×
04.04.2018
218.016.31a6

Результат интеллектуальной деятельности: Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу определения частиц сажи в выхлопной струе газотурбинного двигателя (ГТД) в полете. Для осуществления способа измеряют в полете ток нейтрализации с электростатических разрядников самолета электрических зарядов, генерируемых частицами сажи в выхлопной струе газа ГТД, определяют расход газа через сопло двигателя, измеряют значение электризации аэрозолей атмосферы за счет соприкосновения их с поверхностями самолета, определяют среднее значение плотности электрического заряда струи газа на всех режимах полета, определяют содержание частиц сажи в струе по градуированным зависимостям «чисел дымности» от среднего значения плотности электрического заряда и влияния аэрозолей атмосферы. Обеспечивается повышение эффективности определения содержания частиц сажи в выхлопной струе газа ГТД при различных метеорологических условиях. 2 ил., 1 пр.

Изобретение относится к исследованию свойств веществ, а именно к способу определения содержания частиц сажи в выхлопной струе газа авиационного газотурбинного двигателя (ГТД) самолета при расширении метеорологических условий испытаний в полете и может быть использовано для определении уровня дымления двигателя самолета в полете.

Было обнаружено наличие электрических зарядов на вылетающих из газотурбинных двигателей частицах сажи, причем концентрация частиц в выхлопной струе оказалась связанной со средней плотностью электрического заряда струи на всех режимах полета.

Выброс электрических зарядов вызывает образование адекватного заряда на корпусе самолета, причем с обратным знаком. Последний, суммируясь с зарядом, обусловленным соприкосновением корпуса самолета с аэрозолями атмосферы: частицами облаков и осадков - (так называемая внешняя электризация) стекает через электростатические разрядники самолета в атмосферу. Для разделения вкладов в электростатический заряд на корпусе самолета, а следовательно, и вкладов в токи электростатических разрядников обоих видов электризаций, следует установить снаружи самолета в месте контакта с аэрозолями атмосферы специальную «токоприемную» пластину, по данным с которой можно рассчитать ток зарядки «внешней» электризации.

Известны устройства для измерения содержания твердых частиц в выхлопах газах двигателя фотоэлектрическим методом. Фотоэлектрические устройства используют оптическую плотность выхлопных газов, которая пропорциональна концентрации сажи. Оптическая плотность определяется при пропускании выхлопных газов через специальную магистраль или непосредственно путем измерений на выходе двигателя, Stachame Т. Betz Н. Study of Exhaust Visible Smoke from Aircraft Jet Engines SAF Prepz №710428, 1971 г., «Образование и выгорание сажи при сжигании углеводородных топлив». –М.:Машиностроение. 1989 г.

Недостатком фотоэлектрических устройств является низкая точность, их применение связано с большими затратами и необходимостью решения сложных технических проблем, особенно для измерений в полете.

Известен способ оценки склонности углеводородного топлива к сажеобразованию при горении топлива в лабораторных условиях путем сравнения ламинарного диффузионного пламени испытуемого и эталонного топлива в течение фиксированных отрезков времени. Этот способ не может быть реализован при экспериментах на двигателях самолетов ни в полете, ни на земле (Патент на изобретение RU №2199737 С2, кл. G01N 33/22, опубл. 23.04.2001 г.).

Известен способ определения содержания твердых частиц в запыленных газах путем измерения зарядов частиц и определение по результатам измерений содержания твердых частиц (А.С. СССР №240325, кл. G01N 15/00, опубл. 21.03.1969 г.)

Этот способ обладает невысокой эффективностью при использовании его для изучения струй ГТД, так как дает лишь локальные значения регистрации заряженных частиц. Кроме того, его использование связано с необходимостью разработки специальных датчиков и достаточно сложной экспериментальной аппаратуры.

Наиболее близким к предложенному способу является «Способ определения содержания твердых частиц в газовой струе», предлагающий замерять в полете токи нейтрализации электрических зарядов с электростатических разрядников самолета и замерять расход воздуха через двигатель с последующим определением содержания твердых частиц сажи по градуируемым зависимостям числа дымности от удельного заряда струи из двигателя (А.С. СССР №1019300А, опубл. 23.05.83 г.).

Недостатком способа является ограничение применения при полетах в облаках и осадках, поскольку в таких полетах имеет место электризация корпуса самолета за счет контакта с аэрозолями атмосферы. Указанная электризация увеличивает значение токов с электростатических разрядников, которые, суммируясь с токами, вызванными генерируемыми двигателем заряженными частицами, и приведет к ошибке при определении содержания твердых частиц в газовой струе.

Технический результат, на достижение которого направлено изобретение, заключается в повышении эффективности способа определения содержания частиц сажи в выхлопной струе газа ГТД при расширении метеорологических условий испытаний в полете.

Для достижения названного технического результата в предлагаемом способе определения содержания частиц сажи в выхлопной струе авиационного ГТД в полете, включающем измерение в полете тока нейтрализации электрических зарядов с электростатических разрядников самолета, генерируемыми ГТД заряженными частицами сажи в выхлопной струе газа, определение расхода газа через сопло двигателя Gг[кГм-3], в виде суммы расхода воздуха через двигатель и расхода топлива с последующим определением содержания частиц сажи в струе по градуируемым зависимостям «числа дымности» от среднего значения плотности электрического заряда выхлопной струи газа двигателя, при этом содержание частиц сажи в струе определяют в полете самолета в атмосфере с аэрозолями. Для этого, после предварительных испытаний на обледенение, определяют площадь зон захвата самолетом аэрозолей атмосферы, снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину. Во время полета определяют ток электризации самолета аэрозолями атмосферы, возникающий за счет соприкосновения лобовых поверхностей корпуса самолета с аэрозолями атмосферы. Измеряют локальный ток In заряжения токоприемной пластины и определяют ток «внешней» электризации Iв самолета по формуле:

где In - локальный ток заряжения токоприемной пластины;

S - площадь захвата лобовыми поверхностями корпуса самолета аэрозолей атмосферы;

Sn - площадь токоприемной пластины.

Токи нейтрализации электрических зарядов Ii с электростатических разрядников поступают на входы вычислителя, в котором суммируют и определяют ток Iр по формуле: Iр≅Σ(Ii), где i - число всех электростатических разрядников самолета.

Ток электризации самолета I∂, вызванный генерируемыми ГТД заряженными частицами сажи, вычисляют по формуле: I∂≅(Iр-Iв), [мкА] После этого в вычислителе определяют среднее значение плотности электрического заряда струи газа на всех режимах полета по формуле:

Затем определяют содержание частиц сажи в струе по градуированным зависимостям «числа дымности - SN», безразмерной величины, от среднего значения плотности (ρср) электрического заряда струи газа SN=F(ρcp), где «число дымности - SN» нормировано для каждого типа ГТД по методике ICAO. Оценивают влияние на дымность наличия на входе в двигатель аэрозолей атмосферы.

Предлагаемый способ поясняется чертежами, где:

на фиг. 1 показана блок-схема устройства, размещенного на самолете, для осуществления предложенного способа;

на фиг. 2 - зависимость числа дымности - SN от средней плотности электрического заряда ρср в струе газа.

На блок-схеме (фиг. 1) показаны расположенные внутри корпуса 1 самолета: датчик 2 расхода газа, проходящего через сопло двигателя 6, и измерительная схема 5. Снаружи корпуса установлены электростатические разрядники 3. На внешней передней кромке крыла или оперения установлена токоприемная пластина 4. Выход датчика 2 расхода газа через сопло двигателя 6, выходы электростатических разрядников 3 самолета 1, токоприемной пластины 4 связаны с входами измерительной схемы 5, выполненной в виде вычислителя.

Способ осуществляется следующим образом.

При полете самолета в атмосфере с аэрозолями определяют ток электризации самолета с ГТД аэрозолями атмосферы, возникающий за счет соприкосновения корпуса самолета с аэрозолями атмосферы, для этого после предварительных испытаний на обледенение определяют площадь зон захвата самолетом аэрозолей атмосферы. Снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину 4, фиг. 1. Измеряют локальный ток In заряжения токоприемной пластины 4 и определяют ток «внешней» электризации Iв самолета по формуле (1). Токи нейтрализации электрических зарядов Ii с электростатических разрядников поступают на входы вычислителя 5, в котором суммируют и определяют ток Iр по формуле: Iр≅Σ(Ii), где i-число всех электростатических разрядников самолета.

Ток электризации самолета I∂, вызванный генерируемыми ГТД заряженными частицами сажи, вычисляют в вычислителе 5 по формуле:

I∂≅(Iр-Iв), [мкА],

Измеряют расход газа Gг через двигатель (датчик 2).

В вычислителе 5 определяют среднее значение плотности электрического заряда струи газа на всех режимах полета по формуле (2) и определяют «число дымности» -SN, введенная по методике ICAO безразмерная величина. В вычислителе 5 последовательно осуществляют операции вычисления по формуле (1), затем по формуле (2) определяют и интерпретируют среднее значение плотности электрического заряда струи газа на всех режимах полета ρср в искомые значения универсальной градуируемой зависимости SN=F(ρcp) по графику (фиг. 2).

Пример

Предложенный способ был опробован в ходе летных исследований. Определяют ток зарядки самолета в атмосфере в полете в облаках или осадках. Для этого снаружи самолета на внешней передней кромке крыла или оперения устанавливают токоприемную пластину. Измеряют локальный ток заряжения токоприемной пластины аэрозолями атмосферы - In и определяют ток «внешней» электризации Iв самолета по формуле (1).

Расход газа через сопло двигателя Gг определяется как сумму расхода воздуха через двигатель и расхода топлива. Расход воздуха через двигатель определяется по снятой на стенде дроссельной характеристике и измеренному значению приведенных оборотов. Расход топлива измеряется топливным расходомером.

В наземных условиях с применением фильтрационного устройства была получена универсальная градуируемая зависимость SN=F(ρcp), (фиг. 2), где SN - безразмерная величина, введенная по методике ICAO, называемая «числом дымности» и нормированная для каждого типа ГТД.

Таким образом, предлагаемый способ определения содержания частиц сажи в выхлопной струе газа авиационного газотурбинного двигателя самолета в полете позволяет существенно расширить метеорологические условия проведения испытаний.


Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Способ определения содержания частиц сажи в выхлопной струе авиационного газотурбинного двигателя в полёте
Источник поступления информации: Роспатент

Showing 11-20 of 27 items.
02.08.2018
№218.016.776b

Способ оценки средних за полёт концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и в воздухе, поступающем от компрессоров газотурбинных двигателей, и устройство для его осуществления

Группа изобретений относится к области получения и подготовки образцов для исследования и анализа материалов в газообразном состоянии. Способ оценки средних за полет концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и воздухе, поступающем от компрессоров газотурбинных...
Тип: Изобретение
Номер охранного документа: 0002662763
Дата охранного документа: 30.07.2018
14.11.2018
№218.016.9d2a

Обтекатель-нагнетатель на входе в воздухозаборник компрессора турбовинтовентиляторного двигателя

Изобретение относится к турбореактивным двигателям летательных аппаратов. Обтекатель-нагнетатель на входе в воздухозаборник компрессора турбовинтовентиляторного двигателя включает корпус (1) и оси-валы (3) подвижных относительно собственной оси широких лопастей (5) винтов. Обтекатель содержит...
Тип: Изобретение
Номер охранного документа: 0002672349
Дата охранного документа: 13.11.2018
21.02.2019
№219.016.c513

Платформа выдвижная для лётных испытаний оптоэлектронных систем

Изобретение относится к летным испытаниям авиационных оптоэлектронных систем. Платформа выдвижная для летных испытаний оптоэлектронных систем при установке на самолет, имеющий грузовую рампу и створки хвостового отсека, содержит моноблок (1) с комплектом оптоэлектронной аппаратуры, стойку (2),...
Тип: Изобретение
Номер охранного документа: 0002680298
Дата охранного документа: 19.02.2019
08.03.2019
№219.016.d3dd

Устройство для отбора средней за полёт пробы воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях

Изобретение относится к технике отбора образцов проб воздуха, отбираемых от компрессора авиационных газотурбинных двигателей (ГТД). Устройство для отбора средней за полет пробы воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях содержит диффузор с...
Тип: Изобретение
Номер охранного документа: 0002681192
Дата охранного документа: 04.03.2019
13.04.2019
№219.017.0c75

Устройство для бесконтактного определения температуры проводника, по которому протекает ток

Изобретение относится к области контроля и испытаний для испытания систем, содержащих опасные цепи электровоспламенительных устройств (ЭВУ), на стойкость к воздействию как импульсных, так и постоянных внешних электромагнитных полей (ЭМП) и разрядов молнии. Предложено устройство для...
Тип: Изобретение
Номер охранного документа: 0002684686
Дата охранного документа: 11.04.2019
10.05.2019
№219.017.5171

Способ оценки усталостной повреждаемости металлических элементов конструкций самолетов при лётных испытаниях на основе расширенной модифицированной кривой усталости

Изобретение относится к области авиации, в частности к способам оценки усталостной повреждаемости элементов конструкции. Способ оценки усталостной повреждаемости металлических элементов конструкции самолетов при летных испытаниях включает измерение в полете значений напряжений и температур...
Тип: Изобретение
Номер охранного документа: 0002687228
Дата охранного документа: 07.05.2019
02.07.2019
№219.017.a2f2

Способ измерения пространственных диаграмм направленности антенн воздушных судов в условиях полёта

Изобретение относится к способам измерений характеристик излучения (приема) антенн, включая измерение пространственных диаграмм направленности (ДН) слабонаправленных антенн воздушных судов (ВС) в условиях реального полета, и может быть использовано при летных и сертификационных испытаниях...
Тип: Изобретение
Номер охранного документа: 0002692818
Дата охранного документа: 28.06.2019
14.07.2019
№219.017.b444

Способ оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов и устройство для его осуществления

Группа изобретений относится к экологии и аналитической химии и может быть использована для оценки градиента токсических примесей в воздухе гермокабин летательных аппаратов. Для этого производится одномоментный впрыск в систему кондиционирования углекислого газа в концентрации ниже предельно...
Тип: Изобретение
Номер охранного документа: 0002694371
Дата охранного документа: 12.07.2019
31.07.2019
№219.017.ba92

Способ и система управления продольным движением при разбеге по взлётно-посадочной полосе и наборе высоты беспилотного летательного аппарата со специально расположенными передними и задними крыльями

Группа изобретений относится к способу и системе управления продольным движением при разбеге по взлетно-посадочной полосе и наборе высоты беспилотного летательного аппарата (БПЛА) с сочлененными на киле передними и задними крыльями. Для реализации способа формируют по результатам...
Тип: Изобретение
Номер охранного документа: 0002695897
Дата охранного документа: 29.07.2019
08.12.2019
№219.017.eb67

Способ оперативной инструментальной оценки энергетических параметров полезного сигнала и непреднамеренных помех на антенном входе бортового радиоприёмника с телефонным выходом в составе летательного аппарата

Изобретение относится к авиационной радиосвязи и радионавигации и может быть использовано для оперативной инструментальной оценки энергетических параметров полезного сигнала (ПС) и непреднамеренных помех (НП) на антенном входе бортового радиоприемника (РПМ) с телефонным выходом в составе...
Тип: Изобретение
Номер охранного документа: 0002708061
Дата охранного документа: 04.12.2019
Showing 11-12 of 12 items.
10.04.2019
№219.017.0215

Газотурбинная установка для выработки электроэнергии

Изобретение относится к области регулирования газотурбинных установок для выработки электроэнергии. Техническим результатом, на достижение которого направлено изобретение, является создание дополнительного канала регулирования газотурбинной установки в виде технологической нагрузки с...
Тип: Изобретение
Номер охранного документа: 0002341670
Дата охранного документа: 20.12.2008
18.05.2019
№219.017.5404

Способ определения параметров простых и сложных частиц износа в маслосистеме двигателя

Изобретение относится к способам определения параметров простых, состоящих из одного элемента, и сложных, состоящих из нескольких элементов, частиц износа в маслосистеме двигателя для возможности определения в ней типа развивающегося дефекта. Сущность способа заключается в том, что используют...
Тип: Изобретение
Номер охранного документа: 0002275618
Дата охранного документа: 27.04.2006
+ добавить свой РИД