×
04.04.2018
218.016.316e

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОГО ПРОСЛУШИВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к газовой промышленности и может быть использовано для исследования проницаемости пластов газовых и газоконденсатных месторождений Крайнего Севера, оценки газогидродинамической взаимосвязи между отдельными скважинами. Техническим результатом является повышение оперативности получения информации о состоянии разработки месторождения и информативности прослушивания куста скважин в реальном масштабе времени на газовых и газоконденсатных месторождениях. По данным стандартных газодинамических исследований (ГДИ) определяют коэффициенты фильтрационного сопротивления уравнения притока газа к забою скважин и производят сравнение указанных коэффициентов с их величинами, определенными расчетным путем на основе секторной модели куста скважин, построенной по данным геофизических исследований и лабораторных исследований керна, и если коэффициенты не совпадают, уточняют фильтрационно-емкостные свойства (ФЕС) секторной модели куста скважин используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, добиваясь совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин, и после этого уточнения, используя ФЕС определяют радиус дренирования каждой скважины куста и выполняют ранжирование скважин по степени наложения контуров питания, определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста, после чего с помощью автоматизированной системы управления технологическими процессами установки комплексной/предварительной подготовки газа (АСУ ТП УКПГ/УППГ) производят остановку указанной скважины средствами систем телемеханики для кустов скважин (СТКС), и с этого момента АСУ ТП УКПГ/УППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, которое определяется по измеряемому заколонному давлению на устье на всех скважинах куста до его полной стабилизации, а остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГ/УППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф. При этом фиксацию изменения забойного давления АСУ ТП УКПГ/УППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации и заносит их в свою базу данных (БД) для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения, после чего назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации с учетом результатов всех предыдущих испытаний с момента ввода месторождения в эксплуатацию, при этом АСУ ТП УКПГ/УППГ средствами СТКС осуществляет запуск скважин в назначенной последовательности и выполняет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит, и заносит их в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний. После чего с использованием секторной модели куста на основании данных стабилизации дебитов и забойных давлений возмущающих скважин и данных стабилизации пластового давления в зоне реагирующих скважин производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве. 2 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к газовой промышленности и может быть использовано для исследования проницаемости пластов газовых и газоконденсатных месторождений Крайнего Севера, оценки газогидродинамической взаимосвязи между отдельными скважинами.

Известен способ прослушивания скважин, включающий установку регистрирующей аппаратуры на реагирующих скважинах за несколько дней до начала исследования, с помощью которого записываются «фоновые» замеры забойного давления [см., например, с. 296, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995, 523 с.]. После записи «фона» выбирают возмущающую скважину. Если возмущающей является скважина, работающая с постоянным дебитом, то ее либо останавливают, либо переводят на работу с другим дебитом, постоянным в течение всего периода исследования. При этом на каждой реагирующей скважине фиксируют изменение забойного давления. Если изменение давления не фиксируется при временах, в 3 раза и более превышающих оценочный временной интервал tmin (минимальное время исследования, начиная с которого возможна регистрация кривой реагирования с заданной точностью), то исследование прекращают и констатируют отсутствие прямой газогидродинамической связи между скважинами. Если изменение давления фиксируется, то исследование продолжают в течение нескольких часов для получения кривой реагирования, обработка которой позволяет определить фазовую проницаемость пласта по газу.

Существенным недостатком этого способа является то, что он требует установки регистрирующей аппаратуры на забое каждой реагирующей скважины перед их исследованием и последующий ее демонтаж по окончании исследований. Кроме этого, помимо самих измерительных приборов или систем требуется определенный комплекс оборудования для проведения спуско-подъемных операций. Это приводит к значительным временным и материальным затратам. Также проведение всех этих работ требует постоянного присутствия обслуживающего персонала на скважинах, что из-за суровых природно-климатических условий Крайнего Севера связано с определенными трудностями.

Наиболее близким по технической сущности к изобретению является способ прослушивания скважин, включающий установку регистрирующей аппаратуры на реагирующих скважинах [см. с. 138, Васильевский В.П., Петров А.И. Исследование нефтяных пластов и скважин. - М.: Недра, 1973, 344 с.].

В качестве регистрирующий аппаратуры используют манометр, показания которого непрерывно воспроизводятся в виде графика зависимости забойного давления во времени ρзаб(t). После запуска в эксплуатацию выбранной соседней скважины с постоянным дебитом Q фиксируют интервал времени t1, после которого давление на забое реагирующей скважины начнет снижаться (т.е. это снижение будет зарегистрировано манометром). Это время зависит от дебита Q возмущающей скважины, расстояния между возмущающей и реагирующей скважинами, гидропроводности и пьезопроводности пласта, а также от чувствительности манометра.

Существенным недостатком указанного способа является большой объем работ, связанных с проведением монтажа и демонтажа регистрирующей аппаратуры. Каждая остановка и запуск скважины в эксплуатацию занимает достаточно долгое время и может привести к осложнениям в работе скважины, к потере добываемого флюида и к другим неоправданным экономическим потерям.

Кроме того, существенным недостатком всех перечисленных выше способов является то, что степень взаимовлияния скважин через систему промыслового сбора газа значительно выше, чем через продуктивный пласт, что объясняется фонтанным режимом эксплуатации. Изменение режима работы или остановка одной из скважин куста при отсутствии регулирующих воздействий вызовет перераспределение нагрузки и изменение дебита остальных, что приводит к значительным погрешностям при определении пластовых параметров по данным стабилизации дебита и пластового давления.

Предлагаемое техническое решение направлено на повышение оперативности получения информации о состоянии разработки месторождения и информативности прослушивания куста скважин в реальном масштабе времени на газовых и газоконденсатных месторождениях Крайнего Севера.

Поставленная цель достигается тем, что по данным стандартных газодинамических исследований (ГДИ) скважин определяют коэффициенты фильтрационного сопротивления уравнения, описывающего приток газа к забою скважин, и производят сравнение указанных коэффициентов с их величинами, определенными расчетным путем по секторной модели куста скважин, построенной по данным геофизических исследований и лабораторных исследований керна. В случае несовпадения расчетных и фактических коэффициентов уточняют фильтрационно-емкостные свойства (ФЕС) секторной модели куста скважин, используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, и добиваются совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин.

Одновременно определяют радиус дренирования каждой скважины куста на основе уточненных ФЕС и выполняют ранжирование скважин по степени наложения их контуров питания. По этим данным определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста. Затем с помощью автоматизированной системы управления технологическими процессами (АСУ ТП) установки комплексной/предварительной подготовки газа (УКПГ/УППГ) производят остановку указанной скважины средствами систем телемеханики для кустов скважин (СТКС), и с этого момента АСУ ТП УКПГ/УППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, которое определяется по измеряемому заколонному давлению на устье, на всех скважинах куста до полной стабилизации давления. Остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГ/УППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф. При этом фиксацию изменения забойного давления в остальных скважинах АСУ ТП УКПГ/УППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации. Получаемые данные система заносит в свою базу данных (БД) для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения.

После завершения процесса измерения кривых восстановления давления назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации. При этом учитывают результаты всех предыдущих испытаний с момента ввода месторождения в эксплуатацию. После этого АСУ ТП УКПГ/УППГ средствами СТКС осуществляет запуск скважин в эксплуатацию в назначенной последовательности и осуществляет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит. Результаты измерений система заносит в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний. После вывода куста газовых скважин на заданный режим эксплуатации, используя секторную модель куста и данные стабилизации дебитов и забойных давлений возмущающих скважин, а также данные стабилизации пластового давления в зоне реагирующих скважин, производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве.

Для того чтобы исключить влияние на процесс восстановления давления исследуемых скважин, которое может оказать режим работы скважин близлежащих кустов за счет их взаимодействия через единую газосборную сеть, дебит указанных скважин АСУ ТП УКПГ/УППГ средствами СТКС регулируют таким образом, чтобы он оставался постоянным.

Для оценки времени фиксации возмущения давления в реагирующей скважине с момента пуска возмущающей скважины используют параметры: L - расстояние между возмущающей и реагирующей скважинами, м, и PERM - абсолютную проницаемость пласта, мД. Саму оценку производят используя, например, зависимость

Т=(1016205BS408*L1.81231643773242)*PERM-0.889,

где Т - время, за которое изменение давления от пуска возмущающей скважины достигнет реагирующей скважины, сутки.

Заявляемый способ реализуется следующим образом.

По данным стандартных ГДИ определяют коэффициенты фильтрационного сопротивления уравнения притока газа к забою скважины [например, см. с. 175 - Газогидродинамические методы исследование скважин при стационарных режимах фильтрации и с. 257 - Газогидродинамические методы исследование скважин при нестационарных режимах фильтрации, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.].

Производят сравнение указанных коэффициентов с величинами, определенными расчетным путем по секторной модели куста скважин, полученной по данным геофизических исследований и лабораторных исследований керна. В случае несовпадения расчетных и фактических коэффициентов уточняют фильтрационно-емкостные свойства (ФЕС) секторной модели куста скважин, используя фактические данные по притоку газа к забою скважин, полученные по результатам ГДИ, и добиваются совпадения расчетных и фактических коэффициентов уравнения притока газа к забою скважин.

На основе уточненных ФЕС определяют радиус дренирования каждой скважины куста или по формуле [например, см. с. 6, Методика обработки кривых восстановления давления, полученных при исследовании газовой скважины, Интернет ресурс

http://www.asbur.ru/upload/File/obrabotka_kvd_gaz.doc]

где χ - пьезопроводность пласта, Т - продолжительность кривой восстановления давления.

По окончании определения радиусов дренирования выполняют ранжирование скважин по степени наложения контуров питания и определяют скважину, имеющую максимальную степень наложения площадей дренирования с остальными скважинами куста.

После этого в плановом порядке с помощью АСУ ТП УКПГ/УППГ производят остановку указанной скважины средствами СТКС, и с этого момента АСУ ТП УКПГ/УППГ средствами СТКС с заданной дискретностью синхронно фиксирует изменение забойного давления прямым измерением забойного давления или расчетным методом, который определяется по измеряемому заколонному давлению на устье на всех скважинах куста до полной стабилизации давления. (Эти работы можно проводить и во время планово-предупредительных работ на промыслах, которые, как правило, проводятся летом).

Остальные скважины, подключенные к газосборному шлейфу с помощью АСУ ТП УКПГ/УППГ, одновременно отключают от него средства СТКС для исключения искажения результатов измерений из-за их связи через газосборный шлейф. При этом фиксацию изменения забойного давления АСУ ТП УКПГ/УППГ также осуществляет средствами СТКС путем синхронного измерения кривых восстановления давления на всех скважинах с заданным шагом дискретизации. Получаемые данные система заносит в свою БД для последующего сравнения и анализа разницы в поведении скважин, а также использования этих данных для уточнения модели разработки месторождения.

Эти измерения длятся до полного восстановления давления. В ряде случаев, при необходимости после восстановления давления СТКС продолжает измерять его с заданным шагом дискретизации в течение интервала времени до пяти часов для оценки «фона». В этом процессе СТКС в реальном масштабе времени производит с заданным дискретным шагом измерения: либо давление на забое скважины, если забой скважины оснащен датчиком давления (Рз.и.), либо заколонного давления на устье Ри и устьевой температуры Ту.и газа на скважинах и передает в АСУ ТП УКПГ/УППГ. Получаемые данные АСУ ТП УКПГ/УППГ записывает в свою БД.

Если забой скважины не оснащен датчиком для измерения давления, в зависимости от конструкции и паспортных данных скважин, расчетным путем по измеряемым параметрам при каждом цикле опроса СТКС в АСУ ТП УКПГ/УППГ определяют значения забойного давления Рз.р скважин из соотношения [см. например, с. 110, формула (3.3), Гриценко А.И., Алиев З.С., О.М. Ермилов и др. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]:

где ;

Ри - статическое давление заколонны на устье скважины, измеряют средствами СТКС;

- относительная плотность газа;

L - глубина скважины;

zcp - среднее значение коэффициента сверхсжимаемости газа;

Тср - средняя температура газа в интервале между нейтральным слоем земли в данном регионе и глубиной L.

Очевидно, что при этом Рз.р.пл.

Среднюю температуру газа Tcp определяют по формуле

где Тнс - температура нейтрального слоя земли;

TL - температура газа на глубине L, т.е. на расчетной глубине.

А если с момента остановки скважины прошло не более десяти часов, то среднюю температуру газа Тср определяют по формуле:

где Ту.и - температура газа на устье скважины.

Чтобы повысить точность расчета по формуле (1) ее уточняют по полученным результатам стандартных ГДИ скважин. Это позволяет получить значения забойного давления по точности измерения, практически равной точности тех датчиков, которые используются при стандартных ГДИ скважин для измерения давления. Как известно [например, см. с. 467, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995. 523 с.], приведенная погрешность существующих датчиков давления, используемых при исследовании скважин, находится в интервале 0,1-0,25%. В существующих системах СТКС точность используемых датчиков давления находится в пределе в диапазоне изменения давления от 0,05 МПа до 100% шкалы прибора [см. Датчик комплексный с вычислителем расхода «ГиперФлоу-ЗПм», Руководство по эксплуатации, КРАУ 1.456.001-06 РЭ, Государственный Реестр средств измерений №15646-08].

После завершения процесса измерения кривых восстановления давления назначают порядок последовательности запуска скважин куста в эксплуатацию и индивидуальные временные интервалы между пусками скважин для вывода куста на заданный режим эксплуатации. При этом учитывают результаты всех предыдущих испытаний с момента ввода месторождения в эксплуатацию. После этого с помощью АСУ ТП УКПГ/УППГ средствами СТКС осуществляют запуск скважин в эксплуатацию в назначенной последовательности. При этом АСУ ТП УКПГ/УППГ средствами СТКС осуществляет синхронное измерение кривых изменения заколонного давления на устьях всех скважин куста и их дебит. Результаты измерений АСУ ТП УКПГ/УППГ заносит в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его оптимальной эксплуатации до следующих испытаний. После вывода куста газовых скважин на заданный режим эксплуатации, используя секторную модель куста и данные стабилизации дебитов и забойных давлений возмущающих скважин, а также данные стабилизации пластового давления в зоне реагирующих скважин, производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве.

Для того чтобы исключить влияние на процесс восстановления давления исследуемых скважин, которое может оказать режим работы скважин близлежащих кустов за счет их взаимодействия через единую газосборную сеть, дебит указанных скважин АСУ ТП УКПГ/УППГ средствами СТКС регулируют таким образом, чтобы он оставался постоянным.

Для оценки времени фиксации возмущения давления в реагирующей скважине с момента пуска возмущающей скважины используют параметры: L - расстояние между возмущающей и реагирующей скважинами, м, PERM - абсолютную проницаемость пласта, мД. Саму оценку производят, используя, например, зависимость

T=(а*Lb)*PERMd,

где Т - время, за которое изменение давления, вызванное пуском возмущающей скважины, достигнет реагирующей скважины, сутки;

a, b, d - коэффициенты, определяемые из характеристик продуктового пласта и используемой для его описания секторной моделью.

Данная зависимость для оценки времени фиксации возмущения давления в реагирующей скважине получена расчетным путем на секторной модели пласта по реально измеряемым данным. Процесс получения этих характеристик представлен ниже в виде примера.

Исходные данные:

Модель однородного пласта с пористостью 0,15 д.ед., эффективной толщиной 18 м, газонасыщенностью 0,7 д.ед., начальным пластовым давлением - 30 МПа. Количество ячеек по X - 162, по Y - 81, по Z - 9. Сеточная аппроксимация модели с двумя скважинами представлена на фиг. 1.

Две скважины первые три месяца эксплуатируются с депрессией на пласт 2,5 МПа. Далее обе скважины останавливают на месяц, после чего одна вновь вводится в эксплуатацию с режимом, который был до остановки. Вторая скважина продолжает простаивать, и по ней регистрируется динамика изменения пластового давления.

Результаты:

Изменяя в модели расстояние между скважинами и проницаемость пласта, определяем количество дней до регистрации волны возмущения от работы соседней скважины, которое представлено в таблице.

По данным, приведенным в таблице, на фиг. 2 определена зависимость времени регистрации волны возмущения от проницаемости коллектора при различном расстоянии между скважинами. Она в общем виде описывается уравнением вида Т=С*PERMd. Для рассматриваемого примера пласта с конкретными характеристиками

T=C*PERM-0.899.

Коэффициент С в этом уравнении зависит от расстояния между работающей (возмущающей) и реагирующей скважинами. Эта зависимость описывается соотношением вида С=а*Lb и для рассматриваемого примера имеет вид, представленный на фиг. 3. Соответственно для этого примера а=101620588408, b=1.81231643773242 и коэффициент С имеет вид

С=101620588408*L1.81231643773242.

Таким образом, время распространения волны приблизительно описывается соотношением

Т=(101620588408*L1.81231643773242)*PERM-0.889.

В целом погрешность полученного тренда для условий однородного пласта и работе возмущающей скважины с депрессией 2,5 МПа, находится в пределах 20%, что в абсолютной величине составляет порядка 10 дней.

В процессе запуска скважин АСУ ТП УКПГ/УППГ средствами СТКС осуществляет синхронное измерение кривых изменения заколонного давления на устье с заданным шагом дискретизации на устьях всех скважин и их дебит (в том числе и нулевой, пока скважина не введена в эксплуатацию). Получаемые результаты измерений АСУ ТП УКПГ/УППГ заносит в свою БД для последующего анализа функционирования скважин и комплексного анализа работы газоносного пласта с определением его параметров по результатам остановки-запуска куста газовых скважин для выбора режимов его эксплуатации до следующих испытаний.

Остальные скважины куста запускают в работу последовательно, регулируя их дебиты так, чтобы они соответствовали тем, которые были зафиксированы до остановки.

Порядок запуска скважин устанавливается по степени уменьшения степени перекрытия зон дренирования.

Для предварительной оценки изменения давления в каждой реагирующей скважине строится оценочная кривая реагирования ΔP(t) по формуле [см. например, с. 296, Гриценко А.И., Алиев З.С., Ермилов О.М. и др. Руководство по исследованию скважин. - М.: Наука, 1995. - 523 с.]:

где i - число возмущающих скважин, i=1,2,3,…n. При этом в процессе расчетов необходимо учитывать последовательность ввода скважин в эксплуатацию, т.е. последовательное увеличение числа возмущающих скважин в процессе ввода куста в эксплуатацию, и соответственно снижение числа реагирующих скважин;

Рпл - пластовое давление, МПа;

Рз - забойное давление, МПа;

μ - коэффициент динамической вязкости газа, Па⋅с;

z - коэффициент сверхсжимаемости газа;

Рат - атмосферное давление, МПа;

Тпл - пластовая температура газа, К;

k - коэффициент проницаемости пласта, мкм2;

h - толщина пласта, м;

Тст - стандартная температура, К;

ΔQi - изменене дебита возмущающих скважин, м3/с;

k - коэффициент пьезопроводности (проводимость давления), характеризующий тип перераспределения давления, м2/с;

t - время работ скважин, с;

Ri - расстояние между возмущающими и наблюдательными скважинами, м.

При этом kh/μ и k берутся как средние их значения, характеризующие зону возмущающих и реагирующих скважин. Этот график используется для оценки пригодности измерительного средства, для регистрации кривой реагирования и определения продолжительности исследования. Минимальное значение изменения давления ΔРмин определяется, исходя из класса точности измерительного средства. Выбранное значение ΔРмин наносится на оценочную кривую реагирования ΔP(t) и определяется время исследования tмин, начиная с которого возможна регистрация кривой реагирования с заданной точностью. Очевидно, если изменение значения давления в течение времени Δt будет меньше, чем предел погрешности измерительных средств δ, тогда очевидно измерительное средство не может фиксировать изменения значения измеряемого параметра. Отсюда следует, что

где ΔР - изменение давления за промежуток времени Δt,

δ - предел погрешности используемых измерительных средств.

Используя секторную модель куста, на основании данных стабилизации дебитов и забойных давлений возмущающих скважин и данных стабилизации пластового давления в зоне реагирующих скважин производят уточнение эквивалентной проницаемости пласта в межскважинном пространстве.

Изобретение отработано и реализовано на газовых промыслах ООО «Газпром добыча Ямбург».

Применение заявленного способа позволяет вести параллельно стандартным ГДИ специальные исследования скважин (гидропрослушивание) с целью уточнения текущих параметров пласта, что существенно повышает оперативность управления промыслом и снижает издержки производства при добыче природного газа.

Использование АСУ ТП УКПГ/УППГ и средств СТКС для прослушивания скважин позволяет этот процесс и обработку получаемых данных автоматизировать и проводить в любое время года, что повышает оперативность получения дополнительной информации, необходимой для оптимальной разработки пласта, а также модели эксплуатации месторождения.


СПОСОБ АВТОМАТИЧЕСКОГО ПРОСЛУШИВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА
СПОСОБ АВТОМАТИЧЕСКОГО ПРОСЛУШИВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН НА МЕСТОРОЖДЕНИЯХ КРАЙНЕГО СЕВЕРА
Источник поступления информации: Роспатент

Showing 41-50 of 84 items.
19.07.2018
№218.016.7228

Способ оптимизации периодичности газодинамических исследований скважин на нефтегазоконденсатных месторождениях крайнего севера

Изобретение относится к нефтегазовой промышленности и может быть использовано для оптимизации периодичности газодинамических исследований (ГДИ) скважин на нефтегазоконденсатных месторождениях Крайнего Севера. Автоматизированная система управления технологическими процессами (АСУ ТП) выдает...
Тип: Изобретение
Номер охранного документа: 0002661502
Дата охранного документа: 17.07.2018
19.07.2018
№218.016.722c

Способ автоматического управления подачи ингибитора для предупреждения гидратообразования в газосборных шлейфах газоконденсатных месторождений, расположенных в районах крайнего севера

Изобретение относится к области добычи природного газа и может быть применено для предупреждения гидратообразования и разрушения гидратов в газосборных шлейфах (ГСШ), расположенных в районах Крайнего Севера. Способ включает автоматическую систему подачи ингибитора гидратообразования. Система...
Тип: Изобретение
Номер охранного документа: 0002661500
Дата охранного документа: 17.07.2018
19.07.2018
№218.016.724e

Способ построения карты изобар для многопластовых месторождений нефти и газа

Изобретение относится к области добычи природного газа, а именно к способу контроля за разработкой многопластовых месторождений газа, при расчете пластового давления, как по отдельным пластам, так и по месторождению в целом. Техническим результатом является повышение точности прогноза...
Тип: Изобретение
Номер охранного документа: 0002661501
Дата охранного документа: 17.07.2018
13.09.2018
№218.016.86f7

Универсальная делительная головка для малогабаритных сверлильных и сверлильно-фрезерных станков

Изобретение относится к оснастке малогабаритных сверлильных и сверлильно-фрезерных станков, применяемых в нефтегазодобывающей промышленности, и может быть использовано для получения плоскостных поверхностей на круглых заготовках небольшого диаметра. Универсальная делительная головка содержит...
Тип: Изобретение
Номер охранного документа: 0002666788
Дата охранного документа: 12.09.2018
16.11.2018
№218.016.9e13

Способ биохимического контроля эффективности рекультивации нарушенных и загрязненных тундровых почв

Изобретение относится к области сельского хозяйства. Предложен способ биохимического контроля эффективности рекультивации нарушенных и/или загрязненных тундровых почв, включающий отбор проб и анализ активности фермента дегидрогеназы спектрофотометрическим методом. После чего, результаты анализа...
Тип: Изобретение
Номер охранного документа: 0002672490
Дата охранного документа: 15.11.2018
08.02.2019
№219.016.b81d

Способ эксплуатации куста обводняющихся газовых скважин

Изобретение относится к газодобывающей промышленности, в частности к эксплуатации газовых скважин на месторождениях, находящихся в условиях падающей добычи газа. Способ эксплуатации куста обводняющихся скважин, которые оборудованы по беспакерной схеме и объединены одним газосборным коллектором,...
Тип: Изобретение
Номер охранного документа: 0002679174
Дата охранного документа: 06.02.2019
23.02.2019
№219.016.c6e8

Способ автоматического поддержания температурного режима технологических процессов с применением турбодетандерных агрегатов на установке низкотемпературной сепарации газа в условиях крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает разделение газожидкостной смеси, поступающей с выхода сепаратора первой ступени редуцирования, на два потока и подачу их для предварительного охлаждения через трубопровод...
Тип: Изобретение
Номер охранного документа: 0002680532
Дата охранного документа: 22.02.2019
21.04.2019
№219.017.3644

Способ автоматического поддержания температурного режима технологических процессов установки низкотемпературной сепарации газа с применением аппаратов воздушного охлаждения в условиях крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает подачу газожидкостной смеси с выхода сепаратора первой ступени редуцирования на вход АВО и понижение температуры смеси до заданных значений температуры в...
Тип: Изобретение
Номер охранного документа: 0002685460
Дата охранного документа: 18.04.2019
29.04.2019
№219.017.4534

Способ повышения достоверности поступающей информации в автоматизированной системе управления технологическими процессами, функционирующей в условиях крайнего севера

Изобретение относится к области добычи природного газа, и в частности к обеспечению оптимального ведения комплекса технологических процессов сбора и подготовки газа к дальнему транспорту с использованием АСУ ТП. Суть решения заключается в том, что в базу данных АСУ ТП вносят информацию о...
Тип: Изобретение
Номер охранного документа: 0002400793
Дата охранного документа: 27.09.2010
18.05.2019
№219.017.53a7

Способ автоматического управления подачей ингибитора для предупреждения гидратообразования в системах сбора установок комплексной/предварительной подготовки газа, расположенных в районах крайнего севера

Изобретение относится к области добычи природного газа, в частности к предупреждению гидратообразования в системах сбора установок комплексной/предварительной подготовки газа (УКПГ/УППГ). Способ включает подключение отдельного газосборного шлейфа ГСШ к каждому кусту газодобывающих скважин,...
Тип: Изобретение
Номер охранного документа: 0002687519
Дата охранного документа: 15.05.2019
Showing 41-50 of 92 items.
19.07.2018
№218.016.7228

Способ оптимизации периодичности газодинамических исследований скважин на нефтегазоконденсатных месторождениях крайнего севера

Изобретение относится к нефтегазовой промышленности и может быть использовано для оптимизации периодичности газодинамических исследований (ГДИ) скважин на нефтегазоконденсатных месторождениях Крайнего Севера. Автоматизированная система управления технологическими процессами (АСУ ТП) выдает...
Тип: Изобретение
Номер охранного документа: 0002661502
Дата охранного документа: 17.07.2018
19.07.2018
№218.016.722c

Способ автоматического управления подачи ингибитора для предупреждения гидратообразования в газосборных шлейфах газоконденсатных месторождений, расположенных в районах крайнего севера

Изобретение относится к области добычи природного газа и может быть применено для предупреждения гидратообразования и разрушения гидратов в газосборных шлейфах (ГСШ), расположенных в районах Крайнего Севера. Способ включает автоматическую систему подачи ингибитора гидратообразования. Система...
Тип: Изобретение
Номер охранного документа: 0002661500
Дата охранного документа: 17.07.2018
19.07.2018
№218.016.724e

Способ построения карты изобар для многопластовых месторождений нефти и газа

Изобретение относится к области добычи природного газа, а именно к способу контроля за разработкой многопластовых месторождений газа, при расчете пластового давления, как по отдельным пластам, так и по месторождению в целом. Техническим результатом является повышение точности прогноза...
Тип: Изобретение
Номер охранного документа: 0002661501
Дата охранного документа: 17.07.2018
16.11.2018
№218.016.9e13

Способ биохимического контроля эффективности рекультивации нарушенных и загрязненных тундровых почв

Изобретение относится к области сельского хозяйства. Предложен способ биохимического контроля эффективности рекультивации нарушенных и/или загрязненных тундровых почв, включающий отбор проб и анализ активности фермента дегидрогеназы спектрофотометрическим методом. После чего, результаты анализа...
Тип: Изобретение
Номер охранного документа: 0002672490
Дата охранного документа: 15.11.2018
21.11.2018
№218.016.9eb4

Способ оценки фазового состояния углеводородов и их насыщения в пластах-коллекторах обсаженных газовых и нефтегазовых скважин

Изобретение относится к нефтегазовой отрасли промышленности и предназначено для диагностики прискважинной зоны коллекторов с целью определения насыщения и фазового состояния углеводородов в пластах-коллекторах газовых и нефтегазовых скважин комплексом разноглубинных нейтронных методов....
Тип: Изобретение
Номер охранного документа: 0002672696
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9ed2

Способ оценки фильтрационно-емкостных свойств коллекторов и степени подвижности углеводородов в продуктивных отложениях нефтегазовых скважин

Использование: для диагностики прискважинной зоны коллекторов с целью оценки их фильтрационно-емкостных свойств (ФЕС) и степени подвижности углеводородов комплексом разноглубинных нейтронных методов на этапе строительства нефтегазовых скважин. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002672780
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f14

Комплексная спектрометрическая аппаратура нейтронного каротажа

Использование: для диагностики прискважинных зон пластов-коллекторов. Сущность изобретения заключается в том, что аппаратура нейтронного каротажа включает установленные в охранном кожухе по его оси общий источник нейтронов, два детектора гамма-излучения радиационного захвата тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002672783
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f1f

Комплексная спектрометрическая аппаратура импульсного нейтронного каротажа

Использование: для определения характера насыщения и элементного состава горных пород и насыщающих их флюидов нейтронными методами. Сущность изобретения заключается в том, что аппаратура содержит импульсный генератор нейтронов, зонды импульсного нейтрон-нейтронного каротажа по тепловым...
Тип: Изобретение
Номер охранного документа: 0002672782
Дата охранного документа: 19.11.2018
23.02.2019
№219.016.c6e8

Способ автоматического поддержания температурного режима технологических процессов с применением турбодетандерных агрегатов на установке низкотемпературной сепарации газа в условиях крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает разделение газожидкостной смеси, поступающей с выхода сепаратора первой ступени редуцирования, на два потока и подачу их для предварительного охлаждения через трубопровод...
Тип: Изобретение
Номер охранного документа: 0002680532
Дата охранного документа: 22.02.2019
20.03.2019
№219.016.e6ce

Способ мониторинга разработки газовых месторождений

Изобретение относится к области использования геофизических методов, а именно гравиметрической разведки, для контроля разработки газовых месторождений. Сущность изобретения состоит в том, что способ мониторинга разработки газовых месторождений включает проведение в течение всего периода...
Тип: Изобретение
Номер охранного документа: 0002307379
Дата охранного документа: 27.09.2007
+ добавить свой РИД