×
21.11.2018
218.016.9f14

Результат интеллектуальной деятельности: Комплексная спектрометрическая аппаратура нейтронного каротажа

Вид РИД

Изобретение

Аннотация: Использование: для диагностики прискважинных зон пластов-коллекторов. Сущность изобретения заключается в том, что аппаратура нейтронного каротажа включает установленные в охранном кожухе по его оси общий источник нейтронов, два детектора гамма-излучения радиационного захвата тепловых нейтронов спектрометрического нейтронного гамма-каротажа (СНГК), два детектора тепловых нейтронов, формирующие малый и большой зонды нейтрон-нейтронного каротажа по тепловым нейтронам (ННКт), и дополнительно содержит два детектора надтепловых нейтронов, формирующие малый и большой зонды нейтрон-нейтронного каротажа по надтепловым нейтронам (ННКнт), детекторы СНГК разделены между собой свинцовым экраном и помещены в общий экран-конвертор из кадмия, а детекторы зондов ННКнт помещены в кадмиевые экраны и отделены от детекторов зондов ННКт экранами из полиамида, и зазоры между экранами пропитаны высокотемпературным силиконовым герметиком, при этом все зонды СНГК, ННКт и ННКнт расположены по одну сторону от источника нейтронов. Технический результат: расширение функциональных возможностей нейтронных методов, позволяющих с повышенной достоверностью исследовать прискважинную зону коллектора по флюидному составу углеводородов и содержанию пластовых вод в поровом пространстве коллектора и их распределение в радиальном направлении от стенки скважины (колонны). 4 з.п. ф-лы, 1 ил.

Изобретение относится к области геофизических исследований скважин методами разноглубинного нейтронного каротажа и может быть использовано для диагностики прискважинных зон пластов-коллекторов газовых, нефтегазовых и нефтяных скважин.

Известна аппаратура СПРК (спектрометрический прибор радиоактивного каротажа), в которой реализованы - спектрометрическая модификация метода НГК (нейтронный гамма-каротаж) на хлор - СНГК-С1, а также метод 2ННКт - двухзондовый нейтрон-нейтронный каротаж по тепловым нейтронам (Лысенков А.И. Хлорный каротаж на базе стационарных нейтронных источников // НТВ «Каротажник». - Тверь: Изд. АИС, 2006. Вып. 7-8 (148-149). - С. 109-128).

Прибор позволяет определить массовое содержание хлористого натрия М(Cl) в пластовой воде, которое отражает водонасыщенную пористость в нефтеносном коллекторе, и коэффициент пористости, определяемый по результатам 2ННКт, посредством которых вычисляется коэффициент нефтенасыщенности.

Известна комплексная спектрометрическая аппаратура нейтронного каротажа, включающая общий стационарный источник нейтронов, зонды с двумя спектрометрическими детекторами гамма излучения радиационного захвата тепловых нейтронов (СНГК), зонды, содержащие детекторы тепловых нейтронов (ННКт), расположенные по одну из сторон от источника нейтронов, при этом большой зонд СНГК, малый и большой зонды детекторов тепловых нейтронов ННКт развернуты по оси в противоположные стороны относительно источника нейтронов (Патент РФ №127487, G01V 5/00, 27.04. 2013 г.). Взят за прототип к заявляемому устройству.

Недостатком известных зондовых устройств является частичное использование аналитических возможностей нейтронных методов по определению насыщения пластов-коллекторов, основанных на процессах поглощения тепловых нейтронов и гамма-излучении радиационного захвата тепловых нейтронов элементами, входящими в состав флюидов, или фазового состояния углеводородного флюида, насыщающего поровое пространство коллектора. Другой недостаток заключается в том, что из-за расположения нейтронных зондов СНГК и ННКт с разных сторон от источника нейтронов, на результаты обработки их показаний оказывают сильное влияние переходные процессы при пересечении границ пластов зондами разноглубинных нейтронных методов, при этом снижается достоверность получаемых результатов и затрудняется их интерпретация, например, в условиях тонко-слоистого разреза с сильно меняющимися фильтрационно-емкостными свойствами коллекторов, а при горизонтальном бурении нефтегазовых скважин добавляется неопределенность положения границ пластов относительно зондовой установки.

Техническим результатом, достигаемым применением заявляемой комплексной спектрометрической аппаратуры нейтронного каротажа, является расширение функциональных возможностей нейтронных методов, позволяющих с повышенной достоверностью исследовать прискважинную зону коллектора по флюидному составу углеводородов и содержанию пластовых вод в поровом пространстве коллектора и их распределение в радиальном направлении от стенки скважины (колонны) на основе использования практически всех основных нейтронных ядерно-физических характеристик пород и насыщающих их флюидов, связанных процессами замедления надтепловых нейтронов (2ННКнт), поглощения тепловых нейтронов (2ННКт) и гамма-излучения радиационного захвата тепловых нейтронов (2СНГК).

Указанный технический результат достигается тем, что заявляемая комплексная спектрометрическая аппаратура нейтронного каротажа, включающая установленные в охранном кожухе по его оси общий источник нейтронов, детектор гамма излучения радиационного захвата тепловых нейтронов малого зонда спектрометрического нейтронного гамма каротажа (СНГК) и детектор гамма излучения радиационного захвата тепловых нейтронов большого зонда СНГК, которые защищены свинцовыми экранами от сопутствующего гамма излучения, идущего от источника нейтронов и гамма излучения радиационного захвата тепловых нейтронов от химических элементов в составе флюидов, заполняющих скважину, два детектора тепловых нейтронов, формирующие малый и большой зонды нейтрон-нейтронного каротажа по тепловым нейтронам (ННКт), в отличие от известного, дополнительно содержит два детектора надтепловых нейтронов, формирующие малый и большой зонды нейтрон-нейтронного каротажа по надтепловым нейтронам (ННКнт), детекторы СНГК разделены между собой свинцовым экраном и помещены в общий экран-конвертор из кадмия для формирования и калибровки энергетической шкалы гамма излучения от радиационного захвата кадмием тепловых нейтронов метода СНГК, а детекторы надтепловых нейтронов зондов ННКнт помещены в кадмиевые экраны и отделены от детекторов тепловых нейтронов зондов ННКт экранами из полиамида, и зазоры между экранами пропитаны высокотемпературным силиконовым герметиком, при этом все зонды СНГК, ННКт и ННКнт расположены по одну сторону от источника нейтронов в следующем порядке: малый зонд ННКнт, малый зонд ННКт, большой зонд ННКнт, большой зонд ННКт, малый зонд СНГК, большой зонд СНГК, вследствие чего детекторы малого зонда ННКнт образуют экраны, снижающие влияние прямого излучения от источника нейтронов на показания зондов ННКт, при этом детектор малого зонда ННКнт служит экраном для детектора малого зонда ННКт, а детектор большого зонда ННКнт в свою очередь служит экраном для детектора большого зонда ННКт.

Кроме того, в качестве детекторов зондов ННКнт использованы гелиевые нейтронные счетчики надтепловых нейтронов с повышенным давлением гелия.

В качестве детекторов СНГК, помещенных в общий экран-конвертор, могут быть использованы сцинтилляционные детекторы.

При исследовании скважин в процессе бурения сцинтилляционные детекторы зондов СНГК могут быть заменены помещенными в общий экран-конвертор газоразрядными счетчиками, регистрирующими интегральный поток нейтронного гамма излучения.

В качестве общего источника нейтронов может быть использован управляемый (импульсный) источник нейтронов или стационарный (химический) источник нейтронов.

На прилагаемой фигуре представлено схематичное расположение зондов комплексной спектрометрической аппаратуры нейтронного каротажа.

В охранном кожухе 1 по его оси расположены общий источник нейтронов 2, по одну сторону от которого размещены детектор 3 гамма излучения радиационного захвата тепловых нейтронов малого зонда (МЗСНГК) и детектор 4 гамма излучения радиационного захвата тепловых нейтронов большого зонда (БЗСНГК) спектрометрического нейтронного гамма каротажа (2СНГК), два детектора 5 и 6 тепловых нейтронов, формирующие малый зонд (МЗННКт) и большой зонд (БЗННКт) нейтрон-нейтронного каротажа по тепловым нейтронам (2ННКт), два детектора 7 и 8 надтепловых нейтронов, формирующие малый зонд (МЗННКнт) и большой зонд (БЗННКнт) нейтрон-нейтронного каротажа по надтепловым нейтронам (2ННКнт). Детекторы 3 и 4 зондов СНГК разделены между собой свинцовым экраном 9 и помещены в общий экран-конвертор 10 из кадмия для формирования энергетической шкалы гамма излучения от радиационного захвата кадмием тепловых нейтронов и для установки масштаба энергетической шкалы метода СНГК, и повышения чувствительности метода к пористости коллекторов, детекторы 7 и 8 надтепловых нейтронов зондов ННКнт помещены в кадмиевые экраны 11 и 12 и отделены от детекторов тепловых нейтронов зондов ННКт экранами из полиамида 13 и 14, а зазоры между указанными экранами пропитаны высокотемпературным силиконовым герметиком 15. Источник нейтронов 2 заключен в экран из полиамида 16.

Зонды расположены с одной стороны от центра источника нейтронов в следующей последовательности: малый зонд ННКнт, малый зонд ННКт, большой зонд ННКнт, большой зонд ННКт, малый зонд СНГК, большой зонд СНГК.

Кроме того, в качестве детекторов 7 и 8 зондов ННКнт использованы гелиевые нейтронные счетчики надтепловых нейтронов с повышенным давлением гелия.

В качестве детекторов 3 и 4 зондов СНГК, помещенных в общий экран-конвертор, могут быть использованы сцинтилляционные детекторы.

При исследовании скважин в процессе бурения сцинтилляционные детекторы 3 и 4 СНГК могут быть заменены помещенными в общий экран-конвертор 10 газоразрядными счетчиками, регистрирующими интегральный поток нейтронного гамма излучения.

В качестве общего источника нейтронов может быть использован управляемый (импульсный) источник нейтронов или стационарный (химический) источник нейтронов.

В охранном кожухе 1 также располагают электронный блок для регистрации и передачи данных на поверхность (на чертеже не показано).

Охранный кожух 1 снабжен прижимным устройством и спускается в скважину на кабеле (на чертеже не показано).

Во время подъема аппаратуры проводится многозондовый разноглубинный нейтронный каротаж (НК) околоскважинного пространства комплексами зондов 2ННКнт+2ННКт+2СНГК.

НК основан на облучении околоскважинного пространства нейтронами от стационарного или управляемого генератора нейтронов 2 и измерении плотностей потоков надтепловых и тепловых нейтронов детекторами 5, 6 и 7, 8 зондов 2ННКнт и 2ННКт.

Спектрометрическими детекторами 3, 4 зондов 2СНГК проводится регистрация спектрального распределения гамма-излучения радиационного захвата тепловых нейтронов (ГИРЗ) по энергии, образующихся в результате ядерных реакций при захвате тепловых нейтронов.

Эти три вида взаимодействия нейтронов с породой и насыщающими ее флюидами выполняют с помощью измерительных зондов (МЗСНГК, БЗСНГК, БЗННКт, МЗННКт, БЗННКнт, МЗННКнт), отмеченных стрелками на чертеже.

При этом проводится литологическое расчленение разрезов, определяется пористость горных пород, выделение газожидкостного и водонефтяного контактов, определение коэффициентов газонасыщенности, нефтенасыщенности и объемной газонасыщенности и нефтенасыщености в прискважинной части коллектора.

Областями эффективного применения НК являются литологическое расчленении разреза, определение пористости (Кп) и геологических параметров насыщения коэффициентов нефтенасыщенности, газонасыщенности Кн, Кг и объемной нефтенасыщенности Кп*Кн и объемной газонасыщенности Кп*Кг:

- для комплекса 2ННКнт+2СНГК - коллектора со средней и высокой минерализацией пластовых вод (Спл) и промывочной жидкости (Спж) при невысокой каверзности ствола в газовых, нефтегазовых и нефтяных скважинах;

- для комплекса 2ННКт+2СНГК - коллектора со средней и высокой пористостью, но невысоким значением Спл и Спж в газовых, нефтегазовых и нефтяных скважинах;

- для комплекса 2ННКт+2ННКнт - коллектора с низкой пористостью в газовых и нефтегазовых скважинах с невысоким значением Спл и Спж.

Разноглубинность исследований прискважинной зоны (удаление от стенки скважины (колонны) обеспечивается разной глубинностью исследования применяемых нейтронных методов. Малой глубинностью исследований, при прочих равных условиях, обладает метод ННКнт, средней - ННКт, большей - СНГК.

Во время работы комплексного прибора происходит преобразование световых вспышек детекторов в пропорциональные энергии гамма-квантов амплитуды импульсов тока посредством фотоэлектронных умножителей (ФЭУ) и преобразование потока нейтронов в амплитуды импульсов тока посредством счетчика нейтронов. Далее осуществляются усиление и оцифровка по амплитуде импульсов, выходящих с ФЭУ и оцифровка импульсов со счетчиков нейтронов и передача накопленной информации по каротажному кабелю на регистратор и далее на компьютер каротажной станции (не показаны).

Экраны 9... 12 обеспечивают для детекторов 3...8 снижение влияния мешающих геолого-технических факторов, осложняющих связь между регистрируемыми показаниями нейтронных методов и геологическими параметрами насыщения.

Детекторы 7 и 8 надтепловых нейтронов зондов ННКнт помещены в кадмиевые экраны 11 и 12 и отделены от детекторов 5 и 6 тепловых нейтронов зондов ННКт экранами из полиамида 13 и 14, а зазоры между указанными экранами пропитаны высокотемпературным силиконовым герметиком 15, что обеспечивает более надежную экранировку детекторов ННКт от прямого излучения нейтронного источника и потока тепловых нейтронов, идущих со стороны ствола скважины. Поскольку зонды аппаратуры расположены с одной стороны от центра источника нейтронов в следующей последовательности: МЗННКнт, МЗННКт, БЗННКнт, БЗ ННКт, то детектор МЗННКнт служит дополнительным экраном для детектора МЗННКт, а детектор БЗННКнт в свою очередь служит экраном для детектора БЗННКт, что снижает влияние прямого излучения от источника нейтронов на показания зондов ННКт.

Экран-конвертор 10 из кадмия, в который помещены детекторы 3 и 4 зондов СНГК, обеспечивает преобразование потока тепловых нейтронов, идущих со стороны горных пород, в поток гамма излучения за счет аномально высоких поглощающих свойств кадмия по тепловым нейтронам с последующим излучением гамма квантов с широким спектром энергий, которые используются для калибровки энергетической шкалы сцинтилляционного детектора и значительно повышают дифференциацию горных пород по водосодержанию.

При исследовании скважин в процессе бурения сцинтилляционные детекторы 3 и 4 зондов СНГК могут быть заменены газоразрядными счетчиками, регистрирующими интегральный поток нейтронного гамма излучения с минимальным потреблением электроэнергии, что является преимуществом для применения в автономных приборах.

Таким образом для анализа насыщения порового пространства коллектора углеводородами на разном удалении от стенки скважины (колонны) одновременно используют основные виды взаимодействия нейтронов с горными породами, вскрытыми скважиной, рассеивание нейтронов - ННКнт, поглощение нейтронов - ННКт, гамма-излучение радиационного захвата тепловых нейтронов - СНГК с использованием многозондовых измерительных установок типа 2ННКт+2ННКнт+2СНГК.

Применение для исследования скважин разноглубинного комплекса 2ННКт+2ННКнт+2СНГК улучшает достоверность получаемых результатов, расширяет возможности качественного и количественного анализа показаний нейтронного каротажа и упрощает их интерпретацию.


Комплексная спектрометрическая аппаратура нейтронного каротажа
Комплексная спектрометрическая аппаратура нейтронного каротажа
Источник поступления информации: Роспатент

Showing 1-7 of 7 items.
21.11.2018
№218.016.9eb4

Способ оценки фазового состояния углеводородов и их насыщения в пластах-коллекторах обсаженных газовых и нефтегазовых скважин

Изобретение относится к нефтегазовой отрасли промышленности и предназначено для диагностики прискважинной зоны коллекторов с целью определения насыщения и фазового состояния углеводородов в пластах-коллекторах газовых и нефтегазовых скважин комплексом разноглубинных нейтронных методов....
Тип: Изобретение
Номер охранного документа: 0002672696
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9ed2

Способ оценки фильтрационно-емкостных свойств коллекторов и степени подвижности углеводородов в продуктивных отложениях нефтегазовых скважин

Использование: для диагностики прискважинной зоны коллекторов с целью оценки их фильтрационно-емкостных свойств (ФЕС) и степени подвижности углеводородов комплексом разноглубинных нейтронных методов на этапе строительства нефтегазовых скважин. Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002672780
Дата охранного документа: 19.11.2018
21.11.2018
№218.016.9f1f

Комплексная спектрометрическая аппаратура импульсного нейтронного каротажа

Использование: для определения характера насыщения и элементного состава горных пород и насыщающих их флюидов нейтронными методами. Сущность изобретения заключается в том, что аппаратура содержит импульсный генератор нейтронов, зонды импульсного нейтрон-нейтронного каротажа по тепловым...
Тип: Изобретение
Номер охранного документа: 0002672782
Дата охранного документа: 19.11.2018
20.05.2019
№219.017.5c46

Способ определения параметров насыщения углеводородами пластов-коллекторов нефтегазоконденсатных месторождений и оценки их фильтрационно-емкостных свойств в нефтегазовых скважинах, обсаженных стеклопластиковой колонной

Использование: для определения параметров насыщения углеводородами пластов-коллекторов нефтегазоконденсатных месторождений. Сущность изобретения заключается в том, что выполняют измерение спектральной интенсивности ГИРЗ (гамма-излучение радиационного захвата нейтронов) спектрометрического...
Тип: Изобретение
Номер охранного документа: 0002687877
Дата охранного документа: 16.05.2019
22.06.2019
№219.017.8e42

Способ оценки фазового состояния углеводородных флюидов в поровом пространстве коллекторов нефтегазоконденсатных месторождений комплексом нейронных методов

Использование: для геофизических исследований нейтронными методами обсаженных нефтегазоконденсатных скважин (НГКС), а именно для оценки фазового состояния легких углеводородов в поровом пространстве коллекторов. Сущность изобретения заключается в том, что применяют нейтрон-нейтронный каротаж по...
Тип: Изобретение
Номер охранного документа: 0002692088
Дата охранного документа: 21.06.2019
03.07.2019
№219.017.a3e8

Способ определения минерализации пластовой жидкости в обсаженных нефтегазовых скважинах на основе стационарных нейтронных методов

Изобретение относится к нефтегазодобывающей промышленности, к методам нейтронного каротажа для определения минерализации скважинной жидкости по химическим элементам с аномальным поглощением нейтронов, с целью определения геологических параметров разрезов обсаженных нефтегазовых скважин....
Тип: Изобретение
Номер охранного документа: 0002693102
Дата охранного документа: 01.07.2019
17.10.2019
№219.017.d724

Способ контроля герметичности муфтовых соединений эксплуатационной колонны и выявления за ней интервалов скоплений газа в действующих газовых скважинах стационарными нейтронными методами

Изобретение относится к газодобывающей отрасли и может быть использовано для контроля герметичности муфтовых соединений эксплуатационных колонн (ЭК) в действующих газовых скважинах, а также для выявления интервалов скоплений газа за ЭК с использованием многозондового нейтронного каротажа....
Тип: Изобретение
Номер охранного документа: 0002703051
Дата охранного документа: 15.10.2019
Showing 1-10 of 60 items.
10.02.2013
№216.012.23e0

Способ определения дебита газовой скважины, обеспечивающего вынос конденсационной жидкости с забоя

Изобретение относится к газовой промышленности и может быть использовано при определении параметров работы газовой скважины, обеспечивающих вынос жидкости с забоя. Техническим результатом является определение дебита скважины, обеспечивающего вынос конденсационной жидкости с забоя скважины....
Тип: Изобретение
Номер охранного документа: 0002474686
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2b88

Способ определения характера насыщения пластов-коллекторов нефтегазовых скважин по комплексу нейтронных методов (варианты)

Изобретение относится к нефтегазодобывающей промышленности и предназначено для диагностики прискважинной зоны пластов. Задачей заявляемого способа является расширение области применения, повышение его точности и информативности. Способ определения характера насыщения пластов-коллекторов,...
Тип: Изобретение
Номер охранного документа: 0002476671
Дата охранного документа: 27.02.2013
27.04.2013
№216.012.3a5e

Состав для водоизоляционных работ в газовых скважинах

Изобретение относится к газодобывающей промышленности, в частности к составам для водоизоляции подошвенных вод в газовых скважинах при разработке газовых и газо-конденсатных залежей с использованием химических реагентов. Состав содержит гидрофобизатор Нефтенол АБР, пленкообразующий...
Тип: Изобретение
Номер охранного документа: 0002480503
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3aa5

Конструкция пологой или горизонтальной скважины с возможностью регулирования водопритока и селективной водоизоляции

Изобретение относится к нефтегазодобывающей промышленности, в частности к конструкции пологих и горизонтальных скважин. Включает техническую колонну, эксплуатационную колонну и лифтовую колонну. Эксплуатационная колонна зацементирована выше кровли продуктивного пласта. Эксплуатационная колонна...
Тип: Изобретение
Номер охранного документа: 0002480574
Дата охранного документа: 27.04.2013
27.04.2013
№216.012.3aac

Способ изоляции притока пластовых вод в пологих и горизонтальных скважинах

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к строительству, эксплуатации и ремонту пологих и горизонтальных скважин, оборудованных хвостовиком-фильтром, с изоляцией притока пластовых вод. Обеспечивает повышение точности закачки водоизолирующей композиции в...
Тип: Изобретение
Номер охранного документа: 0002480581
Дата охранного документа: 27.04.2013
10.06.2013
№216.012.48e3

Способ эксплуатации обводненных газовых скважин и устройство для его осуществления

Группа изобретений относится к газовой промышленности и может быть использована для обеспечения процесса эксплуатации обводненных газовых скважин. Обеспечивает повышение эффективности изобретений. Сущность изобретений: способ включает перфорацию эксплуатационной колонны ниже уровня текущего...
Тип: Изобретение
Номер охранного документа: 0002484239
Дата охранного документа: 10.06.2013
27.09.2013
№216.012.6fb8

Способ определения природы межколонных газопроявлений скважин многопластовых нефтегазоконденсатных месторождений

Изобретение относится к нефтегазодобыче и может быть использовано на стадиях строительства, эксплуатации, консервации и ликвидации скважин многопластовых нефтегазоконденсатных месторождений для определения природы углеводородных газов, поступивших в межколонные пространства скважин, или газов...
Тип: Изобретение
Номер охранного документа: 0002494251
Дата охранного документа: 27.09.2013
10.12.2013
№216.012.8983

Аппаратура для исследования скважин

Изобретение относится к области эксплуатации скважин и может быть использовано для проведения геофизических исследований скважин. Техническим результатом является получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения. Аппаратура...
Тип: Изобретение
Номер охранного документа: 0002500885
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8985

Термический способ исследования технического состояния скважины

Изобретение относится к гидрогеологии, бурению и эксплуатации скважин и может быть использовано для проведения геофизических исследований технического состояния скважин. Техническим результатом, получаемым от внедрения изобретения, является расширение эксплуатационных возможностей способа на...
Тип: Изобретение
Номер охранного документа: 0002500887
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8986

Акустический способ определения места перетока флюида в заколонном пространстве скважины

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения качества цементирования скважин. Акустический способ определения места перетока флюида в заколонном пространстве скважины заключается в равномерном перемещении вдоль скважины акустического...
Тип: Изобретение
Номер охранного документа: 0002500888
Дата охранного документа: 10.12.2013
+ добавить свой РИД