216.012.f6de

Нанокомпонентная энергетическая добавка и жидкое углеводородное топливо

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором. Также описывается...
Тип: Изобретение
Номер охранного документа: 0002529035
Дата охранного документа: 27.09.2014
10.12.2014
№216.013.0d11

Плазменный двигатель на наночастицах металлов или металлоидов

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для...
Тип: Изобретение
Номер охранного документа: 0002534762
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1a8d

Способ получения медного электролитического порошка

Изобретение относится к области металлургии, в частности к получению медных порошков. Способ получения медного электролитического порошка с содержанием кислорода не более 0,15% включает электролиз, промывку от электролита, стабилизацию, отмывку от избытка стабилизатора, сушку, размол и просев....
Тип: Изобретение
Номер охранного документа: 0002538225
Дата охранного документа: 10.01.2015
+ добавить свой РИД