×
20.01.2018
218.016.1b97

Результат интеллектуальной деятельности: Способ получения конструкционно-теплоизоляционного материала

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники и направлено на повышение эффективности теплоизоляционных характеристик и срока эксплуатации конструкционно-теплоизоляционного материала, используемого для обеспечения тепловой защиты передового энергетического оборудования. Cпособ получения конструкционно-теплоизоляционного материала включает подготовку формовочной смеси, формование, полимеризацию и термообработку, выдержку и остывание. При этом подготовку формовочной смеси проводят в три этапа. На первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения. На втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы. На третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй, затем осуществляют формование путем кратковременной виброусадки и постепенного прессования смеси при давлении пуансона 1,5 МПа. Далее проводят полимеризацию при комнатной температуре в течение 12 ч, термообработку осуществляют в кислородной среде ступенчатым нагревом до 700°С в течение 16 ч при следующих температурных режимах: первые 4 ч - при температуре 100-150°С, следующие 4 ч - при температуре 250°С, последующие 4-5 ч - при температуре 400-500°С, оставшееся время - при температуре 700°С. Выдержку проводят при температуре 700°С в течение 4 ч и остывание в печи - в течение 4-5 ч. Причем оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а соотношение объемов связующих и алюмосиликатных микросфер составляет 1:6. Технический результат – повышение эффективности теплоизоляционных характеристик и срока эксплуатации материала, а именно теплопроводность составляет 0,089 Вт/(м⋅К), прочность на сжатие – 0,75 МПа, плотность – 0,25 г/см. 1 ил., 1 табл.

Изобретение относится к области теплотехники и может быть использовано для получения легковесного огнеупорного теплоизоляционного материала с целью обеспечения тепловой защиты передового энергетического оборудования.

Известен способ изготовления конструктивно-теплоизоляционной строительной керамики (патент № RU 2379258, опубл. 20.01.2010, МПК С04В 35/16), включающий подготовку минеральной связующей добавки, увлажнение и пластификацию зольного компонента, смешивание связующей добавки с пластифицированным зольным компонентом, полусухое прессование изделий и обжиг. При этом пластифицирующую добавку готовят по шликерному способу совместным мокрым помолом цеолитовой породы с лингосульфонатом кальция в шаровой мельнице до остатка на сите 0088 не более 2-3%, осуществляют пластификацию смешиванием зольных микросфер с полученным цеолитлигносульфонатным шликером с последующим введением сухой минеральной связующей добавки в виде цеолитовой породы, высушенной при температуре 110-150°С и измельченной до размеров частиц менее 0,5 мм, формование изделий из полученной сырьевой смеси осуществляют полусухим прессованием под давлением 20-25 МПа, а обжиг проводят при температуре 980±20°С.

Недостатком настоящего изобретения является сложность изготовления конструктивно-теплоизоляционной керамики и высокая плотность материала, полученного настоящим способом.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер (Патент №2455253, опубл. 10.07.2012, МПК С04В 28/26), включающий перемешивание алюмосиликатных микросфер и вяжущего - жидкого стекла, формование, термообработку, выдержку, остывание, где в качестве наполнителя используют жидкое стекло натриевое и/или калиевое, осуществляют формование с удельной нагрузкой 1,5-5 МПа, термообработку, включающую: I этап термоудара - путем повышения температуры до 100-130°С за 7-15 мин, выдержку - при 100-130°С 7-15 мин, II этап термоудара - путем подъема температуры до 300-550°С в течение 10-30 мин, выдержку - 40-80 мин и остывание в печи в течение 5-8 ч.

Недостатком настоящего технического решения является высокая плотность и теплопроводность теплоизоляционного материала, полученного указанным способом, а также его низкая прочность.

Технической задачей предлагаемого изобретения является повышение механической прочности и снижение теплопроводности конструкционно-теплоизоляционного материала.

Технический результат заключается в повышении эффективности теплоизоляционных характеристик и срока эксплуатации материала, полученного предлагаемым способом.

Это достигается тем, что в известном способе получения конструкционно-теплоизоляционного материала, включающем подготовку формовочной смеси, формование и термообработку, выдержку и остывание, дополнительно проводят полимеризацию, при этом подготовку формовочной смеси проводят в три этапа, на первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения, на втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы, на третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй, затем осуществляют формование путем кратковременной виброусадки и постепенного прессования смеси при давлении пуансона 1,5 МПа, далее проводят полимеризацию при комнатной температуре в течение 12 часов, термообработку осуществляют в кислородной среде ступенчатым нагревом до 700°С в течение 16 часов, выдержку проводят при температуре 700°С в течение 4 часов и остывание в печи - в течение 4-5 часов, причем оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а их общий объем по отношению к алюмосиликатным микросферам составляет 1:6.

Реализация предлагаемого способа получения конструкционно-теплоизоляционного материала осуществляется следующим образом.

На первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения с помощью планетарного смесителя. Полученную смесь выгружают из смесителя и помещают в закрытую емкость, препятствующую поступлению воздуха для исключения высыхания смеси. На втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы. При этом на первом и втором этапах используется одинаковое количество микросфер. На третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй с постепенным увеличением скорости вращения смесителя.

Полученную формовочную смесь загружают в матрицу вибропресса и проводят ее виброусадку путем кратковременного включения вибромотора пресса. Далее проводят прессование смеси с вибрацией в течение 5-7 секунд при давлении пуансона 1,5 МПа. Это обеспечивает оптимальную плотность паковки микросферы в полимерной фазе. После прессования поднимают матрицу и пуансон и извлекают заготовку. Затем заготовку оставляют при комнатной температуре на 12 часов для прохождения процесса полимеризации карбамидфурановой смолы.

После этого заготовку помещают в камерную печь и проводят термообработку в кислородной среде со ступенчатым нагревом до 700°С в течение 16 часов. При этом в первые 4 часа при температуре 100-150°С происходит дополимеризация карбамидфурановой смолы с образованием пространственно-сшитого полимера, в следующие 4 часа при температуре 250°С происходит испарение воды и разложение кристаллогидратов в алюмохромфосфатном связующем. В последующие 4-5 часов при температуре 400-500°С начинается реакция термоотверждения алюмохромфосфатного связующего с образованием полифосфатов и оксидов металлов и окончательным удалением кристаллизационной воды, и при этой же температуре начинается карбонизация карбамидфурановой смолы. Оставшееся время идет на окончательную карбонизацию карбамидфурановой смолы с образованием углеродной структуры при температуре 700°С. При этом из алюмохромфосфатного связующего выделяются кристаллы пирофосфата алюминия.

Далее проводят выдержку заготовок при 700°С в течение 4 часов для окончательного удаления углерода из объема материала, который вступает в реакцию с кислородом и выделяется в виде углекислого газа. По окончании процесса термоотверждения печь выключают и оставляют в ней заготовки для плавного остывания в течение 4-5 часов во избежание раскола материала из-за резкого снижения температуры.

Опытным путем было доказано, что при использовании в качестве дисперсного наполнителя алюмосиликатных микросфер диаметром не ниже 100 мкм полученный материал обладает высокими прочностными характеристиками и в процессе обжига при высоких температурах не разрушается. Кроме того, материал имеет предел прочности при изостатическом сжатии 0,5 МПа, что важно в условиях получения материалов методом прессования, поскольку в случае использования более легкой и соответственно хрупкой микросферы велика вероятность разрушения большей ее части при проведении процесса прессования и, как следствие, резкое снижение прочностных и теплофизических параметров.

Полученный предлагаемым способом конструкционно-теплоизоляционный материал прост в изготовлении и обладает следующими характеристиками: теплопроводность составляет 0,089 Вт/(м⋅К), прочность на сжатие - 0,75 МПа, плотность - 0,25 г/см3.

В ходе экспериментов, результаты которых представлены в Таблице 1, было установлено, что с точки зрения соотношения прочностных характеристик и теплопроводности оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а соотношение объемов связующих и алюмосиликатных микросфер - 1:6.

Конкретным примером реализации предлагаемого способа является создание теплоизоляционных изделий с замками типа шип-паз, применяемых для обмуровки энергетического оборудования. Пример поясняется чертежом, на котором изображено теплоизоляционное изделие 1 размером 200×300×70 мм, выполненное в форме прямоугольного параллелепипеда с замками типа шип 2, 4 - паз 3, 5. Такая форма изделия упрощает монтаж, снижает потери в области тепловых мостиков, а также повышает общую прочность материала. Данные изделия эксплуатируют в диапазоне температур от 0 до 700°С.

Использование изобретения позволяет обеспечить эффективную тепловую защиту оборудования при повышенных температурах за счет низкой теплопроводности материала, полученного предложенным способом, а также повысить срок эксплуатации конструкционно-теплоизоляционного материала.

Способ получения конструкционно-теплоизоляционного материала, включающий подготовку формовочной смеси, формование и термообработку, выдержку и остывание, отличающийся тем, что дополнительно проводят полимеризацию, при этом подготовку формовочной смеси проводят в три этапа, на первом этапе готовят смесь на основе алюмосиликатных микросфер, алюмохромфосфатного связующего и катализатора отверждения, на втором этапе готовят смесь на основе алюмосиликатных микросфер и карбамидфурановой смолы, на третьем этапе проводят гомогенизацию двух полученных смесей путем порционного добавления первой смеси ко второй, причем используют алюмосиликатные микросферы диаметром не ниже 100 мкм и при этом на первом и втором этапах подготовки формовочной смеси используют одинаковое количество микросфер, формование полученной смеси осуществляют в матрице вибропресса, где проводят ее виброусадку путем кратковременного включения вибромотора пресса и далее проводят прессование смеси с вибрацией в течение 5-7 с при давлении пуансона 1,5 МПа, проводят полимеризацию при комнатной температуре в течение 12 ч, термообработку осуществляют в кислородной среде ступенчатым нагревом до 700°С в течение 16 ч при следующих температурных режимах: первые 4 ч - при температуре 100-150°С, следующие 4 ч - при температуре 250°С, последующие 4-5 ч - при температуре 400-500°С, оставшееся время - при температуре 700°С, выдержку проводят при 700°С в течение 4 ч и остывание в печи - в течение 4-5 ч, причем оптимальное соотношение алюмохромфосфатного связующего и карбамидфурановой смолы по объему составляет 70:30, а соотношение объемов связующих и алюмосиликатных микросфер составляет 1:6.
Способ получения конструкционно-теплоизоляционного материала
Источник поступления информации: Роспатент

Showing 111-120 of 217 items.
22.09.2018
№218.016.896c

Разъёмное соединение фланцев волноводов свч трактов

Разъемное соединение фланцев волноводов СВЧ трактов относится к области СВЧ техники. Заявленное соединение содержит одинаковые пластины 1 с соосными отверстиями 2 и направляющими, которые образованы штырем 3, укрепленным на одной из пластин 1 и соосными с ними отверстиями 4 в другой пластине 1,...
Тип: Изобретение
Номер охранного документа: 0002667324
Дата охранного документа: 18.09.2018
22.09.2018
№218.016.898b

Соединитель фланцев волноводов свч трактов

Изобретение относится к области СВЧ техники, точнее к техническим решениям соединителей разъемных фланцев волноводов СВЧ трактов, и позволяет упростить процесс крепления фланцев при многократном их соединении и разъединении и ускорить процесс крепления фланцев волноводных труб. Соединитель...
Тип: Изобретение
Номер охранного документа: 0002667321
Дата охранного документа: 18.09.2018
04.10.2018
№218.016.8ebf

Соединитель фланцев волноводов свч трактов

Изобретение относится к области СВЧ техники, точнее к техническим решениям соединителей разъемных фланцев волноводов СВЧ трактов. Соединитель содержит шляпку 1 в виде диска и цилиндрическую часть 2 меньшего диаметра, размещенную в соосных отверстиях 3 и 4 сочлененных волноводных фланцев 5 и 6,...
Тип: Изобретение
Номер охранного документа: 0002668627
Дата охранного документа: 02.10.2018
01.11.2018
№218.016.981c

Бестопливная тригенерационная установка

Изобретение относится к области теплоэнергетики. Бестопливная тригенерационная установка включена между газопроводом высокого давления и газопроводом низкого давления, разделенными первым дросселем. Установка содержит последовательно установленные первый теплообменник, детандер с электрическим...
Тип: Изобретение
Номер охранного документа: 0002671074
Дата охранного документа: 29.10.2018
02.11.2018
№218.016.99c3

Маховик переменного момента инерции

Изобретение относится к области машиностроения. Маховик переменного момента инерции содержит две полуоси (1, 2), на которых жестко закреплена внешняя камера цилиндрической формы (3). Внутри внешней камеры жестко закреплена коаксиально расположенная внутренняя камера (4). Внутри внутренней...
Тип: Изобретение
Номер охранного документа: 0002671435
Дата охранного документа: 31.10.2018
09.11.2018
№218.016.9b89

Устройство электроснабжения собственных нужд энергоблока электростанции

Изобретение относится к областям электротехники и электроэнергетики и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина (например, конденсационные электростанции - КЭС), с газотурбинным циклом Брайтона (например, электростанции с газотурбинными установками - ПТУ,...
Тип: Изобретение
Номер охранного документа: 0002671821
Дата охранного документа: 07.11.2018
09.11.2018
№218.016.9bb8

Регулятор вольтодобавочного переменного напряжения

Изобретение относится к области электротехники и электроэнергетики, может быть использовано в электрических сетях для гибкого регулирования и стабилизации напряжения и направлено на повышение надежности работы регулятора вольтодобавочного переменного напряжения и уменьшение его стоимости....
Тип: Изобретение
Номер охранного документа: 0002671829
Дата охранного документа: 07.11.2018
28.11.2018
№218.016.a13b

Устройство соплового парораспределения паровой турбины с выносной камерой смешения

Изобретение относится к области энергетического машиностроения и призвано устранить все отрицательные последствия, присущие сопловому парораспределению. Предлагается новая система соплового парораспределения с выносной камерой смешения, преимущественно для паровых турбин, содержащая стопорный...
Тип: Изобретение
Номер охранного документа: 0002673362
Дата охранного документа: 26.11.2018
06.12.2018
№218.016.a403

Тепловой пункт системы отопления и горячего водоснабжения

Изобретение относится к системам центрального теплоснабжения и направлено на повышение энергетической эффективности теплового пункта и расширение его функциональных возможностей. Тепловой пункт системы отопления и горячего водоснабжения содержит подающий и обратный трубопроводы тепловой сети....
Тип: Изобретение
Номер охранного документа: 0002674060
Дата охранного документа: 04.12.2018
19.12.2018
№218.016.a8e2

Способ идентификации линейной динамической системы

Изобретение относится к автоматическому управлению. Способ идентификации линейной динамической системы включает первоначальное задание передаточной функции системы априорного вида в дробно-рациональной форме. Устанавливают нормированную длительность неустановившегося движения, затем массивы...
Тип: Изобретение
Номер охранного документа: 0002675281
Дата охранного документа: 18.12.2018
Showing 71-77 of 77 items.
04.04.2018
№218.016.365c

Устройство для управления высокотемпературной печью сопротивления

Изобретение относится к средствам управления высокотемпературными печами сопротивления. Технический результат – повышение надежности работы печи. Устройство содержит нагревательный элемент, подключенный к выходу источника питания со входом задания напряжения источника питания, подключенным к...
Тип: Изобретение
Номер охранного документа: 0002646516
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.4c98

Пространственная плита покрытия

Изобретение относится к строительству, а именно к покрытию зданий и сооружений. Технический результат заключается в повышении несущей способности большепролетной плиты покрытия. Пространственная плита покрытия разреженной структуры включает верхний и нижний пояса криволинейного очертания,...
Тип: Изобретение
Номер охранного документа: 0002652045
Дата охранного документа: 24.04.2018
20.02.2019
№219.016.c3fe

Способ определения концентрации и идентификации поверхностно-активных веществ в водных растворах

Изобретение относится к области физических измерений. Определение концентрации и идентификация поверхностно-активных веществ в водных растворах заключается в том, что в исследуемом водном растворе определяют зависимость мгновенных значений поверхностного натяжения при увеличении площади...
Тип: Изобретение
Номер охранного документа: 0002469291
Дата охранного документа: 10.12.2012
11.03.2019
№219.016.d8cf

Способ уменьшения гидравлического сопротивления трубопроводных сетей для транспортировки жидких сред

Изобретение относится к теплоэнергетике, позволяет повысить экономичность, эффективность, надежность и ресурс трубопроводных систем. В способе уменьшения гидравлического сопротивления трубопроводных сетей для транспортировки жидких сред, заключающемся в формировании на поверхностях...
Тип: Изобретение
Номер охранного документа: 0002318140
Дата охранного документа: 27.02.2008
10.04.2019
№219.017.05ba

Способ эксплуатации систем теплоснабжения

Изобретение относится к теплоэнергетике и предназначено для использования при эксплуатации систем отопления жилых зданий и повысить эффективность и ресурс систем теплоснабжения, снизить капитальные и эксплуатационные затраты. Технический результат: повышение эффективности и ресурса систем...
Тип: Изобретение
Номер охранного документа: 0002323391
Дата охранного документа: 27.04.2008
10.04.2019
№219.017.0622

Способ нанесения покрытия на изделия из твердых сплавов

Изобретение относится к области машиностроения и служит для повышения микротвердости и износостойкости инструмента или изделия путем увеличения прочности сцепления ионно-плазменного покрытия нитрида титана с поверхностью изделий из твердых сплавов преимущественно на основе монокарбида вольфрама...
Тип: Изобретение
Номер охранного документа: 0002415966
Дата охранного документа: 10.04.2011
21.05.2023
№223.018.68e1

Водная эмульсия октадециламина для защиты от отложений на латунных трубках конденсаторов паровых турбин

Изобретение относится к энергетике и предназначено для использования при эксплуатации паровых турбин электрических станций с целью повышения эффективности их работы, для защиты от отложений, образующихся на теплообменных латунных поверхностях конденсаторов паровых турбин со стороны охлаждающей...
Тип: Изобретение
Номер охранного документа: 0002794927
Дата охранного документа: 25.04.2023
+ добавить свой РИД