×
13.02.2018
218.016.1ef2

Результат интеллектуальной деятельности: Способ получения изотопных разновидностей элементарного германия с высокой изотопной и химической чистотой

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения высокочистых веществ и касается разработки способа получения изотопнообогащенного германия, который может быть использован в микроэлектронике, ИК-оптике, нанофотонике, фундаментальных физических исследованиях. Исходным соединением для получения моноизотопных Ge, Ge, Ge, Ge является обогащенный одним изотопом германия моногерман, полученный в обогащенном состоянии последовательным выделением при центрифужном разделении моногермана с природным изотопным составом. Выделение германия осуществляют пиролизом моногермана при температуре 350-450°C и давлении 1050-1100 мбар. Его проводят в кварцевом трубчатом реакторе, внутренние стенки которого покрыты слоем пиролитического углерода. После осаждения поликристаллического германия его сплавляют непосредственно в реакторе в компактный слиток. Обеспечивается получение изотопов германия с высокой степенью изотопной и химической чистоты с выходом продукта более 95%. 2 з.п. ф-лы, 4 пр.

Изобретение относится к области получения высокочистых веществ и касается разработки способа получения высокочистого изотопнообогащенного германия 72Ge, 73Ge, 74Ge, 76Ge, который может быть использован в микроэлектронике, ИК-оптике, нанофотонике. Монокристаллы изотопнообогащенного германия обладают более высокой теплопроводностью и термоэдс по сравнению с природным германием. Четные изотопы германия обладают нулевым ядерным спином, что позволяет использовать их в качестве матрицы элементов квантовых компьютеров. Монокристаллы изотопа 76Ge используются как материал детекторов для исследований процессов двойного бета-распада и других фундаментальных физических процессов.

Известен способ получения изотопов германия из изотопнообогащенного тетрафторида германия (Способ получения изотопнообогащенного германия Патент РФ №2280616, МКИ C01G 17/02, С22В 41/00, опубл. 27.07.2006). Способ заключается в том, что изотопнообогащенную фракцию тетрафторида германия растворяют в смеси этилового спирта и четыреххлористого углерода в присутствии комплексообразователя, например лимонной кислоты. К полученному раствору добавляют раствор пероксида водорода, азотную кислоту и упаривают досуха. Сухой остаток прокаливают и направляют на восстановление до германия водородом. Выход изотопнообогащенного германия составляет около 90%, химическая чистота 99,9%.

Недостатком способа является высокая коррозионная активность тетрафторида германия и продуктов его гидролиза, необходимость использования дополнительных реагентов, многостадийность процесса, необходимость работы с мелкодисперсными порошками GeO2 и Ge, обладающими развитой поверхностью. Это может приводить к загрязнению получаемого германия, снижает производительность процесса.

Другой известный способ получения изотопнообогащенного германия основан на прямом плазмохимическом восстановлении тетрафторида германия водородом в низкотемпературной неравновесной плазме («Способ получения изотопно-обогащенного германия», Патент РФ № 2483130, С22В, опубл. 27.05.2013).

Способ включает плазмохимическое разложение соответствующего изотопно-обогащенного тетрафторида германия в смеси с водородом в неравновесной плазме ВЧ разряда и осаждение германия на подложку, при этом осаждение германия ведут вне зоны горения разряда при давлении 200-300 мТорр, соотношении потоков GeF4 и Н2 не менее 1:4 и их общем расходе 100-150 см3/мин. Производительность предлагаемого способа составляет не менее 5 г/час поликристаллического германия, выход готового продукта - 90-95%.

Недостатком способа является невысокая химическая чистота получаемого германия. В поликристаллическом германии-72 содержание примеси мышьяка составило 4,5⋅1016 ат/см3, кислорода - 1019÷1020 ат/см3, углерода - 5⋅1017÷5⋅1018 ат/см3. Концентрация некомпенсированных носителей заряда в выращенном монокристалле составила 1⋅1015 см-3, удельное электросопротивление при температуре 295 К - 1,5 Ом⋅см. Это может быть связано с высокой коррозионной активностью компонентов плазмы, которые взаимодействуют с материалом аппаратуры. Кроме того в указанном способе, германий получают в виде порошка с высокоразвитой поверхностью. Для сплавления порошка в слиток необходимо извлекать его из реактора и переносить в установку для сплавления. При этом поверхность порошка может адсорбировать примеси из окружающей среды. Упомянутое решение взято в качестве прототипа.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа получения изотопнообогащенного германия 72Ge, 73Ge, 74Ge, 76Ge с высокой степенью химической и изотопной чистоты с выходом продукта более 95%.

Эта задача решается за счет того, что в отличие от известного способа получения изотопнообогащенного германия в заявляемом способе в качестве исходного вещества для выделения изотопов из неорганических соединений используется не тетрафторид германия, а моногерман, обогащенный соответствующим изотопом германия, полученный в обогащенном состоянии последовательным выделением при центрифужном разделении моногермана с природным изотопным составом.

Сущность изобретения заключается в том, что изотопнообогащенный моногерман очищают от примесей методом низкотемпературной ректификации, а затем выделяют из него изотоп германия в элементарной форме путем пиролиза при температуре 350-450°C. Процесс пиролиза проводится в кварцевом трубчатом реакторе в потоке моногермана при давлении 1050-1100 мбар. Нагрев осуществляется при помощи внешнего резистивного нагревателя. Внутреннюю поверхность реактора предварительно покрывают слоем пиролитического углерода, который предотвращает смачивание поверхности реактора германием. Германий осаждается в нагретой зоне реактора в виде поликристаллического осадка на стенках реактора. После окончания процесса пиролиза поток моногермана перекрывают, температуру нагревателя повышают до 1000°C и сплавляют поликристаллический осадок в компактный слиток. Сплавление проводится в среде водорода, который образовался при пиролизе моногермана. Полученные слитки имеют удельное электросопротивление при температуре 295 К 40-45 Ом⋅см, что соответствует концентрации носителей заряда ~2⋅1013 см-3. Таким образом, концентрация носителей заряда в германии, полученном по заявляемому способу, ~ в 50 раз ниже, чем в прототипе. Масс-спектрометрический анализ слитков изотопов германия показал, что содержание 72 анализируемых примесей не превышает предела обнаружения метода (10-5-10-6 ат. %). Это свидетельствует о высокой химической чистоте получаемого германия. Выход германия составляет более 95%.

Полученные слитки моноизотопного германия подвергали дополнительной очистке методом зонной плавки, а затем выращивали монокристаллы изотопов германия. Концентрация носителей заряда в монокристаллах при Т=77 К составила 5⋅1010-5⋅1012 см-3. Сопоставление изотопного состава исходного обогащенного моногермана и полученных из него монокристаллов показала, что на всех стадиях процесса получения германия изотопное разбавление отсутствует.

Пример 1

Получение слитка изотопа германия-73 (обогащение 99,9%), его зонная очистка и выращивание монокристалла.

Трубчатый реактор из кварцевого стекла диаметром 40 мм откачивают до остаточного давления 10-5 мбар, устанавливают температуру нагревателя 1100°C и подают в реактор газовую смесь метана и аргона в соотношении 1:10. При термическом разложении метана на внутренних стенках реактора образуется слой пиролитического углерода. Затем температуру нагревателя снижают до 400°C, реактор снова откачивают до остаточного давления 10-5 мбар, напускают в него моногерман, обогащенный изотопом 73Ge, до давления 1050 мбар, устанавливают поток моногермана через реактор 30 мл/мин. Моногерман разлагается в нагретой зоне реактора на водород и поликристаллический германий, который осаждается на внутренних стенках реактора. Затем подачу моногермана в реактор прекращают, температуру нагревателя повышают до 1000°C и сплавляют поликристаллический германий-73 в компактный слиток. Сплавление проводится в среде водорода, который образовался в реакторе при пиролизе моногермана. Температуру нагревателя снижают до комнатной температуры, реактор продувают аргоном, вскрывают и извлекают слиток германия-73. Слиток германия имеет массу ~60 г. Выход германия составляет 97%. Содержание основного изотопа 73Ge - 99,9 ат. %. Удельное электросопротивление при температуре 295 К 40-45 Ом⋅см. Содержание 72-х примесей по данным масс-спектрометрического анализа не превышает 10-5-10-6 масс. % Слиток дополнительно очищают от химических примесей методом зонной плавки и выращивают монокристалл. По данным измерений эффекта Холла, концентрация носителей заряда при Т=77 K в монокристалле 73Ge составляет (1-3)⋅1012 см-3.

Пример 2

Получение слитка изотопа германия-72 (обогащение 99,98%), его зонная очистка и выращивание монокристалла.

Трубчатый реактор из кварцевого стекла диаметром 40 мм откачивают до остаточного давления 10-5 мбар, устанавливают температуру нагревателя 1100°C и подают в реактор газовую смесь метана и аргона в соотношении 1:10. При термическом разложении метана на внутренних стенках реактора образуется слой пиролитического углерода. Затем температуру нагревателя снижают до 350°C, реактор снова откачивают до остаточного давления 10-5 мбар, напускают в него моногерман, обогащенный изотопом 72Ge, до давления 1100 мбар, устанавливают поток моногермана через реактор 30 мл/мин. Моногерман разлагается в нагретой зоне реактора на водород и поликристаллический германий, который осаждается на внутренних стенках реактора. Затем подачу моногермана в реактор прекращают, температуру нагревателя повышают до 1000°C и сплавляют поликристаллический германий-72 в компактный слиток. Сплавление проводится в среде водорода, который образовался в реакторе при пиролизе моногермана. Температуру нагревателя снижают до комнатной температуры, реактор продувают аргоном, вскрывают и извлекают слиток германия-72. Слиток германия имеет массу ~58 г. Выход германия составляет 97%. Содержание основного изотопа 72Ge - 99,98 ат. %. Удельное электросопротивление при температуре 295 К 40-45 Ом⋅см. Содержание 72-х примесей по данным масс-спектрометрического анализа не превышает 10-5-10-6 масс. %

Слиток дополнительно очищают от химических примесей методом зонной плавки и выращивают монокристалл. По данным измерений эффекта Холла, концентрация носителей заряда при Т=77 K в монокристалле 72Ge составляет (2-5)⋅1012 см-3.

Пример 3

Получение слитка изотопа германия-74 (обогащение 99,93%) его зонная очистка и выращивание монокристалла.

Трубчатый реактор из кварцевого стекла диаметром 40 мм откачивают до остаточного давления 10-5 мбар, устанавливают температуру нагревателя 1100°C и подают в реактор газовую смесь метана и аргона в соотношении 1:10. При термическом разложении метана на внутренних стенках реактора образуется слой пиролитического углерода. Затем температуру нагревателя снижают до 450°C, реактор снова откачивают до остаточного давления 10-5 мбар, напускают в него моногерман, обогащенный изотопом 74Ge, до давления 1100 мбар, устанавливают поток моногермана через реактор 30 мл/мин. Моногерман разлагается в нагретой зоне реактора на водород и поликристаллический германий, который осаждается на внутренних стенках реактора. Затем подачу моногермана в реактор прекращают, температуру нагревателя повышают до 1000°C и сплавляют поликристаллический германий-74 в компактный слиток. Сплавление проводится в среде водорода, который образовался в реакторе при пиролизе моногермана. Температуру нагревателя снижают до комнатной температуры, реактор продувают аргоном, вскрывают и извлекают слиток германия-74. Слиток германия имеет массу ~72 г. Выход германия составляет 97%. Содержание основного изотопа 74Ge - 99,93 ат. %. Удельное электросопротивление при температуре 295 К 40-45 Ом⋅см. Содержание 72-х примесей по данным масс-спектрометрического анализа не превышает 10-5-10-6 масс. %.

Слиток дополнительно очищают от химических примесей методом зонной плавки и выращивают монокристалл. По данным измерений эффекта Холла концентрация носителей заряда при Т=77 K в монокристалле 74Ge составляет (1-4)⋅1012 см-3.

Пример 4

Получение слитка изотопа германия-76 (обогащение 88,2%) его зонная очистка и выращивание монокристалла.

Трубчатый реактор из кварцевого стекла диаметром 40 мм откачивают до остаточного давления 10-5 мбар, устанавливают температуру нагревателя 1100°C и подают в реактор газовую смесь метана и аргона в соотношении 1:10. При термическом разложении метана на внутренних стенках реактора образуется слой пиролитического углерода. Затем температуру нагревателя снижают до 420°C, реактор снова откачивают до остаточного давления 10-5 мбар, напускают в него моногерман, обогащенный изотопом 76Ge, до давления 1070 мбар, устанавливают поток моногермана через реактор 30 мл/мин. Моногерман разлагается в нагретой зоне реактора на водород и поликристаллический германий, который осаждается на внутренних стенках реактора. Затем подачу моногермана в реактор прекращают, температуру нагревателя повышают до 1000°C и сплавляют поликристаллический германий-76 в компактный слиток. Сплавление проводится в среде водорода, который образовался в реакторе при пиролизе моногермана. Температуру нагревателя снижают до комнатной температуры, реактор продувают аргоном, вскрывают и извлекают слиток германия-76. Слиток германия имеет массу ~67 г. Выход германия составляет 97%. Содержание основного изотопа 76Ge - 88,2 ат. %. Удельное электросопротивление при температуре 295 К 40-45 Ом⋅см. Содержание 72-х примесей по данным масс-спектрометрического анализа не превышает 10-5-10-6 масс. %

Слиток дополнительно очищают от химических примесей методом зонной плавки и выращивают монокристалл. По данным измерений эффекта Холла, концентрация носителей заряда при Т=77 K в монокристалле 76Ge составляет (2-4)⋅1012 см-3.

Источник поступления информации: Роспатент

Showing 11-17 of 17 items.
20.05.2016
№216.015.4051

Шихта для получения теллуритных стекол (варианты)

Заявляемая группа изобретений относится к области химии и касается составов шихты для получения теллуритных стекол, которые могут найти применение в оптике для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптоэлектронных приборах видимого, ближнего и...
Тип: Изобретение
Номер охранного документа: 0002584482
Дата охранного документа: 20.05.2016
25.08.2017
№217.015.9c83

Способ получения наноразмерных структур молибдена

Изобретение относится к получению нанодисперсного порошка молибдена. Способ включает восстановление гексафторида молибдена водородом в реакторе под воздействием сверхвысокочастотного разряда. Реактор заполняют газовой смесью, состоящей из гексафторида молибдена и водорода, мольная доля которого...
Тип: Изобретение
Номер охранного документа: 0002610583
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.c4be

Способ получения особо чистых стекол системы германий - сера - йод

Изобретение относится к особо чистым стеклам для инфракрасной оптики. Технический результат – снижение содержания оптически активных примесей. Германий, серу, йод загружают в реактор, плавят и подвергают закалке стеклообразующий расплав. В качестве источника йода используют йодид...
Тип: Изобретение
Номер охранного документа: 0002618257
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c58d

Способ получения изотопнообогащенного тетрахлорида кремния

Изобретение относится к получению изотопнообогащенного тетрахлорида кремния, который может быть использован для получения изотопов кремния, оптических материалов, волоконных световодов и пленок. Способ получения изотопнообогащенных тетрахлоридов кремния SiCl, SiCl, SiCl включает взаимодействие...
Тип: Изобретение
Номер охранного документа: 0002618265
Дата охранного документа: 03.05.2017
29.12.2017
№217.015.f0f2

Способ получения 13 с -мочевины

Изобретение относится к способу получения С-мочевины. Способ включает взаимодействие диоксида С-углерода (CO) с окисью пропилена при температуре 90-100°C в присутствии каталитической системы в составе бромида цинка и бромида тетрабутиламмония, взятых в мольном соотношении 1:2,0-6,2. Мольное...
Тип: Изобретение
Номер охранного документа: 0002638837
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f100

Способ получения изотопов неодима

Изобретение относится к разделению изотопов элементов, в частности к способу получения изотопов неодима. Способ заключается в применении метода центрифугирования, в котором разделительный эффект определяется разностью молекулярных масс изотопов, при этом в качестве рабочего газа выбирают...
Тип: Изобретение
Номер охранного документа: 0002638858
Дата охранного документа: 18.12.2017
10.05.2018
№218.016.3edb

Способ получения карбида бора плазмохимическим методом

Изобретение относится к получению поликристаллического карбида бора. Карбид бора получают плазмохимическим синтезом в высокочастотном разряде в реакторе, содержащем электроды, выполненные в виде подложек для осаждения карбида бора. Синтез проводят при мощности разряда 500 Вт в плазме...
Тип: Изобретение
Номер охранного документа: 0002648421
Дата охранного документа: 26.03.2018
Showing 11-20 of 30 items.
20.05.2016
№216.015.4051

Шихта для получения теллуритных стекол (варианты)

Заявляемая группа изобретений относится к области химии и касается составов шихты для получения теллуритных стекол, которые могут найти применение в оптике для изготовления волоконных световодов и планарных оптических волноводов, применяемых в оптоэлектронных приборах видимого, ближнего и...
Тип: Изобретение
Номер охранного документа: 0002584482
Дата охранного документа: 20.05.2016
25.08.2017
№217.015.9c83

Способ получения наноразмерных структур молибдена

Изобретение относится к получению нанодисперсного порошка молибдена. Способ включает восстановление гексафторида молибдена водородом в реакторе под воздействием сверхвысокочастотного разряда. Реактор заполняют газовой смесью, состоящей из гексафторида молибдена и водорода, мольная доля которого...
Тип: Изобретение
Номер охранного документа: 0002610583
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.c4be

Способ получения особо чистых стекол системы германий - сера - йод

Изобретение относится к особо чистым стеклам для инфракрасной оптики. Технический результат – снижение содержания оптически активных примесей. Германий, серу, йод загружают в реактор, плавят и подвергают закалке стеклообразующий расплав. В качестве источника йода используют йодид...
Тип: Изобретение
Номер охранного документа: 0002618257
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c58d

Способ получения изотопнообогащенного тетрахлорида кремния

Изобретение относится к получению изотопнообогащенного тетрахлорида кремния, который может быть использован для получения изотопов кремния, оптических материалов, волоконных световодов и пленок. Способ получения изотопнообогащенных тетрахлоридов кремния SiCl, SiCl, SiCl включает взаимодействие...
Тип: Изобретение
Номер охранного документа: 0002618265
Дата охранного документа: 03.05.2017
29.12.2017
№217.015.f0f2

Способ получения 13 с -мочевины

Изобретение относится к способу получения С-мочевины. Способ включает взаимодействие диоксида С-углерода (CO) с окисью пропилена при температуре 90-100°C в присутствии каталитической системы в составе бромида цинка и бромида тетрабутиламмония, взятых в мольном соотношении 1:2,0-6,2. Мольное...
Тип: Изобретение
Номер охранного документа: 0002638837
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.f100

Способ получения изотопов неодима

Изобретение относится к разделению изотопов элементов, в частности к способу получения изотопов неодима. Способ заключается в применении метода центрифугирования, в котором разделительный эффект определяется разностью молекулярных масс изотопов, при этом в качестве рабочего газа выбирают...
Тип: Изобретение
Номер охранного документа: 0002638858
Дата охранного документа: 18.12.2017
10.05.2018
№218.016.3eb4

Способ синтеза летучих перфторалкоксидов лантаноидов

Изобретение относится к способу синтеза перфторированных алкоксидов лантаноидов, которые могут быть использованы в технологиях химического осаждения из газовой фазы при нанесении покрытий со специальными свойствами, при легировании полупроводников и синтезе сверхпроводниковых материалов, при...
Тип: Изобретение
Номер охранного документа: 0002648362
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3ebb

Способ получения особо чистых халькогенидных стекол системы германий-селен

Изобретение относится к способу получения особо чистых халькогенидных стекол системы германий-селен. Способ включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку. В качестве источника германия...
Тип: Изобретение
Номер охранного документа: 0002648389
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.3edb

Способ получения карбида бора плазмохимическим методом

Изобретение относится к получению поликристаллического карбида бора. Карбид бора получают плазмохимическим синтезом в высокочастотном разряде в реакторе, содержащем электроды, выполненные в виде подложек для осаждения карбида бора. Синтез проводят при мощности разряда 500 Вт в плазме...
Тип: Изобретение
Номер охранного документа: 0002648421
Дата охранного документа: 26.03.2018
03.10.2018
№218.016.8d4e

Газовая центрифуга

Изобретение относится к газовым центрифугам для разделения изотопов и газовых смесей, преимущественно для разделения термонестабильных газов. Газовая центрифуга содержит герметичный корпус, установленный в него вертикальный цилиндрический ротор с верхней и нижней торцевыми крышками,...
Тип: Изобретение
Номер охранного документа: 0002668242
Дата охранного документа: 27.09.2018
+ добавить свой РИД