×
04.04.2018
218.016.31a6

Результат интеллектуальной деятельности: Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу определения частиц сажи в выхлопной струе газотурбинного двигателя (ГТД) в полете. Для осуществления способа измеряют в полете ток нейтрализации с электростатических разрядников самолета электрических зарядов, генерируемых частицами сажи в выхлопной струе газа ГТД, определяют расход газа через сопло двигателя, измеряют значение электризации аэрозолей атмосферы за счет соприкосновения их с поверхностями самолета, определяют среднее значение плотности электрического заряда струи газа на всех режимах полета, определяют содержание частиц сажи в струе по градуированным зависимостям «чисел дымности» от среднего значения плотности электрического заряда и влияния аэрозолей атмосферы. Обеспечивается повышение эффективности определения содержания частиц сажи в выхлопной струе газа ГТД при различных метеорологических условиях. 2 ил., 1 пр.

Изобретение относится к исследованию свойств веществ, а именно к способу определения содержания частиц сажи в выхлопной струе газа авиационного газотурбинного двигателя (ГТД) самолета при расширении метеорологических условий испытаний в полете и может быть использовано для определении уровня дымления двигателя самолета в полете.

Было обнаружено наличие электрических зарядов на вылетающих из газотурбинных двигателей частицах сажи, причем концентрация частиц в выхлопной струе оказалась связанной со средней плотностью электрического заряда струи на всех режимах полета.

Выброс электрических зарядов вызывает образование адекватного заряда на корпусе самолета, причем с обратным знаком. Последний, суммируясь с зарядом, обусловленным соприкосновением корпуса самолета с аэрозолями атмосферы: частицами облаков и осадков - (так называемая внешняя электризация) стекает через электростатические разрядники самолета в атмосферу. Для разделения вкладов в электростатический заряд на корпусе самолета, а следовательно, и вкладов в токи электростатических разрядников обоих видов электризаций, следует установить снаружи самолета в месте контакта с аэрозолями атмосферы специальную «токоприемную» пластину, по данным с которой можно рассчитать ток зарядки «внешней» электризации.

Известны устройства для измерения содержания твердых частиц в выхлопах газах двигателя фотоэлектрическим методом. Фотоэлектрические устройства используют оптическую плотность выхлопных газов, которая пропорциональна концентрации сажи. Оптическая плотность определяется при пропускании выхлопных газов через специальную магистраль или непосредственно путем измерений на выходе двигателя, Stachame Т. Betz Н. Study of Exhaust Visible Smoke from Aircraft Jet Engines SAF Prepz №710428, 1971 г., «Образование и выгорание сажи при сжигании углеводородных топлив». –М.:Машиностроение. 1989 г.

Недостатком фотоэлектрических устройств является низкая точность, их применение связано с большими затратами и необходимостью решения сложных технических проблем, особенно для измерений в полете.

Известен способ оценки склонности углеводородного топлива к сажеобразованию при горении топлива в лабораторных условиях путем сравнения ламинарного диффузионного пламени испытуемого и эталонного топлива в течение фиксированных отрезков времени. Этот способ не может быть реализован при экспериментах на двигателях самолетов ни в полете, ни на земле (Патент на изобретение RU №2199737 С2, кл. G01N 33/22, опубл. 23.04.2001 г.).

Известен способ определения содержания твердых частиц в запыленных газах путем измерения зарядов частиц и определение по результатам измерений содержания твердых частиц (А.С. СССР №240325, кл. G01N 15/00, опубл. 21.03.1969 г.)

Этот способ обладает невысокой эффективностью при использовании его для изучения струй ГТД, так как дает лишь локальные значения регистрации заряженных частиц. Кроме того, его использование связано с необходимостью разработки специальных датчиков и достаточно сложной экспериментальной аппаратуры.

Наиболее близким к предложенному способу является «Способ определения содержания твердых частиц в газовой струе», предлагающий замерять в полете токи нейтрализации электрических зарядов с электростатических разрядников самолета и замерять расход воздуха через двигатель с последующим определением содержания твердых частиц сажи по градуируемым зависимостям числа дымности от удельного заряда струи из двигателя (А.С. СССР №1019300А, опубл. 23.05.83 г.).

Недостатком способа является ограничение применения при полетах в облаках и осадках, поскольку в таких полетах имеет место электризация корпуса самолета за счет контакта с аэрозолями атмосферы. Указанная электризация увеличивает значение токов с электростатических разрядников, которые, суммируясь с токами, вызванными генерируемыми двигателем заряженными частицами, и приведет к ошибке при определении содержания твердых частиц в газовой струе.

Технический результат, на достижение которого направлено изобретение, заключается в повышении эффективности способа определения содержания частиц сажи в выхлопной струе газа ГТД при расширении метеорологических условий испытаний в полете.

Для достижения названного технического результата в предлагаемом способе определения содержания частиц сажи в выхлопной струе авиационного ГТД в полете, включающем измерение в полете тока нейтрализации электрических зарядов с электростатических разрядников самолета, генерируемыми ГТД заряженными частицами сажи в выхлопной струе газа, определение расхода газа через сопло двигателя Gг[кГм-3], в виде суммы расхода воздуха через двигатель и расхода топлива с последующим определением содержания частиц сажи в струе по градуируемым зависимостям «числа дымности» от среднего значения плотности электрического заряда выхлопной струи газа двигателя, при этом содержание частиц сажи в струе определяют в полете самолета в атмосфере с аэрозолями. Для этого, после предварительных испытаний на обледенение, определяют площадь зон захвата самолетом аэрозолей атмосферы, снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину. Во время полета определяют ток электризации самолета аэрозолями атмосферы, возникающий за счет соприкосновения лобовых поверхностей корпуса самолета с аэрозолями атмосферы. Измеряют локальный ток In заряжения токоприемной пластины и определяют ток «внешней» электризации Iв самолета по формуле:

где In - локальный ток заряжения токоприемной пластины;

S - площадь захвата лобовыми поверхностями корпуса самолета аэрозолей атмосферы;

Sn - площадь токоприемной пластины.

Токи нейтрализации электрических зарядов Ii с электростатических разрядников поступают на входы вычислителя, в котором суммируют и определяют ток Iр по формуле: Iр≅Σ(Ii), где i - число всех электростатических разрядников самолета.

Ток электризации самолета I∂, вызванный генерируемыми ГТД заряженными частицами сажи, вычисляют по формуле: I∂≅(Iр-Iв), [мкА] После этого в вычислителе определяют среднее значение плотности электрического заряда струи газа на всех режимах полета по формуле:

Затем определяют содержание частиц сажи в струе по градуированным зависимостям «числа дымности - SN», безразмерной величины, от среднего значения плотности (ρср) электрического заряда струи газа SN=F(ρcp), где «число дымности - SN» нормировано для каждого типа ГТД по методике ICAO. Оценивают влияние на дымность наличия на входе в двигатель аэрозолей атмосферы.

Предлагаемый способ поясняется чертежами, где:

на фиг. 1 показана блок-схема устройства, размещенного на самолете, для осуществления предложенного способа;

на фиг. 2 - зависимость числа дымности - SN от средней плотности электрического заряда ρср в струе газа.

На блок-схеме (фиг. 1) показаны расположенные внутри корпуса 1 самолета: датчик 2 расхода газа, проходящего через сопло двигателя 6, и измерительная схема 5. Снаружи корпуса установлены электростатические разрядники 3. На внешней передней кромке крыла или оперения установлена токоприемная пластина 4. Выход датчика 2 расхода газа через сопло двигателя 6, выходы электростатических разрядников 3 самолета 1, токоприемной пластины 4 связаны с входами измерительной схемы 5, выполненной в виде вычислителя.

Способ осуществляется следующим образом.

При полете самолета в атмосфере с аэрозолями определяют ток электризации самолета с ГТД аэрозолями атмосферы, возникающий за счет соприкосновения корпуса самолета с аэрозолями атмосферы, для этого после предварительных испытаний на обледенение определяют площадь зон захвата самолетом аэрозолей атмосферы. Снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину 4, фиг. 1. Измеряют локальный ток In заряжения токоприемной пластины 4 и определяют ток «внешней» электризации Iв самолета по формуле (1). Токи нейтрализации электрических зарядов Ii с электростатических разрядников поступают на входы вычислителя 5, в котором суммируют и определяют ток Iр по формуле: Iр≅Σ(Ii), где i-число всех электростатических разрядников самолета.

Ток электризации самолета I∂, вызванный генерируемыми ГТД заряженными частицами сажи, вычисляют в вычислителе 5 по формуле:

I∂≅(Iр-Iв), [мкА],

Измеряют расход газа Gг через двигатель (датчик 2).

В вычислителе 5 определяют среднее значение плотности электрического заряда струи газа на всех режимах полета по формуле (2) и определяют «число дымности» -SN, введенная по методике ICAO безразмерная величина. В вычислителе 5 последовательно осуществляют операции вычисления по формуле (1), затем по формуле (2) определяют и интерпретируют среднее значение плотности электрического заряда струи газа на всех режимах полета ρср в искомые значения универсальной градуируемой зависимости SN=F(ρcp) по графику (фиг. 2).

Пример

Предложенный способ был опробован в ходе летных исследований. Определяют ток зарядки самолета в атмосфере в полете в облаках или осадках. Для этого снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину. Измеряют локальный ток заряжения токоприемной пластины аэрозолями атмосферы - In и определяют ток «внешней» электризации Iв самолета по формуле (1).

Расход газа через сопло двигателя Gг определяется как сумму расхода воздуха через двигатель и расхода топлива. Расход воздуха через двигатель определяется по снятой на стенде дроссельной характеристике и измеренному значению приведенных оборотов. Расход топлива измеряется топливным расходомером.

В наземных условиях с применением фильтрационного устройства была получена универсальная градуируемая зависимость SN=F(ρcp), (фиг. 2), где SN - безразмерная величина, введенная по методике ICAO, называемая «числом дымности» и нормированная для каждого типа ГТД.

Таким образом, предлагаемый способ определения содержания частиц сажи в выхлопной струе газа авиационного газотурбинного двигателя самолета в полете позволяет существенно расширить метеорологические условия проведения испытаний.


Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Источник поступления информации: Роспатент

Showing 21-27 of 27 items.
23.02.2020
№220.018.04e4

Способ выделения ударных процессов из динамических нагрузок

Изобретение относится к области измерительной техники и может быть использовано для измерения ударных нагрузок на летательных аппаратах (ЛА). В способе, включающем измерение вибрационных нагрузок в местах размещения бортового оборудования летательного аппарата с помощью вибрационных...
Тип: Изобретение
Номер охранного документа: 0002714897
Дата охранного документа: 20.02.2020
25.03.2020
№220.018.0f99

Устройство автоматического отбора проб воздуха для последующего анализа на содержание слабоадсорбирующихся газов в кабинах летательных аппаратов и от авиационных газотурбинных двигателей

Изобретение относится к технике получения и подготовке образцов для исследования проб воздуха на содержание слабоадсорбирующихся газов в кабинах летательных аппаратов (ЛА) или авиационных газотурбинных двигателей (ГТД). Предлагаемое изобретение позволяет уменьшить габариты устройства без...
Тип: Изобретение
Номер охранного документа: 0002717458
Дата охранного документа: 23.03.2020
01.04.2020
№220.018.1262

Способ подготовки и проведения испытаний на работоспособность входных и выходных устройств авиационного двигателя в аэродромных условиях и стенд для его осуществления

Изобретения относятся к области испытаний авиационной техники, в частности к наземным установкам для испытаний авиационных двигателей. Предлагаемые изобретения позволяют проводить испытаний экспериментальных входных устройств и сопел авиационных двигателей без создания дорогостоящих...
Тип: Изобретение
Номер охранного документа: 0002718100
Дата охранного документа: 30.03.2020
24.07.2020
№220.018.377d

Способ и система предотвращения бокового увода летательного аппарата с взлётно-посадочной полосы

Для предотвращения бокового увода летательного аппарата с взлетно-посадочной полосы парируют момент сил несимметричного торможения колес основных опор шасси и несимметричной тяги двигателей с учетом информации о давлении в тормозных колесах и оборотах двигателей, путевом моменте сил торможения...
Тип: Изобретение
Номер охранного документа: 0002727225
Дата охранного документа: 21.07.2020
12.05.2023
№223.018.5435

Летающая лаборатория с реконфигурируемым рабочим местом лётчика-испытателя для опережающих лётных исследований взаимодействия "экипаж-автоматика" и экипаж - бпла"

Летающая лаборатория с реконфигурируемым рабочим местом летчика-испытателя для опережающих летных исследований взаимодействия «экипаж-автоматика» и «экипаж-БПЛА» содержит рабочее место летчика, выполненное по реконфигурируемой схеме, одинаковой с рабочим местом внешнего пилота и...
Тип: Изобретение
Номер охранного документа: 0002795529
Дата охранного документа: 04.05.2023
23.05.2023
№223.018.6c73

Многофункциональная летающая лаборатория (мфлл) на базе транспортного самолета

Изобретение относится к авиационной технике, а именно, к летающим лабораториям (ЛЛ) и может быть использовано для летных испытаний объектов авиационной техники. Многофункциональная летающая лаборатория (МФЛЛ) на базе транспортного самолета содержит транспортный самолет с грузовым отсеком и...
Тип: Изобретение
Номер охранного документа: 0002734170
Дата охранного документа: 13.10.2020
23.05.2023
№223.018.6dee

Способ оперативного контроля электродинамической развязки приёмных и передающих антенн бортовых радиостанций и бортового радионавигационного оборудования с телефонным выходом в составе летательного аппарата

Изобретение относится к области авиационной радиосвязи и радионавигации, может быть использовано для оперативного контроля электродинамической развязки (ЭДР) приёмных и передающих антенн бортовых радиостанций (РС) и бортового радионавигационного оборудования (РНО) с телефонным выходом....
Тип: Изобретение
Номер охранного документа: 0002759796
Дата охранного документа: 18.11.2021
Showing 11-12 of 12 items.
10.04.2019
№219.017.0215

Газотурбинная установка для выработки электроэнергии

Изобретение относится к области регулирования газотурбинных установок для выработки электроэнергии. Техническим результатом, на достижение которого направлено изобретение, является создание дополнительного канала регулирования газотурбинной установки в виде технологической нагрузки с...
Тип: Изобретение
Номер охранного документа: 0002341670
Дата охранного документа: 20.12.2008
18.05.2019
№219.017.5404

Способ определения параметров простых и сложных частиц износа в маслосистеме двигателя

Изобретение относится к способам определения параметров простых, состоящих из одного элемента, и сложных, состоящих из нескольких элементов, частиц износа в маслосистеме двигателя для возможности определения в ней типа развивающегося дефекта. Сущность способа заключается в том, что используют...
Тип: Изобретение
Номер охранного документа: 0002275618
Дата охранного документа: 27.04.2006
+ добавить свой РИД