×
20.01.2018
218.016.1394

Результат интеллектуальной деятельности: Способ экспериментального определения коэффициента теплоотдачи поверхности и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии измерения тепловых потоков между твердой поверхностью и текучей средой и может быть использовано в теплофизическом эксперименте при исследовании теплоотдачи. Способ заключается в том, что для экспериментального определения коэффициента теплоотдачи на границе текучая среда - твердая поверхность выполняется предварительный нагрев теплообменной поверхности (1), выполненной из неэлектропроводного материала, при пропускании тока большой величины через электропроводный слой (2) - тонкую металлическую фольгу с высоким температурным коэффициентом сопротивления, наклеенную на эту поверхность. В потоке охлаждающей среды измеряется темп охлаждения теплообменной поверхности (1), для чего через фольгу (2) пропускается ток минимальной величины, достаточной для измерения ее электрического сопротивления, по величине которого определяется температура фольги методом термометра сопротивления. Коэффициент теплоотдачи определяется по темпу охлаждения теплообменной поверхности (1) методом регулярного режима. Предлагаемый способ и устройство для его реализации позволяет снизить погрешность определения коэффициента теплоотдачи за счет использования одних и тех же элементов для нагрева теплообменной поверхности и измерения ее температуры, а также трудоемкость проведения опытов, т.к. нагрев осуществляется без переустановки объекта. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к технологии измерения тепловых потоков между твердой поверхностью и текучей средой и может быть использовано в теплофизическом эксперименте при исследовании теплоотдачи.

Известен способ определения коэффициента теплоотдачи конвективно охлаждаемой детали (патент № 2220409, МПК G01M 15/00, заявл. 2001.11.21, опубл. 2003.12.27), в котором деталь помещают в расплав кристаллического вещества и при температуре кристаллизации последнего продувают охлаждающей средой и измеряют температуру детали. При продувке непосредственно в расплаве измеряют температуру наружной поверхности стенки детали, фиксируют время проведения измерения от момента начала продувки и для вычисления коэффициента теплоотдачи используют алгебраическое уравнение, которое является решением системы уравнений математической модели процесса затвердевания равновесного расплава на охлаждаемой стенке, а именно граничного условия третьего рода на охлаждаемой (внутренней) поверхности стенки, теплового баланса на границе затвердевания расплава (условие Стефана) и граничного условия четвертого рода на наружной поверхности стенки детали. Недостатком такого способа является то, что точность определения коэффициента теплоотдачи в значительной мере зависит от достоверности входящих в расчетную формулу теплофизических параметров кристаллического вещества, которые изменяются скачкообразно при фазовом переходе (кристаллизации). Измерение температуры стенки детали при этом возможно лишь с помощью контактных измерителей температуры, что приводит к искажению температурного поля, а коэффициенты теплоотдачи определяются только в зонах установки измерителей температуры.

Из известных способов измерения теплового потока и устройств для его реализации наиболее близким по назначению и сущности к заявляемому является способ определения коэффициента теплоотдачи тела, обтекаемого потоком охлаждающей среды (Тепло- и массообмен. Теплотехнический эксперимент. Справочник / Под общей редакцией В.А. Григорьева и В.М. Зорина. - М.: Энергоатомиздат, 1982), основанный на теории регулярного теплового режима. В этом способе тело, выполненное из изолятора, оснащают металлическими тепловыми вставками простой геометрической формы, изготовленными из материалов с высокой теплопроводностью и оснащенные измерителями температуры (термопарами). Тело, изолированное от потока жидкости или газа, перегревают по отношению к температуре потока. Далее тело приводят в контакт с потоком и измеряют темп его охлаждения. Коэффициент теплоотдачи определяют методом регулярного режима, основанным на равенстве изменения энтальпии нагретого тела и теплоты, рассеиваемой в обтекаемую телом среду посредством теплоотдачи. К недостаткам способа относится необходимость изолировать тело от потока жидкости и газа при создании перегрева тела относительно потока. При реализации способа для создания перегрева необходимо отдельное устройство (например, термошкаф). За время установки (монтажа) нагретого тела в поток жидкости или газа возможно появление неравномерности температурного поля тела и вставок, что влияет на неопределенность измерения коэффициента теплоотдачи. Кроме того, установка вставок в исследуемой детали искажает ее температурное поле, что наряду с наличием теплообмена между вставками и телом приводит к увеличению неопределенности при измерении коэффициентов теплоотдачи.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в снижении неопределенности измерения коэффициента теплоотдачи, снижении трудоемкости проведения опытов.

Технический результат достигается тем, что в способе экспериментального определения коэффициента теплоотдачи теплообменной поверхности, выполненной из неэлектропроводного материала, включающем предварительный нагрев поверхности, затем в потоке охлаждающей среды фиксирование изменения во времени температуры поверхности и определение коэффициента теплоотдачи на границе поверхность - охлаждающая среда по методу регулярного теплового режима, новым является то, что теплообменную поверхность нагревают, пропуская электрический ток, достаточный для создания разности температуры между теплообменной поверхностью и потоком охлаждающей среды, через электропроводный слой, которым покрывают вышеупомянутую теплообменную поверхность, а фиксируют изменение температуры теплообменной поверхности по времени в потоке охлаждающей среды, пропуская через вышеупомянутый электропроводный слой ток малой величины, достаточный для работы его в режиме термометра сопротивления.

Технический результат достигается тем, что в теплообменной поверхности для реализации способа, выполненной из неэлектропроводного материала, содержащей нагреваемые элементы, по изменению температуры которых в потоке охлаждающей среды определяют коэффициент теплоотдачи, новым является то, что нагреваемые элементы представляют собой, по меньшей мере, один электропроводный участок тонкой фольги из металла с высоким температурным коэффициентом сопротивления, нанесенный на теплообменную поверхность и подключенный к источнику питания с возможностью регулирования величины тока, которая в режиме нагрева имеет значение, достаточное для создания разности температуры между теплообменной поверхностью и потоком охлаждающей среды, а в режиме измерения температуры - значение, при котором электропроводный участок работает в режиме термометра сопротивления.

В каждом электропроводном участке методом травления выполнены зигзагообразные дорожки, подключенные к источнику питания.

На противоположной стороне теплообменной поверхности выполнены симметричные электропроводные участки, при этом вышеупомянутые электропроводные участки с обеих сторон теплообменной поверхности соединены между собой последовательно при помощи сквозных клипс.

На фиг. 1 представлена теплообменная поверхность с электропроводным слоем.

На фиг. 2 - теплообменная поверхность с участками, покрытыми электропроводным слоем.

На фиг. 3 - схема подключения участков электропроводного слоя к источнику питания.

Позиции на фигурах: 1 - теплообменная поверхность (пластина); 2 - участки электропроводного слоя (тонкая металлическая фольга в форме зигзагообразных дорожек); 3 - разъемы на периферийной, не участвующей в обдуве охлаждающей средой части теплообменной поверхности; 4 - выводы на периферийную часть пластины; 5 - сквозные прорези в пластине между соседними участками электропроводного слоя.

Сущность предлагаемого способа заключается в том, что для экспериментального определения коэффициента теплоотдачи на границе текучая среда - твердая поверхность выполняется предварительный нагрев теплообменной поверхности 1 (фиг. 1), выполненной из неэлектропроводного материала, при пропускании тока большой величины через электропроводный слой 2 - тонкую металлическую фольгу (фиг. 1) с высоким температурным коэффициентом сопротивления, наклеенную на эту поверхность. Затем в потоке охлаждающей среды измеряется темп охлаждения теплообменной поверхности 1, для чего через фольгу 2 пропускается ток минимальной величины, достаточной для измерения ее электрического сопротивления, по величине которого и по известному значению температурного коэффициента сопротивления материала фольги определяется температура поверхности. Коэффициент теплоотдачи определяется по темпу охлаждения теплообменной поверхности 1 методом регулярного режима.

В основе метода регулярного режима, используемого для измерения коэффициента теплоотдачи на границе стенка - охлаждающая среда, лежит равенство изменения энтальпии нагретой поверхности и теплоты, рассеиваемой посредством теплоотдачи в обтекаемую пластину среду:

dθ/dτ=-θFα/Wρc,

где θ=t-tf - разность температур пластины и потока; t - температура стенки; tf - температура потока; F - площадь контактной поверхности; W - объем нагретой теплообменной поверхности; ρ и c - плотность материала теплообменной поверхности и ее теплоемкость; τ - время.

Устройство для реализации заявляемого способа экспериментального определения коэффициента теплоотдачи поверхности содержит теплообменную поверхность 1 (фиг. 2), выполненную из неэлектропроводного материала с низким коэффициентом теплопроводности, на поверхность которой нанесен электропроводный слой 2 (тонкая медная фольга). Чтобы обеспечить достаточно большое сопротивление участка медной фольги 2, используемого в качестве термометра сопротивления при измерении темпа охлаждения теплообменной поверхности 1, в фольге 2 методом травления сформированы зигзагообразные дорожки. Допускается разбиение теплообменной поверхности 1 на несколько участков (фиг. 2), что позволяет измерять средние значения коэффициента теплоотдачи на каждом из участков. В этом случае дорожки каждого участка соединены последовательно, и каждый участок имеет заканчивающиеся разъемами 3 выводы 4 на периферийную (не участвующую в обдуве охлаждающей средой) часть теплообменной поверхности 1 (за границы ее рабочего участка). Для снижения перетекания тепла между соседними участками теплообменной поверхности 1 они могут быть разделены сквозными прорезями 5, которые заклеены тонкой пленкой. Аналогичные прорези отделяют участки теплообменной поверхности 1 от ее периферийной части. Нерабочая поверхность теплообменной поверхности 1 тщательно теплоизолируется. Возможен вариант изготовления теплообменной поверхности 1, в которой на ее обеих сторонах симметрично выполнены одинаковые дорожки из медной фольги 2 (одинаковые участки с дорожками из медной фольги). В этом варианте дорожки каждого участка с обеих сторон теплообменной поверхности 1 соединены последовательно при помощи специальных сквозных клипс. Организуется симметричное обтекание теплообменной поверхности 1, при этом коэффициент теплоотдачи определяется по результатам изменения электрического сопротивления дорожек фольги 2 с обеих сторон теплообменной поверхности 1. При таком выполнении теплообменной поверхности 1 неучтенные тепловые утечки существенно ниже. Принципиальная схема подключения дорожек теплообменной поверхности 1 к источнику питания, обеспечивающая ее нагрев и измерение температуры, представлена на фиг. 3. Дорожки каждого участка теплообменной поверхности 1 на фигуре изображены в виде резисторов Rj. Нагрев выполняется при замкнутом положении ключа K. После окончания процесса нагрева ключ K размыкается, а подводимая от источника питания мощность снижается до величины, при которой дорожка каждого участка Ri теплообменной поверхности 1 работает в режиме термометра сопротивления. Контроль за величиной тока на режиме измерения выполняется по измеренному падению напряжения на прецизионном резисторе RK.

Заявляемый способ и устройство для его реализации позволяет снизить неопределенность измерения коэффициента теплоотдачи за счет использования одних и тех же элементов для нагрева теплообменной поверхности и измерения ее температуры, а также исключения препарирования детали контактными датчиками температуры или калориметрическими вставками и снижения неучтенных утечек тепла при реализации симметричного обтекания исследуемой поверхности с двух сторон. Кроме того, заявляемое устройство позволяет снизить трудоемкость проведения опытов, т.к. нагрев осуществляется без переустановки объекта.


Способ экспериментального определения коэффициента теплоотдачи поверхности и устройство для его реализации
Способ экспериментального определения коэффициента теплоотдачи поверхности и устройство для его реализации
Источник поступления информации: Роспатент

Showing 31-40 of 127 items.
26.08.2017
№217.015.e611

Гаситель крутильных колебаний

Изобретение относится к области машиностроения. Гаситель содержит корпус (1) с крышкой (2), рабочее пространство и фланец с отверстиями (8) для крепления гасителя к коленчатому валу. Маховик (3) расположен внутри корпуса в среде жидкости с высокой вязкостью (7). Прорези равноудалены...
Тип: Изобретение
Номер охранного документа: 0002626799
Дата охранного документа: 01.08.2017
26.08.2017
№217.015.e63c

Турбовоздушный привод скважинного штангового насоса

Изобретение предназначено для использования в приводах скважинных штанговых насосов, в технике добычи нефти. Привод содержит устьевые штоки, гидроцилиндр с поплавком, снабженным тороидальной полостью в нижней части, управляющее устройство, связанное с концевыми выключателями в мертвых точках...
Тип: Изобретение
Номер охранного документа: 0002626900
Дата охранного документа: 02.08.2017
29.12.2017
№217.015.f208

Сильфонный насос-дозатор - регулятор расхода

Изобретение относится к области гидравлики, в частности к насосам и регуляторам расхода жидких сред, преимущественно токсичных, летучих, агрессивных. Сильфонный насос-дозатор - регулятор расхода содержит два корпуса 3 и 4, внутри которых помещены сильфоны 9 и 10. Корпуса 3 и 4 жестко соединены...
Тип: Изобретение
Номер охранного документа: 0002636949
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f273

Устройство подачи, измерения, регулирования количества и расхода жидкости

Изобретение относится к области гидравлики, в частности к насосам и регуляторам расхода жидких сред, преимущественно токсичных, летучих, агрессивных. Устройство содержит корпус 3, к которому с одной стороны герметично прикреплена через кольцо 23 верхняя крышка 4 и с другой стороны - нижняя...
Тип: Изобретение
Номер охранного документа: 0002636948
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f765

Устройство для тренировки вестибулярного аппарата

Изобретение относится к области авиации, космонавтики и может быть использовано при профессиональных тренировках для лиц, деятельность которых связана с воздействием разнонаправленных ускорений, действующих на вестибулярный аппарат, для повышения устойчивости организма человека с целью...
Тип: Изобретение
Номер охранного документа: 0002639062
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f892

Глушитель шума автотранспортного средства

Изобретение относится к глушителям шума двигателя внутреннего сгорания. Глушитель шума автотранспортного средства содержит входной расширяющийся патрубок (1) и выходной сужающийся патрубок (2), внутри которых установлены соответственно перфорированные пластины (3) и (4), во входном патрубке (1)...
Тип: Изобретение
Номер охранного документа: 0002639636
Дата охранного документа: 21.12.2017
20.01.2018
№218.016.10b0

Резцовая головка для удаления внутреннего грата в электросварных трубах

Резцовая головка содержит корпус 1 с опорным роликом 5, резцедержатель 2 с резцом 3, упругий элемент с прижимным роликом 4 и упор 7, выполненный в виде цилиндра, соединенного с трубопроводом. Резцовая головка снабжена жиклером 12 и предохранительным клапаном 11, упругий элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002633857
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.12e8

Управляемый выпрямитель

Изобретение относится к силовой электронике, а конкретно к выпрямителям трехфазной системы напряжений, и может быть использовано в качестве вторичного источника питания электроприводов, устройств информационной и силовой электроники. Технический результат, на достижение которого направлено...
Тип: Изобретение
Номер охранного документа: 0002634348
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.157f

Заглушенная камера для акустических и газодинамических измерений шумов элементов конструкции авиационных гтд

Изобретение относится к измерительной технике, а в частности для проведения оптико-акустических и газодинамических измерений в помещении, для создания свободного звукового поля в помещении, при продувке моделей элементов авиационных ГТД и позволяет повысить надежность и достоверность получаемой...
Тип: Изобретение
Номер охранного документа: 0002634979
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.15b4

Способ электрохимической обработки лопаток газотурбинных двигателей

Изобретение относится к области машиностроения и может быть использовано при электрохимической обработке лопаток газотурбинных двигателей. В способе заготовку, выполненную в форме параллелепипеда, устанавливают непосредственно в камере станка и закрепляют по своим боковым поверхностям....
Тип: Изобретение
Номер охранного документа: 0002635209
Дата охранного документа: 09.11.2017
Showing 31-40 of 51 items.
26.08.2017
№217.015.e611

Гаситель крутильных колебаний

Изобретение относится к области машиностроения. Гаситель содержит корпус (1) с крышкой (2), рабочее пространство и фланец с отверстиями (8) для крепления гасителя к коленчатому валу. Маховик (3) расположен внутри корпуса в среде жидкости с высокой вязкостью (7). Прорези равноудалены...
Тип: Изобретение
Номер охранного документа: 0002626799
Дата охранного документа: 01.08.2017
26.08.2017
№217.015.e63c

Турбовоздушный привод скважинного штангового насоса

Изобретение предназначено для использования в приводах скважинных штанговых насосов, в технике добычи нефти. Привод содержит устьевые штоки, гидроцилиндр с поплавком, снабженным тороидальной полостью в нижней части, управляющее устройство, связанное с концевыми выключателями в мертвых точках...
Тип: Изобретение
Номер охранного документа: 0002626900
Дата охранного документа: 02.08.2017
29.12.2017
№217.015.f208

Сильфонный насос-дозатор - регулятор расхода

Изобретение относится к области гидравлики, в частности к насосам и регуляторам расхода жидких сред, преимущественно токсичных, летучих, агрессивных. Сильфонный насос-дозатор - регулятор расхода содержит два корпуса 3 и 4, внутри которых помещены сильфоны 9 и 10. Корпуса 3 и 4 жестко соединены...
Тип: Изобретение
Номер охранного документа: 0002636949
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f273

Устройство подачи, измерения, регулирования количества и расхода жидкости

Изобретение относится к области гидравлики, в частности к насосам и регуляторам расхода жидких сред, преимущественно токсичных, летучих, агрессивных. Устройство содержит корпус 3, к которому с одной стороны герметично прикреплена через кольцо 23 верхняя крышка 4 и с другой стороны - нижняя...
Тип: Изобретение
Номер охранного документа: 0002636948
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f765

Устройство для тренировки вестибулярного аппарата

Изобретение относится к области авиации, космонавтики и может быть использовано при профессиональных тренировках для лиц, деятельность которых связана с воздействием разнонаправленных ускорений, действующих на вестибулярный аппарат, для повышения устойчивости организма человека с целью...
Тип: Изобретение
Номер охранного документа: 0002639062
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f892

Глушитель шума автотранспортного средства

Изобретение относится к глушителям шума двигателя внутреннего сгорания. Глушитель шума автотранспортного средства содержит входной расширяющийся патрубок (1) и выходной сужающийся патрубок (2), внутри которых установлены соответственно перфорированные пластины (3) и (4), во входном патрубке (1)...
Тип: Изобретение
Номер охранного документа: 0002639636
Дата охранного документа: 21.12.2017
20.01.2018
№218.016.10b0

Резцовая головка для удаления внутреннего грата в электросварных трубах

Резцовая головка содержит корпус 1 с опорным роликом 5, резцедержатель 2 с резцом 3, упругий элемент с прижимным роликом 4 и упор 7, выполненный в виде цилиндра, соединенного с трубопроводом. Резцовая головка снабжена жиклером 12 и предохранительным клапаном 11, упругий элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002633857
Дата охранного документа: 18.10.2017
20.01.2018
№218.016.12e8

Управляемый выпрямитель

Изобретение относится к силовой электронике, а конкретно к выпрямителям трехфазной системы напряжений, и может быть использовано в качестве вторичного источника питания электроприводов, устройств информационной и силовой электроники. Технический результат, на достижение которого направлено...
Тип: Изобретение
Номер охранного документа: 0002634348
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.157f

Заглушенная камера для акустических и газодинамических измерений шумов элементов конструкции авиационных гтд

Изобретение относится к измерительной технике, а в частности для проведения оптико-акустических и газодинамических измерений в помещении, для создания свободного звукового поля в помещении, при продувке моделей элементов авиационных ГТД и позволяет повысить надежность и достоверность получаемой...
Тип: Изобретение
Номер охранного документа: 0002634979
Дата охранного документа: 08.11.2017
20.01.2018
№218.016.15b4

Способ электрохимической обработки лопаток газотурбинных двигателей

Изобретение относится к области машиностроения и может быть использовано при электрохимической обработке лопаток газотурбинных двигателей. В способе заготовку, выполненную в форме параллелепипеда, устанавливают непосредственно в камере станка и закрепляют по своим боковым поверхностям....
Тип: Изобретение
Номер охранного документа: 0002635209
Дата охранного документа: 09.11.2017
+ добавить свой РИД