×
17.02.2018
218.016.2e56

Результат интеллектуальной деятельности: Криогенный гироскоп

Вид РИД

Изобретение

Аннотация: Использование: для производства криогенных гироскопов со сферическим ротором. Сущность изобретения заключается в том, что криогенный гироскоп содержит герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему сверхпроводящих экранов, установленных в корпусе попарно вдоль осей подвеса с противоположных сторон ротора и формирующих магнитное поле в рабочем зазоре подвеса, рабочая поверхность каждого из сверхпроводящих формирующих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре, катушки возбуждения магнитного подвеса, установленные над экранами, схему управления магнитным подвесом, формирующую токи, протекающие в катушках возбуждения, схему управления электростатическим подвесом, формирующую электрический потенциал на поверхности сверхпроводящих формирующих экранов, на профилированную рабочую поверхность каждого сверхпроводящего формирующего экрана установлен дополнительный экран, имеющий электрический контакт со сверхпроводящим формирующим экраном из материала, не обладающего сверхпроводящими свойствами, рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор, что обеспечивает равномерность плотности электрических сил в зазоре. Технический результат: обеспечение возможности повышения точности криогенного гироскопа. 2 ил.

Изобретение относится к прецизионному приборостроению и может быть использовано при разработке и производстве криогенных гироскопов со сферическим ротором, предназначенным для навигационных систем и систем управления движущимися объектами.

Известен криогенный гироскоп (П.И. Малеев. Новые типы гироскопов. // Л.: Судостроение, 1971, с. 46-66), содержащий герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, например, из ниобия, сверхпроводящий магнитный подвес ротора, систему разгона ротора, систему съема информации. Магнитный подвес ротора включает систему сверхпроводящих формирующих экранов, выполненных, например, из ниобия; катушки возбуждения, размещенные на экранах, схему управления подвесом. Экраны установлены в корпусе попарно вдоль осей подвеса с противоположных сторон ротора. Рабочая поверхность каждого из экранов, обращенная к ротору, совместно со сферической поверхностью ротора образует равномерный рабочий зазор. Катушки возбуждения подключены к схеме управления подвесом. Сверхпроводящие формирующие экраны формируют в рабочем зазоре магнитное поле, в котором происходит взвешивание ротора.

Недостатком является низкая точность гироскопа с ротором, имеющим технологические погрешности в виде отклонений его формы от сферической, обусловленных действием сил со стороны подвеса на несферичный ротор, а также моментами от неравномерной плотности распределения этих сил в рабочем зазоре.

Возмущающие моменты, обусловленные технологическими погрешностями изготовления ротора гироскопа рассмотрены в ряде работ (Ю.М. Урман. Уводящие моменты, вызываемые несферичностью ротора, в подвесе с аксиально-симметричным полем. // Изв. АН СССР. Механика твердого тела, 1973, №1, с. 24-31).

Известен криогенный гироскоп (Л.А. Левин. Некоторые вопросы проектирования криогенного неуправляемого сферического сверхпроводящего гироскопа. // ЦНИИ «Румб», 1982, с. 55), содержащий герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, например, из ниобия; сверхпроводящий магнитный подвес ротора; систему разгона ротора, систему съема информации. Магнитный подвес ротора включает систему сверхпроводящих формирующих экранов, выполненных, например, из ниобия, катушки возбуждения, схему управления подвесом. Сверхпроводящие формирующие экраны установлены в корпусе попарно вдоль осей подвеса с противоположных сторон ротора. Для получения равномерного магнитного потока в зазоре подвеса (исключения возмущающего момента, возникающего по причине его неравномерного распределения) рабочая поверхность каждого из сверхпроводящих формирующих экранов, обращенная к ротору, профилирована. Ей придается, например, синусоидальная форма. Профилированная поверхность экрана со сферической поверхностью ротора образуют переменный зазор, в котором равномерно распределяется магнитный поток, равномерно распределяются силы, действующие со стороны подвеса. Катушки возбуждения подключены к схеме управления подвесом.

Недостатком является низкая точность гироскопа с ротором, имеющим технологические погрешности в виде отклонений его формы от сферической, обусловленные действием сил со стороны подвеса на несферичный ротор.

Известен также криогенный гироскоп (патент РФ №1840511), который принимаем за прототип. Данный гироскоп содержит герметичный корпус; сферический ротор; выполненный из сверхпроводящего материала, например, из ниобия; комбинированный подвес ротора, состоящий из сверхпроводящего магнитного и электростатического подвесов. Комбинированный подвес применен для снижения возмущающего момента, действующего при работе сверхпроводящего магнитного и электростатического подвесов на несферичный ротор. Сущность физических явлений, поясняющих возможность снижения возмущающего момента в гироскопе с таким ротором, состоит в том, что при совместной работе магнитного сверхпроводящего и электростатического подвесов силы диамагнитного отталкивания сверхпроводящего подвеса и силы притяжения электростатического подвеса прикладываются к одним и тем же точкам ротора, направлены по нормали к поверхности ротора и имеют противоположные знаки. В идеальном случае при совместном применении подвесов с равной плотностью сил происходит взаимная компенсация моментов, действующих на несферический ротор, образованных силами взвешивания. Комбинированный подвес включает систему сверхпроводящих формирующих экранов, изготовленных, например, из ниобия. Сверхпроводящие формирующие экраны установлены в корпусе попарно вдоль осей подвеса с противоположных сторон ротора. Рабочая поверхность каждого из сверхпроводящих формирующих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре. На сверхпроводящих экранах установлены катушки возбуждения. Сверхпроводящие формирующие экраны и катушки возбуждения подключены к схеме управления магнитным подвесом и к схеме управления электростатическим подвесом ротора и формируют токи, протекающие в катушках возбуждения, и электрический потенциал на поверхности сверхпроводящих формирующих экранов. Схемы содержат элементы управления, позволяющие изменять значения коэффициентов усиления следящих систем электрического и сверхпроводящего магнитного подвесов и значения опорных напряженностей электрического и магнитного полей, обеспечивая равенство сил, прикладываемых к ротору со стороны магнитного и электростатического подвесов.

Недостатком гироскопа является низкая точность. Указанный недостаток обусловлен тем, что при взвешивании несферичного ротора в комбинированном подвесе, состоящем из сверхпроводящего магнитного и электростатического подвесов, не происходит полной взаимной компенсации образованных ими моментов. Причиной является разный тип распределения плотности сил, создаваемых сверхпроводящим магнитным и электростатическим подвесами в профилированном рабочем зазоре. При их совместном функционировании силы, прилагаемые к ротору со стороны магнитного подвеса, равномерно распределены в профилированном рабочем зазоре, а силы, прилагаемые к ротору со стороны электростатического подвеса, распределены в профилированном рабочем зазоре неравномерно. В результате в местах рабочего зазора, где, например, плотность сил со стороны одного типа подвеса превышает плотность сил со стороны другого типа подвеса, полной компенсации моментов не происходит.

Задачей настоящего изобретения является совершенствование конструкции криогенного гироскопа.

Достигаемый технический результат - повышение точности криогенного гироскопа.

Поставленная задача решается тем, что в известном криогенном гироскопе, содержащем:

- герметичный корпус;

- сферический ротор, выполненный из сверхпроводящего материала;

- комбинированный подвес ротора, включающий систему сверхпроводящих формирующих экранов, установленных в корпусе попарно вдоль осей подвеса с противоположных сторон ротора и формирующих магнитное поле в рабочем зазоре подвеса; при этом рабочая поверхность каждого из сверхпроводящих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре;

- катушки возбуждения магнитного подвеса, установленные над экранами;

- схему управления магнитным подвесом, формирующую токи, протекающие в катушках возбуждения;

- схему управления электростатическим подвесом, формирующую электрический потенциал на поверхности сверхпроводящих формирующих экранов, на профилированную рабочую поверхность каждого сверхпроводящего формирующего экрана установлен дополнительный экран, имеющий электрический контакт со сверхпроводящим формирующим экраном из материала, не обладающего сверхпроводящими свойствами, рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор, что обеспечивает равномерность плотности электрических сил в зазоре.

Сущность изобретения поясняется фиг. 1 и 2.

На фиг. 1 изображена упрощенная функциональная схема гироскопа.

На фиг. 2 изображена конструкция предлагаемого составного экрана и показано распределение силовых линий магнитного и электростатического полей в рабочем зазоре.

Условные обозначения, принятые на чертежах:

1 - сверхпроводящий ротор гироскопа (далее - ротор);

2 - система сверхпроводящих формирующих экранов;

3 - рабочая профилированная поверхность сверхпроводящего экрана 2 (далее - рабочая поверхность);

4 - дополнительный экран;

5 - рабочая поверхность дополнительного экрана 4;

6 - катушки возбуждения сверхпроводящего магнитного подвеса (далее - катушки возбуждения);

7 - измеритель положения ротора 1 в рабочем зазоре Δ1, выполненный, например, на емкостном принципе (далее - измеритель);

8 - схема управления магнитным подвесом ротора 1;

9 - схема управления электростатическим подвесом ротора 1;

10, 12 - регуляторы коэффициентов усиления электростатического и сверхпроводящего магнитного подвесов (далее - регуляторы);

11, 13 - преобразователи, управляющие соответственно токами в катушках 6 и электрическими потенциалами на рабочей поверхности 5 дополнительных экранов 4 (далее - преобразователи);

14, 15 - устройства, формирующие опорные напряженности магнитного и электрического полей (далее - устройства);

16, 17 - силовые линии электрического и магнитного полей;

XX - ось симметрии подвеса (далее - ось симметрии).

Предлагаемый гироскоп (фиг. 1) содержит:

герметичный корпус (на рисунке не показан); сферический ротор 1, выполненный из сверхпроводящего материала, например, ниобия; комбинированный подвес ротора 1, состоящий из сверхпроводящего магнитного и электростатического подвесов (на фиг. 1 показан только один из каналов комбинированного подвеса; взвешивание ротора 1 в трехкоординатном подвесе может быть осуществлено с помощью трех аналогичных каналов). Комбинированный подвес включает систему сверхпроводящих формирующих экранов 2, выполненных, например, из ниобия, установленных в корпусе попарно вдоль осей симметрии подвеса с противоположных сторон ротора 1. Рабочая поверхность 3 (фиг. 2) каждого из сверхпроводящих формирующих экранов 2, обращенная к ротору 1, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора 1 переменный зазор Δx, в котором происходит равномерное распределение плотности магнитного потока и равномерное распределение плотности сил магнитного подвеса, направленных по нормали к поверхности ротора. Переменный зазор Δx между ротором 1 и сверхпроводящим формирующим экраном 2 выполняется таким образом, чтобы площадь сечения зазора для прохождения магнитного потока 17 была постоянной. Форма переменного зазора Δx определяется, например, из соотношения (фиг. 2):

,

где Rp - радиус ротора 1;

Θx - угол между осью симметрии XX и направлением радиус-вектора в точке измерения переменного зазора;

S - площадь сечения переменного зазора.

Данное соотношение получено при рассмотрении геометрии зазора, исходя из постоянства сечения зазора между формирующим экраном 2 и ротором 1, после простейших преобразований с использованием значения угла между осью симметрии XX и направлением радиус-вектора из центра ротора 1 в заданную точку сверхпроводящего формирующего экрана 2.

На профилированную рабочую поверхность 3 сверхпроводящего формирующего экрана 2 установлен дополнительный экран 4, имеющий электрический контакт со сверхпроводящим формирующим экраном 2 и выполненный из материала, не обладающего сверхпроводящими свойствами и не препятствующего прохождению через него магнитного потока, например, из титана. Рабочая поверхность 5 дополнительного экрана 4 выполнена в виде части сферы и образует со сферической поверхностью ротора 1 равномерный рабочий зазор Δ1, что обеспечивает равномерность распределения плотности электрических сил в зазоре, направленных по нормали к поверхности ротора. Форма рабочего зазора Δ1 определяется соотношением:

Δ1=R1-Rp,

где R1 - радиус дополнительного экрана 4;

Rp - радиус ротора 1.

Катушки 6 возбуждения сверхпроводящего магнитного подвеса, установленные над сверхпроводящими формирующими экранами 2, измеритель 7 положения ротора 1 в рабочем зазоре Δ1; схему 8 управления сверхпроводящим магнитным подвесом, формирующую токи, протекающие в катушках 6 возбуждения, схему 9 управления электростатическим подвесом, формирующую электрический потенциал на рабочей поверхности 5 дополнительного экрана 4. Схемы содержат элементы управления 10, 12, позволяющие изменять значения коэффициентов усиления следящих систем электрического и сверхпроводящего магнитного подвесов и элементы управления 14, 15, позволяющие изменять значения опорных напряженностей электрического и магнитного полей, обеспечивая равенство сил, прикладываемых к ротору со стороны магнитного и электростатического подвесов.

Работа устройства происходит следующим образом.

Гироскоп охлаждают до температуры на несколько градусов выше температуры перехода элементов со сверхпроводимостью в сверхпроводящее состояние. Осуществляют взвешивание ротора 1 в электростатическом подвесе. При подаче питания на электростатический подвес положение ротора 1 относительно дополнительных экранов 4 регистрируется измерителем 7 положения ротора 1, сигнал с которого через регулятор 10 поступает на преобразователь 11 и далее в виде высокого электрического потенциала - на верхний сверхпроводящий формирующий экран 2, имеющий электрическую связь с дополнительным экраном 4. При этом на рабочей поверхности 5 дополнительного экрана 4 образуется потенциал, под действием которого формируются электростатические силы подвеса. Благодаря равномерному рабочему зазору Δ1 силы, прикладываемые к ротору 1, формируются с равномерной плотностью. Под действием электростатических сил, работающих на притяжение, ротор 1 взвешивается и в дальнейшем сохраняет взвешенное состояние за счет автоматического управления потенциалами верхнего и нижнего дополнительных экранов 4 с помощью системы, включающей измеритель 7 положения ротора 1, регулятор 10 и преобразователь 11. При смещении ротора 1 вниз, например, под действием ускорений, увеличивается потенциал на поверхности верхнего дополнительного экрана 4, т.е. увеличивается напряженность электрического поля в рабочем зазоре Δ1, а следовательно, и сила притяжения ротора 1 к верхнему дополнительному экрану 4, под действием которой ротор 1 стремится в положение, близкое к центральному. Электрический потенциал на поверхности 5 нижнего дополнительного экрана 4 при этом уменьшается. При отсутствии действующего ускорения, в том числе и ускорения силы тяжести, ротор 1 занимает центральное положение, а потенциалы на поверхности дополнительных экранов 4 одинаковы и принимают значение, равное опорному, например, половине потенциала, определяющего электрический пробой рабочего зазора Δ1.

Приводят ротор 1 во вращение. Вращение ротору 1 может быть сообщено с помощью разгонного устройства, например, асинхронного двигателя, включаемого после взвешивания ротора 1 в электростатическом подвесе (на фиг. 1 разгонное устройство не показано).

Охлаждают гироскоп до температуры, при которой его сверхпроводящие элементы переходят в сверхпроводящее состояние.

Подают питание в систему управления сверхпроводящим магнитным подвесом. Взвешивают ротор 1 в сверхпроводящем магнитном подвесе. Взвешивание ротора 1 в сверхпроводящем магнитной подвесе осуществляется с помощью системы, включающей измеритель 7 положения ротора, регулятор 12 и преобразователь 13, который управляет величиной токов в катушках возбуждения 6. При этом в рабочем зазоре Δ1 формируется равномерный магнитный поток. При смещениях ротора 1, например, вниз система 8 магнитного взвешивания увеличивает ток в нижней катушке 6 подвеса, т.е. увеличивает напряженность магнитного поля в этой части рабочего зазора Δ1, следовательно, и силу диамагнитного отталкивания, а система 9 управлением напряженностью поля электростатического подвеса уменьшает его. Под действием сил, действующих со стороны сверхпроводящего магнитного и электростатического подвесов, ротор 1 стремится к положению, близкому к центральному. Ток в верхней катушке 6 (фиг. 1) и напряженность магнитного поля в этом случае уменьшаются, напряженность электростатического поля увеличивается. При отсутствии действующего ускорения, в том числе и ускорения силы тяжести, токи в катушках 6 подвеса равны, а напряженности магнитного поля в рабочем зазоре подвеса имеют значение, равное опорному, например, половине критического поля для сверхпроводящего материала ротора 1 и сверхпроводящих формирующих экранов 2. Равны также потенциалы на рабочей поверхности 5 дополнительных экранов 4 и принимают значение, равное опорному, например, половине потенциала, определяющего электрический пробой рабочего зазора Δ1.

Далее обеспечивают равенство сил, действующих на ротор 1 со стороны магнитного и электростатического подвесов. Осуществляют регулирование системы взвешивания. Регулирование системы взвешивания ротора 1 включает установление коэффициентов усиления электростатического и магнитного подвесов с помощью устройств 10 и 12 и опорных напряженностей электростатического и магнитного полей в рабочем зазоре с помощью устройств 14 и 15. Равенство сил и их равномерное распределение обеспечивает компенсацию действующих возмущающих моментов.

Точность предлагаемого гироскопа с комбинированным подвесом ротора по сравнению с гироскопом, принятым за прототип, повышается. Повышение точности обусловлено исключением нескомпенсированной части возмущающего момента от неравномерного распределения сил, прикладываемых к несферичному ротору со стороны электростатического подвеса. Равномерность распределения сил электростатического подвеса достигнута благодаря введению дополнительного экрана, не обладающего сверхпроводящими свойствами (не препятствующего прохождению через него магнитного поля), рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор.

Поставленная задача решена.

На предприятии АО «Концерн «ЦНИИ "Электроприбор" разработана техническая документация предлагаемого устройства. Изготовлен и испытан его макет. Получены положительные результаты.

Криогенный гироскоп, содержащий герметичный корпус, сферический ротор, выполненный из сверхпроводящего материала, комбинированный подвес ротора, включающий систему сверхпроводящих экранов, установленных в корпусе попарно вдоль осей подвеса с противоположных сторон ротора и формирующих магнитное поле в рабочем зазоре подвеса, рабочая поверхность каждого из сверхпроводящих экранов, обращенная к ротору, выполнена в виде профилированной части сферы и образует со сферической поверхностью ротора переменный рабочий зазор, обеспечивающий равномерную плотность магнитного потока в зазоре, катушки возбуждения магнитного подвеса, установленные над сверхпроводящими формирующими экранами, схему управления магнитным подвесом, формирующую токи, протекающие в катушках возбуждения, схему управления электростатическим подвесом, формирующую электрический потенциал на поверхности сверхпроводящих экранов, отличающийся тем, что на профилированную рабочую поверхность каждого сверхпроводящего формирующего экрана установлен дополнительный экран, имеющий электрический контакт со сверхпроводящим формирующим экраном из материала, не обладающего сверхпроводящими свойствами, рабочая поверхность которого выполнена в виде части сферы и образует со сферической поверхностью ротора равномерный зазор, что обеспечивает равномерность плотности электрических сил в зазоре.
Криогенный гироскоп
Криогенный гироскоп
Криогенный гироскоп
Источник поступления информации: Роспатент

Showing 171-180 of 379 items.
27.03.2016
№216.014.c7fc

Подводная лодка с гидравлическими торпедными аппаратами

Изобретение относится к области подводного кораблестроения, а именно к устройству подводных лодок. Подводная лодка с гидравлическими торпедными аппаратами содержит прочный корпус, легкий корпус с волнорезными щитами, стреляющее устройство и торпедопогрузочное устройство, при этом торпедные...
Тип: Изобретение
Номер охранного документа: 0002578923
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c80b

Судно с воздушной каверной на днище и устройством для защиты от попадания воздуха на гребной винт

Изобретение относится к области судостроения и касается конструирования водоизмещающего судна с воздушной каверной на днище и гребным винтом, расположенным в диаметральной плоскости судна. Предложено самоходное судна с выемкой на днище, предназначенной для образования единой воздушной каверны,...
Тип: Изобретение
Номер охранного документа: 0002578896
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c898

Устройство активного гашения гидродинамического шума в системах трубопроводов

Изобретение относится к области виброакустической защиты, касается вопросов снижения и распространения гидродинамического шума в судовых и корабельных трубопроводах. Устройство функционирует как система активного гашения гидродинамического шума и представляет собой участок трубопровода с двумя...
Тип: Изобретение
Номер охранного документа: 0002578792
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c8ab

Устройство из полимерных композитных материалов для снижения радиолокационной заметности объектов различного назначения

Изобретение относится к области радиотехники. Устройство представляет собой многослойную конструкцию, состоящую из нескольких слоев: наружного слоя, выполненного из диэлектрического материала, поглощающих внутренних слоев электропроводящей ткани, соединенных прослойками диэлектрического...
Тип: Изобретение
Номер охранного документа: 0002578769
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.ca96

Способ бесплатформенной инерциальной навигации на микромеханических чувствительных элементах

Изобретение относится к навигационной технике, а именно к способам бесплатформенной инерционной навигации малогабаритных движущихся объектов. Способ бесплатформенной инерциальной навигации заключается в том, что на борту подвижного объекта устанавливают микромеханические гироскопы и...
Тип: Изобретение
Номер охранного документа: 0002577567
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cbf2

Установка для измерения механических сопротивлений упругих вставок в трубопроводах

Изобретение относится к испытательным стендам для определения механических сопротивлений упругих вставок в трубопроводы с жидкостью. Техническим результатом заявляемой установки является обеспечение проведения достоверных измерений механических сопротивлений гибких вставок в трубопроводы....
Тип: Изобретение
Номер охранного документа: 0002577790
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.cd6c

Система управления наполнением двигателя с турбонаддувом

Изобретение может быть использовано в двигателях с турбонаддувом. Система управления наполнением двигателя с турбонаддувом содержит средства измерения массового расхода воздуха во впускном трубопроводе, средства измерения частоты вращения коленчатого вала двигателя, педаль управления двигателем...
Тип: Изобретение
Номер охранного документа: 0002575235
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.ce64

Морская ветряная электростанция для работы преимущественно в условиях арктики

Изобретение относится к области энергетики, в частности к морским ветряным электростанциям, работающим преимущественно в условиях Арктики. Морская ветряная электростанция включает вертикально расположенную башню. В верхней части башни размещены гондола со ступицей и электрогенератором,...
Тип: Изобретение
Номер охранного документа: 0002575677
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.ce7e

Гибкий безреберный обтекатель антенны гидроакустической станции

Использование: область судостроения, а именно при разработке конструкций гидроакустических станций, и касается наружных форм и размеров обтекателя антенны. Сущность: разработана конструкция гибкого безреберного обтекателя антенны гидроакустической станции, конструкция которой содержит узел...
Тип: Изобретение
Номер охранного документа: 0002575589
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.ceb0

Способ определения координат скрытых контрольных точек при измерении отклонений от круговой формы сечений корпусов цилиндрических вставок судов или подводных лодок

Изобретение относится к измерительной технике и может быть использовано при измерении отклонений округлости сечений крупногабаритных тел вращения. Техническим результатом изобретения является повышение точности измерений округлости и снижение трудоемкости измерительного процесса. Указанный...
Тип: Изобретение
Номер охранного документа: 0002575593
Дата охранного документа: 20.02.2016
Showing 171-180 of 298 items.
27.10.2015
№216.013.88be

Способ исследования и совершенствования аэрогидродинамических компоновок экранопланов

Изобретение относится к экспериментальной аэродинамике, в частности к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов, и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов. Способ заключается в моделировании...
Тип: Изобретение
Номер охранного документа: 0002566609
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.897a

Якорное устройство судна

Изобретение относится к области судостроения и касается вопроса использования нетрадиционной компоновки якорного устройства. Предложено якорное устройство судна, включающее якорный механизм, расположенный на внутренней палубе, по меньшей мере один якорь с трендом и лапами, связанный с якорным...
Тип: Изобретение
Номер охранного документа: 0002566797
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.8981

Корпус водоизмещающего судна-полутримарана

Изобретение относится к области судостроения и касается конструирования обводов корпусов водоизмещающих судов, сочетающих элементы, характерные для обводов однокорпусных судов и тримаранов. Корпус водоизмещающего судна-полутримарана имеет носовую оконечность с обводами водоизмещающего...
Тип: Изобретение
Номер охранного документа: 0002566804
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8b63

Водоразбавляемая композиция

Изобретение относится к области водоразбавляемых лакокрасочных покрытий, получаемых методом электроосаждения на катоде, и может быть использовано для получения защитно-декоративных покрытий на стали, алюминии и его сплавах. Водоразбавляемая композиция включает эпоксиаминокаучуковый аддукт,...
Тип: Изобретение
Номер охранного документа: 0002567290
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bce

Способ получения 2,4,5-триметилбензойной (дуриловой) кислоты

Изобретение относится к способу получения дуриловой кислоты, применяемой в синтезе полиэфирных смол, пластификаторов, а также в производстве высокопрочных волокон для тканей аэростатов. Сущность изобретения заключается в окислении дурола водным раствором 50-58 мас.% азотной кислоты при...
Тип: Изобретение
Номер охранного документа: 0002567397
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e02

Штамп для штамповки крупногабаритных поршней

Изобретение относится к области металлургического машиностроения и может быть использовано при производстве поршней дизельных двигателей. В исходном состоянии пуансон 4 штампа для штамповки крупногабаритных поршней отведен цилиндром 6 по направляющим 5 в крайнее положение. Запорное кольцо 9...
Тип: Изобретение
Номер охранного документа: 0002567961
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e70

Гидроакустический преобразователь

Изобретение относится к области гидроакустики, а именно к конструкциям малогабаритных стержневых армированных пьезокерамических преобразователей, предназначенных для работы в составе многоэлементных антенн гидроакустических приемоизлучающих систем, например, для морского подводного оружия....
Тип: Изобретение
Номер охранного документа: 0002568073
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.93fe

Шестиколесный автомобиль с комбинированным приводом

Изобретение относится к гибридным транспортным средствам. Шестиколесный автомобиль с комбинированным приводом содержит передние, средние и задние колеса, тепловой двигатель, связанный с передними и средними колесами, коробку передач и раздаточную коробку, обратимую электрическую машину,...
Тип: Изобретение
Номер охранного документа: 0002569505
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95d6

Защитная конструкция от фугасного воздействия взрыва

Изобретение относится к способам защиты объекта от взрывного воздействия, может использоваться в защитных системах от подводного или воздушного взрывов и решает задачу повышения стойкости безнаборной защитной преграды, закрепленной на опорном контуре, к фугасному воздействию взрыва. Предложена...
Тип: Изобретение
Номер охранного документа: 0002569978
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9677

Устройство для зажигания горючей смеси в двигателе внутреннего сгорания

Изобретение относится к двигателям внутреннего сгорания, а именно к устройствам для зажигания топлива. Устройство содержит свечу зажигания с надетым на нее изолятором. Свеча зажигания расположена в футорке, выполненной с продольными внутренними пазами и имеющей резьбовое соединение с головкой...
Тип: Изобретение
Номер охранного документа: 0002570139
Дата охранного документа: 10.12.2015
+ добавить свой РИД