×
13.02.2018
218.016.20cc

Результат интеллектуальной деятельности: Способ и устройство для калибровки приемной активной фазированной антенной решетки

Вид РИД

Изобретение

Аннотация: Изобретение относится к антенной технике и может использоваться для калибровки приемных активных фазированных антенных решеток (АФАР), применяемых в радиолокационных станциях дальнего обнаружения. На вход каждого приемного модуля подают калибровочный сигнал в виде когерентной последовательности N радиоимпульсов, мощность которых имеет значения одного порядка с мощностью сигналов, поступающих на входы приемных модулей при работе РЛС в штатном режиме. После их усиления, преобразования на промежуточную частоту и аналого-цифрового преобразования с выделением квадратурных составляющих комплексных амплитуд выходных сигналов приемных модулей осуществляют их последовательное N-кратное когерентное суммирование. Формируют комплексные калибровочные коэффициенты путем сравнения комплексной амплитуды накопленного выходного сигнала приемного модуля, принятого за опорный, с комплексными амплитудами накопленных выходных сигналов калибруемых приемных модулей. Выравнивание комплексных коэффициентов передачи приемных модулей для обеспечения равномерного амплитудно-фазового распределения поля на раскрыве АФАР осуществляют путем комплексного умножения комплексных амплитуд выходных сигналов калибруемых приемных модулей на соответствующие комплексные калибровочные коэффициенты. Причем диаграмму направленности АФАР формируют путем весового суммирования комплексной амплитуды выходного сигнала опорного приемного модуля со скорректированными значениями комплексных амплитуд выходных сигналов всех калибруемых приемных модулей. Технический результат заключается в повышении точности калибровки при одновременном упрощении конструкции приемного модуля АФАР. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области антенной техники и может использоваться для калибровки приемных активных фазированных антенных решеток (АФАР), используемых в радиолокационных станциях (РЛС) дальнего обнаружения.

Известен способ калибровки АФАР, состоящий в том, что излучают вспомогательной антенной сигнал, принимают его контролируемой антенной, измеряют мощность сигнала на выходе контролируемой антенны и сравнивают ее с заданным значением [2]. Недостаток этого способа состоит в том, что для обеспечения близкого к плоскому фронта падающей на апертуру контролируемой АФАР электромагнитной волны расстояние R между антеннами должно быть таким, чтобы фазовая неравномерность не превышала некоторого допустимого значения . Так, в случае прямоугольного раскрыва АФАР с размерами 100×30 м, при =10° и длине волны λ=0,6 м расстояние между антеннами должно быть не менее 75 км. Техническая реализация способа связана со значительными организационными и технологическими сложностями. Известен способ калибровки приемной антенны АФАР [3], в котором на вход каждого приемного модуля поочередно подают входной сигнал, измеряют амплитуду и фазу сигнала на выходе приемного модуля, на основе этих измерений формируют калибровочные коэффициенты, которые используют для регулировки комплексного коэффициента передачи каждого приемного модуля, добиваясь их идентичности. Недостаток данного способа состоит в том, что для его реализации требуется высокоточный измерительный прибор, поскольку измерение параметров выходных сигналов каждого приемного модуля производится вне связи с измерениями выходных сигналов других приемных модулей, т.е. измеряются абсолютные значения амплитуды и фазы сигналов на выходах приемных модулей. От этого недостатка свободен способ калибровки АФАР [4], в соответствии с которым один из приемных модулей принимают в качестве опорного, подают калибровочный сигнал на вход каждого приемного модуля, сравнивают по очереди параметры сигналов с выходов всех калибруемых модулей с параметрами выходного сигнала опорного модуля, при этом измеряют разность фаз и амплитуд, формируют на основе измерений калибровочные коэффициенты для каждого приемного модуля, которые используют для регулировки комплексных коэффициентов передачи каждого приемного модуля, добиваясь их идентичности с помощью управляемых аттенюаторов и фазовращателей. Недостаток данного способа состоит в том, что с одной стороны для достижения необходимой точности измерений амплитуды и фазы выходных сигналов необходимо обеспечить значительное превышение мощности калибровочного сигнала над мощностью собственных шумов приемных модулей, с другой стороны - мощность калибровочных сигналов должна находиться в пределах возможных значений мощности принимаемых отраженных от целей сигналов при работе РЛС в штатном режиме.

От этого недостатка свободен способ калибровки N-элементной приемной АФАР РЛС дальнего обнаружения [1], включающий подачу на вход каждого приемного модуля калибровочного сигнала, его предварительное усиление на несущей частоте, частотное преобразование, усиление на промежуточной частоте, аналого-цифровое преобразование с выделением квадратурных составляющих комплексных амплитуд выходных сигналов и формирование корректирующих кодов на основе сравнения модулей и аргументов комплексных амплитуд выходных сигналов каждого из N-1 калибруемых приемных модулей с модулем и аргументом комплексной амплитуды выходного сигнала одного из приемных модулей, принятого за опорный, причем в качестве калибровочного сигнала применяют когерентную последовательность из N радиоимпульсов, мощность которых имеет величину одного порядка с мощностью поступающих на вход каждого приемного модуля отраженных от целей сигналов при работе РЛС в штатном режиме, т.е. при отношении сигнал-шум по мощности ρ<<1. Для обеспечения требуемого отношения сигнал-шум квадратурные составляющие выходных сигналов перед формированием калибровочных коэффициентов подвергают N-кратному последовательному суммированию. При этом отношение сигнал-шум по мощности увеличивается в N раз, что позволяет формировать калибровочные коэффициенты, которые используют для регулирования комплексных коэффициентов передачи калибруемых приемных модулей с целью их выравнивания и обеспечения равномерного амплитудно-фазового распределения поля на апертуре АФАР. Данный способ наиболее близок к предлагаемому и принят в качестве прототипа.

Недостатками прототипа являются низкая точность калибровки, вызванная погрешностями, вносимыми управляемыми фазовращателями и аттенюаторами, и сложность технической реализуемости способа, связанная с необходимостью конструктивных изменений приемных модулей для включения в их состав фазовращателей и аттенюаторов.

Задачей изобретения является повышение точности калибровки приемной АФАР РЛС дальнего обнаружения при одновременном упрощении его технической реализации.

Указанная задача решается за счет того, что выравнивание амплитудно-фазового распределения на апертуре АФАР осуществляют путем умножения комплексных амплитуд выходных сигналов калибруемых приемных модулей на комплексные калибровочные коэффициенты, сформированные на основе сравнения комплексных амплитуд накопленных сигналов с выходов всех калибруемых приемных модулей с комплексной амплитудой накопленного сигнала с выхода опорного приемного модуля. При этом выполняют следующие операции. Формируют калибровочный сигнал в виде последовательности из N когерентных радиоимпульсов, где N - число элементов АФАР. Подают калибровочный сигнал на входы каждого приемного модуля. После предварительного усиления его на несущей частоте, частотного преобразования, основного усиления на промежуточной частоте производят аналого-цифровое преобразование выходного сигнала с выделением его квадратурных составляющих. Квадратурные составляющие выходных сигналов каждого приемного модуля подают на цифровые накапливающие сумматоры, где производят последовательное N-кратное суммирование квадратурных составляющих выходных сигналов. По накопленным значениям квадратурных составляющих выходных сигналов определяют их амплитуды и фазы. Сравнивают амплитуду и фазу накопленного выходного сигнала каждого приемного модуля с амплитудой и фазой одного из приемных модулей, принятого в качестве опорного. На основе сравнения амплитуд и фаз накопленных сигналов с выходов (N-1) калибруемых приемных модулей с амплитудой и фазой накопленного сигнала с выхода опорного приемного модуля формируют комплексные калибровочные коэффициенты, которые используют для калибровки комплексных коэффициентов передачи всех (N-1) калибруемых приемных модулей путем умножения комплексных амплитуд выходных сигналов калибруемых приемных модулей на соответствующие комплексные калибровочные коэффициенты. Сигнал с выхода опорного приемного модуля и сигналы с выходов калибруемых приемных модулей подают на систему цифрового формирования диаграммы направленности АФАР [5, с. 17-31].

Техническим результатом изобретения является повышение точности калибровки приемной АФАР при одновременном упрощении ее технической реализации за счет исключения из состава всех приемных модулей управляемых аттенюаторов и фазовращателей и применения вместо них цифровых комплексных перемножителей.

Сущность изобретения иллюстрируется следующими фигурами: на фиг. 1 приведена структурная схема устройства для калибровки приемной АФАР; на фиг. 2 - структурная схема приемного модуля АФАР; на фиг. 3 - структурная схема блока калибровки; на фиг. 4 - структурная схема генератора калибровочных сигналов.

Устройство, реализующее предлагаемый способ калибровки АФАР, содержит (фиг. 1) N калибруемых приемных модулей 1 с излучателями 2, выходы квадратурных составляющих комплексных амплитуд выходных сигналов каждого приемного модуля и (i∈0, N-1) соединены с соответствующими входами блока калибровки 3, выходы калибровочных сигналов «КС» с номерами 0, 1, …i… (N-1) соединены с калибровочными входами соответствующих приемных модулей 1, а выходы квадратурных составляющих комплексных амплитуд выходных сигналов калибруемых приемных модулей , , …, , , …, , , а также выходы квадратурных составляющих комплексной амплитуды выходного сигнала опорного приемного модуля и подключены к соответствующим входам системы 4 цифрового формирования диаграммы направленности АФАР. Каждый приемный модуль АФАР (фиг. 2) содержит входной малошумящий усилитель 5, смеситель - 6, усилитель промежуточной частоты - 7, аналого-цифровой квадратурный преобразователь - 8. Дополнительно в схему каждого приемного модуля включен коммутатор - 9, первый вход которого соединен с излучателем 2, второй вход соединен с i-м выходом (i - номер приемного модуля, i∈0, Ν-1) блока калибровки - 3, управляющий вход коммутатора 9 соединен с пультом управления РЛС для подачи команды «ПУСК», а выход соединен с входом малошумящего усилителя 5, выход которого подключен к первому входу смесителя 6, на второй вход которого подано напряжение гетеродина Uгет, а выход подключен к входу усилителя промежуточной частоты 7, выход которого подключен к входу аналого-цифрового квадратурного преобразователя 8. Квадратурные выходы аналого-цифрового квадратурного преобразователя 8 , , (i∈0…N-1) являются выходами каждого приемного модуля и соединены с соответствующими входами блока калибровки 3. Блок калибровки 3 (фиг. 3) содержит генератор калибровочных сигналов - 10, выход калибровочных сигналов «КС» которого соединен с входом СВЧ делителя мощности - 11, выходы 0, …, i, …, (N-1) которого подключены к i калибровочным входам коммутатора 9 соответствующих приемных модулей (фиг. 2). Выход тактовых импульсов «ТИ» генератора калибровочных сигналов 10 подключен к входам синхронизации накапливающих сумматоров - 12i, 13i, (i∈0, N-1) квадратурных составляющих комплексных амплитуд выходных сигналов приемных модулей, информационные входы указанных накапливающих сумматоров соединены с соответствующими выходами квадратурных составляющих комплексных амплитуд выходных сигналов приемных модулей и (i∈0, N-1), а выходы накапливающих сумматоров подключены к входам соответствующих вычислителей модуля - 14i и аргумента - 15i (i∈0, N-1). Выходы вычислителей модуля 14i и аргумента 15i подключены к входам вычислителя комплексных коэффициентов калибровки - 16, выходы действительной части и мнимой части (i∈1, N-1) комплексных коэффициентов калибровки (i∈1,N-l) которого подключены к первым входам комплексных перемножителей - 17i (i∈1, N-1), а ко вторым входам указанных комплексных перемножителей подсоединены выходы соответствующих калибруемых приемных модулей от 1-го до (N-l)-гo. Выходы всех комплексных перемножителей 17i являются выходами калиброванных амплитуд выходных сигналов приемных модулей , (i∈1, N-1) и соединены с входами системы цифрового формирования диаграммы направленности 4 АФАР (фиг. 1). Генератор калибровочных сигналов 10 (фиг. 4) содержит кварцевый генератор - 18, выход которого подключен к входу гетеродина - 19, выход которого является выходом напряжения гетеродина Uгет, кроме того, выход кварцевого генератора 18 подключен к входу делителя частоты - 20 и к первому входу схемы «И» - 21, второй вход которой соединен с выходом триггера - 22, а выход соединен с входом генератора тактовых импульсов - 23, выход которого является выходом тактовых импульсов («ТИ») генератора калибровочных сигналов 10 и, кроме того, подключен к входу генератора модулирующих импульсов - 24 и к входу реверсивного счетчика - 25, выход которого подключен к первому входу триггера 22, второй вход которого является входом «ПУСК» генератора калибровочных сигналов 10, выход генератора модулирующих импульсов 24 подключен ко второму входу модулятора - 26, выход которого является выходом калибровочных сигналов «КС» генератора 10.

Калибровку приемных модулей фазированных антенных решеток осуществляют следующим образом. Для начала работы на вход генератора калибровочных сигналов 10 подают сигнал «ПУСК» с пульта оператора РЛС. При этом триггер 22 (фиг. 4) переводится в состояние «1», открывается схема «И» 21 (фиг. 4), коммутаторы 9 всех приемных модулей (фиг. 2) подключают входы малошумящих усилителей 5 всех приемных модулей к выходам калибровочных сигналов «КС» генератора калибровочных сигналов 10 (фиг. 3). Кварцевый генератор 18 (фиг. 4) вырабатывает гармоническое напряжение с частотой ƒкв.г, которое в делителе частоты 20 (фиг. 4) после ограничения по амплитуде преобразуется в импульсное напряжение типа «меандр» той же частоты, на выходе делителя частоты 20 формируется последовательность импульсов, частота повторения которых FТИкв.г/n, где n - коэффициент деления частоты. Эти импульсы проходят через открытую схему «И» 21 (фиг. 4) и запускают генератор тактовых импульсов 23, где они преобразуются в прямоугольные импульсы заданной длительности τТИ, которые поступают на выход «ТИ» генератора калибровочных сигналов 10 (фиг. 3) и используются для синхронизации накапливающих сумматоров 11i, 12i (фиг. 3). Кроме того, импульсы с выхода генератора тактовых импульсов 23 (фиг. 4) поступают на вход генератора модулирующих импульсов 24, где они преобразуются в прямоугольные импульсы заданной длительности τКС, которые открывают нормально закрытый модулятор 26 (фиг. 4), преобразующий непрерывные колебания кварцевого генератора 18 частоты ƒкв.г в когерентную последовательность из N радиоимпульсов калибровочного сигнала длительностью τкс с частотой повторения FПкв.г/n. Когерентность пачки N калибровочных импульсов обеспечивается тем, что модулирующие импульсы формируются из гармонических колебаний кварцевого генератора 18 после деления их частоты в n раз делителем частоты 20. Кроме того, тактовые импульсы с выхода генератора тактовых импульсов 23 (фиг. 4) поступают на вход реверсивного счетчика импульсов 25, который после поступления на него N тактовых импульсов обнуляется и формирует сигнал, переводящий триггер 22 в нулевое состояние, в результате чего схема «И» 21 закрывается и прекращается формирование тактовых импульсов «ТИ» и импульсов калибровочного сигнала «КС». Сформированные таким образом N когерентных радиоимпульсов через делитель мощности 11 (фиг. 3) и через коммутаторы 9 (фиг. 2) поступают на входы всех приемных модулей, где предварительно усиливаются малошумящим усилителем 5, преобразуются на промежуточную частоту смесителем 6, на второй вход которого подано напряжение гетеродина UГЕТ с соответствующего выхода генератора калибровочных сигналов 10. Когерентность импульсов промежуточной частоты обеспечивается тем, что напряжение гетеродина UГЕТ в блоке генератора калибровочных сигналов 10 формируется из колебаний кварцевого генератора 18. После усиления усилителем промежуточной частоты 7 (фиг. 2) эти импульсы преобразуются в цифровую форму аналого-цифровым квадратурным преобразователем 8 (фиг. 2) с выделением квадратурных составляющих и комплексной амплитуды выходного сигнала i-го приемного модуля (i∈0, N-1), которые поступают на соответствующие накапливающие сумматоры 11i, 12i (фиг. 3), на выходе которых в результате N-кратного когерентного суммирования формируются суммарные комплексные сигналы с действительной и мнимой частями. Результаты суммирования и поступают на соответствующие вычислители модуля 14i и аргумента 15i (фиг. 3).

Результаты вычислений модуля комплексной суммарной амплитуды и аргумента φΣί поступают на входы вычислителя комплексных калибровочных коэффициентов 16 (фиг. 3), которые для каждого калибруемого приемного модуля определяются как отношение комплексной амплитуды накопленного выходного сигнала нулевого (опорного) приемного модуля к комплексной амплитуде накопленного выходного сигнала i-гo калибруемого приемного модуля .

Действительную и мнимую части комплексного калибровочного коэффициента каждого калибруемого приемного модуля с номерами i∈(1, N-1) подают на первые входы соответствующих комплексных перемножителей 17i (фиг. 3), на вторые входы которых подают выходные сигналы соответствующих калибруемых приемных модулей.

В результате чего на выходах перемножителей 17i получают калиброванные значения комплексных амплитуд выходных сигналов калибруемых приемных модулей , квадратурные составляющие которых в точности равны квадратурным составляющим комплексной амплитуды выходного сигнала нулевого (опорного) приемного модуля, т.е. выходные сигналы всех приемных модулей оказываются одинаковыми как по амплитуде, так и по фазе. Непосредственно с выхода нулевого (опорного) модуля и с выходов соответствующих комплексных перемножителей 17i (фиг. 3) на вход схемы цифрового формирования диаграммы направленности 4 (фиг. 1) поступают равноамплитудные и синфазные сигналы, путем взвешенного суммирования которых формируется диаграмма направленности (ДН) АФАР [5].

Данный способ калибровки приемных модулей АФАР позволяет повысить точность калибровки приемной АФАР при одновременном существенном упрощении его технической реализации за счет исключения из состава всех приемных модулей управляемых аттенюаторов и фазовращателей.

Источники информации

1. Шишов Ю.А., Ворошилов В.А., Ясенков Т.В. Особенности калибровки приемных антенных решеток РЛС дальнего обнаружения. - Труды XXVIII Всероссийского симпозиума «Радиолокационное исследование природных сред» // Том 2, СПб., ВКА имени А.Ф. Можайского, 2013 г., с. 127-135 (прототип).

2. Бубнов Г.Г. и др. Коммутационный способ измерения характеристик фазированных антенных решеток. - М.: Радио и связь, 1989 г. - 120 с.

3. Патент РФ №2147753, G01S 7/40. Способ калибровки антенной решетки / Б.Г. Йоханиссон, У. Фарссен. - №97100131/09; Заявлено 01.06.1995. Опубликовано 20.04.2000.

4. Патент РФ №2467346, G01S 7/40. Способ калибровки активной фазированной антенной решетки / В.В. Задорожный, А.Ю. Ларин. - №2011127436/08; Заявлено 04.07.2011. Опубликовано 20.11.2012.

5. Григорьев Л.Н. Цифровое формирование диаграммы направленности в фазированных антенных решетках. - М.: Радиотехника, 2010 г. - 144 с.


Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Способ и устройство для калибровки приемной активной фазированной антенной решетки
Источник поступления информации: Роспатент

Showing 211-220 of 632 items.
12.01.2017
№217.015.5fc4

Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 2

Изобретение относится к системам связи с погруженными объектами на волнах сверхнизкочастотного (СНЧ) и крайненизкочастотного (КНЧ) диапазонов. Технический результат - обеспечение электромагнитной совместимости «Системы связи…» с РЭС, линиями электропередачи, кабельными линиями связи,...
Тип: Изобретение
Номер охранного документа: 0002590899
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6492

Дискретный согласованный фильтр

Изобретение относится к технике цифровой связи и сигнализации и может быть использовано для квазиоптимального асинхронного приема сообщений. Технический результат - упрощение реализации и повышение надежности работы фильтра. Устройство содержит компаратор с порогом срабатывания по среднему...
Тип: Изобретение
Номер охранного документа: 0002589404
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6950

Узлы прохода панели звукоизолирующей и способ их изготовления

Группа изобретений относится к области транспортного машиностроения. Узлы прохода звукоизолирующей панели изготовлены в пластине из упругого эластичного материала с проходящими через ее фигурные отверстия длинномерными изделиями. Сектора в пластинах из упругого эластичного материала охватывают...
Тип: Изобретение
Номер охранного документа: 0002591781
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.729f

Многоканальное сейсмическое устройство обнаружения и классификации нарушителей

Изобретение относится к техническим средствам обнаружения человека, определения его местоположения в контролируемой зоне по создаваемым им сейсмическим колебаниям. Технический результат заключается в том, что предлагаемое устройство позволяет с вероятностью 0,97 при доверительной вероятности...
Тип: Изобретение
Номер охранного документа: 0002598319
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7500

Система электроснабжения космического аппарата

Использование: в области электротехники для электроснабжения космических аппаратов от первичных источников разной мощности. Технический результат - повышение надежности электроснабжения. Система электроснабжения космического аппарата содержит: группу солнечных батарей прямого солнечного света...
Тип: Изобретение
Номер охранного документа: 0002598862
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.766c

Способ высокоточного поражения радиоэлектронных объектов

Изобретение относится к вооружению, в частности к системам огневого поражения радиоэлектронных объектов. Для поражения РЭС, функционирующих в СЧ, ВЧ и ОВЧ, на одном управляемом боеприпасе (УБП) используется два метода самонаведения: на начальных участках полета для поиска и грубого наведения на...
Тип: Изобретение
Номер охранного документа: 0002598687
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.771a

Двухканальный тепловизионно-ночной наблюдательный прибор

Двухканальный тепловизионно-ночной наблюдательный прибор содержит тепловизионный канал, состоящий из объектива тепловизионного канала, матричного приемника излучения, плоского дисплея, лупы тепловизионного канала, куб-призмы. Дополнительно указанный прибор содержит ночной канал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002599747
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.77be

Способ длительного хранения зенитных управляемых ракет средней дальности и дальнего действия в заглубленных шахтах

Изобретение относится к области военной техники, в частности к способам хранения ЗУР средней дальности и дальнего действия. Способ длительного хранения зенитных управляемых ракет средней дальности и дальнего действия в заглубленных шахтах заключается в хранении ракет в герметичных контейнерах...
Тип: Изобретение
Номер охранного документа: 0002598958
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.77c5

Виброустойчивый дренажно-предохранительный клапан

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК) системы топливоподачи к насосам двигателей, работающим в большом диапазоне частот внешних вибровоздействий и предназначенным для поддержания в заданных пределах давления в газовых...
Тип: Изобретение
Номер охранного документа: 0002598965
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7883

Самолёт с обтекателем антенн

Изобретение относится к авиационной технике. Самолет с обтекателем антенн содержит радиопрозрачный обтекатель и элементы его стыковки с поверхностью фюзеляжа. Радиопрозрачный обтекатель выполнен цельной конструкции и содержит на усиленном торце по контуру стыковочный пояс уголкового сечения,...
Тип: Изобретение
Номер охранного документа: 0002599078
Дата охранного документа: 10.10.2016
Showing 211-220 of 355 items.
12.01.2017
№217.015.5cb8

Способ обнаружения и оценки радионавигационных параметров сигнала космической системы навигации, рассеянного воздушной целью, и устройство его реализации

Изобретение относится к областям радионавигации и радиолокации и может быть использовано для создания приемника многопозиционной неизлучающей радиолокационной системы, использующей в качестве сигнала подсвета воздушных целей навигационные сигналы космической системы навигации. Достигаемым...
Тип: Изобретение
Номер охранного документа: 0002591052
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fc4

Система связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами - 2

Изобретение относится к системам связи с погруженными объектами на волнах сверхнизкочастотного (СНЧ) и крайненизкочастотного (КНЧ) диапазонов. Технический результат - обеспечение электромагнитной совместимости «Системы связи…» с РЭС, линиями электропередачи, кабельными линиями связи,...
Тип: Изобретение
Номер охранного документа: 0002590899
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6492

Дискретный согласованный фильтр

Изобретение относится к технике цифровой связи и сигнализации и может быть использовано для квазиоптимального асинхронного приема сообщений. Технический результат - упрощение реализации и повышение надежности работы фильтра. Устройство содержит компаратор с порогом срабатывания по среднему...
Тип: Изобретение
Номер охранного документа: 0002589404
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6950

Узлы прохода панели звукоизолирующей и способ их изготовления

Группа изобретений относится к области транспортного машиностроения. Узлы прохода звукоизолирующей панели изготовлены в пластине из упругого эластичного материала с проходящими через ее фигурные отверстия длинномерными изделиями. Сектора в пластинах из упругого эластичного материала охватывают...
Тип: Изобретение
Номер охранного документа: 0002591781
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.729f

Многоканальное сейсмическое устройство обнаружения и классификации нарушителей

Изобретение относится к техническим средствам обнаружения человека, определения его местоположения в контролируемой зоне по создаваемым им сейсмическим колебаниям. Технический результат заключается в том, что предлагаемое устройство позволяет с вероятностью 0,97 при доверительной вероятности...
Тип: Изобретение
Номер охранного документа: 0002598319
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7500

Система электроснабжения космического аппарата

Использование: в области электротехники для электроснабжения космических аппаратов от первичных источников разной мощности. Технический результат - повышение надежности электроснабжения. Система электроснабжения космического аппарата содержит: группу солнечных батарей прямого солнечного света...
Тип: Изобретение
Номер охранного документа: 0002598862
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.766c

Способ высокоточного поражения радиоэлектронных объектов

Изобретение относится к вооружению, в частности к системам огневого поражения радиоэлектронных объектов. Для поражения РЭС, функционирующих в СЧ, ВЧ и ОВЧ, на одном управляемом боеприпасе (УБП) используется два метода самонаведения: на начальных участках полета для поиска и грубого наведения на...
Тип: Изобретение
Номер охранного документа: 0002598687
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.771a

Двухканальный тепловизионно-ночной наблюдательный прибор

Двухканальный тепловизионно-ночной наблюдательный прибор содержит тепловизионный канал, состоящий из объектива тепловизионного канала, матричного приемника излучения, плоского дисплея, лупы тепловизионного канала, куб-призмы. Дополнительно указанный прибор содержит ночной канал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002599747
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.77be

Способ длительного хранения зенитных управляемых ракет средней дальности и дальнего действия в заглубленных шахтах

Изобретение относится к области военной техники, в частности к способам хранения ЗУР средней дальности и дальнего действия. Способ длительного хранения зенитных управляемых ракет средней дальности и дальнего действия в заглубленных шахтах заключается в хранении ракет в герметичных контейнерах...
Тип: Изобретение
Номер охранного документа: 0002598958
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.77c5

Виброустойчивый дренажно-предохранительный клапан

Изобретение относится к области ракетно-космической техники, а именно к дренажно-предохранительным клапанам (ДПК) системы топливоподачи к насосам двигателей, работающим в большом диапазоне частот внешних вибровоздействий и предназначенным для поддержания в заданных пределах давления в газовых...
Тип: Изобретение
Номер охранного документа: 0002598965
Дата охранного документа: 10.10.2016
+ добавить свой РИД