×
19.01.2018
218.016.091d

Результат интеллектуальной деятельности: Сверхпластичный сплав на основе системы Al-Mg-Si

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к алюминиевым сплавам Al-Mg-Si, которые могут быть использованы для изготовления полуфабрикатов и изделий в различных отраслях промышленности методом сверхпластической формовки. Листы из разработанного сплава перед сверхпластической формовкой имеют нерекристаллизованную структуру и способны проявлять высокоскоростную сверхпластичность при температуре 460°С и скорости деформации 10 с, при этом относительное удлинение составляет не менее 400%. Сверхпластичный сплав на основе алюминия содержит, мас. %: магний 1-1,2, кремний 0,8-1, железо 0,8-1,2, никель 0,8-1,2, медь 0,3-0,6, цирконий 0,15-0,25, скандий 0,15-0,25, алюминий – остальное. Сплав характеризуется высокой коррозионной стойкостью и способностью подвергаться закалке на воздухе. 6 пр.

Изобретение относится к области алюминиевых сплавов с микрозеренной структурой, в частности к сплавам системы Al-Mg-Si, предназначенных для изготовления полуфабрикатов и изделий в различных отраслях промышленности методом сверхпластической формовки.

Метод сверхпластической формовки (СПФ) - перспективная технология получения изделий сложных форм. Основным требованием для достижения сверхпластичности и использования сплавов для сверхпластической формовки является формирование стабильной мелкозернистой структуры (И.И. Новиков, В.К. Портной «Сверхпластичность сплавов с ультрамелким зерном», 1981 г.). Сдерживающим фактором использования эффекта сверхпластичности в промышленности является отсутствие сплавов, обладающих одновременно высокими скоростями сверхпластичности и высокими механическим свойствами при комнатной температуре.

На сегодняшний день существует большое количество патентов, описывающих новые сплавы на основе системы Al-Mg-Si и способы обеспечения в них повышенной прочности.

Так, в патенте РФ 2163939 от 10.03.2001 получен холоднокатаный лист алюминиевого сплава состава Al - (0,3-1,2)% Mg - (0,3-1,7)% Si - (0,15-1,1)% Mn с равноосным рекристаллизованным зерном размером 20-30 мкм, что обеспечивает изотропные свойства и высокую технологичность при холодной штамповке и в состоянии Т1 имеет следующие свойства: σB 335 МПа, σ0,2=275. Данный сплав не является сверхпластичным и уступает патентуемому сплаву по уровню механических характеристик.

В патенте US 6994760B2 от 7.02.2006 представлена технология, обеспечивающая в сплаве Al - (0,75-1,3) % Si - (0,45-0,95) % Mg - (0,6-1,1)% Cu - (0,2-0,8) % Mn предел текучести 335 МПа и предел прочности 355 МПа. Данный сплав не является сверхпластичнным, но не уступает патентуемому сплаву по уровню механических свойств.

В патенте ЕР 2841611 А1 от 04.03.2015 представлен сплав Al - (0,6-1,05) % Mg - (0,5-1) % Si, предел текучести которого по результатам испытания образцов в искусственно состаренном состоянии составил более 280 МПа, что существенно ниже предела текучести патентуемого сплава.

Существует достаточно большое количество патентов, связанных с получением новых сверхпластичных сплавов на основе систем Al-Mg, Al-Zn-Mg-Cu.

Так, например, патент JPH0726342 от 31.01.2013 описывает производство листа сплава Al-Mg для сверхпластической формовки, включающее рекристаллизационный отжиг, горячую и холодную прокатку. Однако недостатком сплавов системы Al-Mg является относительно низкий уровень механических свойств при комнатной температуре.

В патенте US 5772804 от 30.06.1998 описывается технология получения листа для сверхпластической формовки, для примера взят сплав АА7475. Недостатком данного сплава, как и других сплавов системы Al-Zn-Mg-Cu, является склонность к коррозионному растрескиванию под напряжением.

Таким образом, сверхпластичные сплавы на основе системы Al-Mg-Si, детали из которых можно получать методом СПФ, на сегодняшний день не разработаны. Существует достаточно много сверхпластичных сплавов на основе систем Al-Mg, Al-Zn-Mg-Cu, Al-Cr-Mg, однако данные сплавы обладают либо низким уровнем механических характеристик, либо повышенной склонностью к коррозии.

Техническим результатом изобретения является получение сверхпластичного сплава на основе системы Al-Mg-Si, обладающего повышенной коррозионной стойкостью и способностью подвергаться закалке на воздухе.

Сверхпластичный сплав на основе алюминия, содержащий магний, кремний, никель, железо, медь, цирконий и скандий со следующим соотношением компонентов (мас. %):

Магний 1-1,2
Кремний 0,8-1
Железо 0,8-1,2
Никель 0,8-1,2
Медь 0,3-0,6
Цирконий 0,15-0,25
Скандий 0,15-0,25
Алюминий остальное

Был получен в виде листовых заготовок с использованием следующей технологической схемы:

1) Получение слитков литьем в медную водоохлаждаемую изложницу со скоростью охлаждения 15 К/с.

2) Двухступенчатый гомогенизационный отжиг 380 С, 8 ч + 480 С, 8 ч.

3) Горячая прокатка степенью деформации 78%.

4) Холодная прокатка степенью деформации 75%.

После отжига холоднокатаных листов при 460°С, имитирующего нагрев и выдержку при температуре сверхпластической деформации, структура листов остается нерекристаллизованной.

Концентрации магния и кремния должны находиться в пределах указанных интервалов, а именно 1-1,2% и 0,8-1% соответственно. Выход за пределы концентрационных интервалов приводит к снижению механических характеристик.

Концентрации железа и никеля должны вводиться в соотношении 1:1, т.к. изменения соотношения приводит к выделению первичных фаз, негативно сказывающихся на показателях сверхпластичности. Выход за нижние границы концентрационных интервалов железа и никеля приводит к ухудшению показателей сверхпластичности за счет уменьшения доли частиц фазы Al9FeNi. Выход за верхний границы концентрационных интервалов Fe и Ni приводит к снижению механических свойств при комнатной температуре.

Добавка меди положительно сказывается на показателях сверхпластичности и механичеких характеристиках сплава, однако избыток меди негативно влияет на коррозионную стойкость. Поэтому медь рекомендуется вводить в сплав в количестве 0,3-0,6%. Для обеспечения термической стабильности структуры суммарная добавка скандия и циркония должна составлять 0,3-0,4%. Введение более 0,4% суммарной добавки скандия и циркония приводит к формированию крупных частиц фазы Al3(Sc, Zr) кристаллизационного происхождения, что негативно сказывается на свойствах сплава.

Оптимальную скорость деформации определяли по результатам серии испытаний с постоянной скоростью деформации. Листы проявляют сверхпластичность при температуре 460°С и скорости деформации 10-2 с-1, в данных условиях относительное удлинение до разрушения составило 410%.

Механические свойства листов из разработанного сплава в отожженном состоянии при комнатной температуре: предел текучести 320-340 МПа, предел прочности 350-380 МПа и относительное удлинение (10-14)%. Механические свойства снижаются незначительно (менее чем на 5%) после вылеживания в коррозионно-агрессивно среде (стандарт испытания на коррозионную стойкость ASTMG110-92). Поверхность образцов остается гладкой без продуктов коррозии.

Разработанный сплав относится к разряду самозакаливающихся термически упрочняемых сплавов. Вследствие чего полученные из данного сплава изделия могут подвергаться закалке на воздухе, что позволяет избежать коробления, часто наблюдаемого после закалки в более плотных средах, и позволит закаливать детали сложной формы, полученные методом сверхпластической формовки. Листы из разработанного сплава, полученные по оптимизированной технологии, имеют нерекристаллизованную структуру перед сверхпластической формовкой. Сплав не уступает своим аналогам по механическим свойствам, превосходя их по прочности и пластичности при комнатной температуре. Листы из разработанного сплава способны к высокоскоростной сверхпластической деформации: при температуре 460°С и скорости деформации 0,01 с-1 относительное удлинение составляет не менее 400%.

Пример 1

Листы из сплава с химическим составом Al - 1% Mg - 0,8% Si - 1% Fe - 1% Ni - 0,6% Cu - 0,2% Zr - 0,2% Sc получены по следующей технологической схеме:

1) Получение слитков литьем в медную водоохлаждаемую изложницу со скоростью охлаждения 15 К/с.

2) Двухступенчатый гомогенизационный отжиг 380 С, 8 ч+480 С, 8 ч.

3) Горячая прокатка степенью деформации 78%.

4) Холодная прокатка степенью деформации 75%.

После отжига холоднокатаных листов при 460°С, имитирующего нагрев и выдержку при температуре сверхпластической деформации, структура листов остается нерекристаллизованной.

В искусственно состаренном состоянии листы имеют предел текучести 320-330 МПа, предел прочности 360-370 МПа и относительное удлинение (12-14)%, которые практически не снижаются после теста на общую коррозию по стандарту ASTMG110-92.

Максимальное удлинение до разрыва, полученное при температуре 460°С и оптимальной скорости сверхпластической деформации 10-2 с-1, составило 400±10%.

Пример 2

Листы из сплава с химическим составом Al - 1% Mg - 1% Si - 1% Fe - 1% Ni - 0,6% Cu - 0,2% Zr - 0,2% Sc получены по технологической схеме, описанной в примере 1. В состаренном состоянии листы имеют предел текучести 320-330 МПа, предел прочности 360-380 МПа и относительное удлинение (11-13) %, которые практически не снижаются после теста на общую коррозию по стандарту ASTMG110-92.

Максимальное удлинение до разрыва, полученное при температуре 460°С и оптимальной скорости сверхпластической деформации 10-2 с-1, составило 410±10%.

Пример 3

Листы из сплава с химическим составом Al - 1,2% Mg - 1% Si - 1% Fe - 1% Ni - 0,6% Cu - 0,2% Zr - 0,2% Sc получены по технологической схеме, описанной в примере 1. В состаренном состоянии листы имеют предел текучести 330-340 МПа, предел прочности 360-380 МПа и относительное удлинение (10-12) %, которые практически не снижаются после теста на общую коррозию по стандарту ASTMG110-92.

Максимальное удлинение до разрыва, полученное при температуре 460°С и оптимальной скорости сверхпластической деформации 10-2 с-1, составило 405±10%.

Пример 4

Листы из сплава с химическим составом Al - 1,2% Mg - 0,8% Si - 0,8% Fe - 0,8% Ni -0,6% Cu - 0,2% Zr - 0,2% Sc получены по технологической схеме, описанной в примере 1. В состаренном состоянии листы имеют предел текучести 320-330 МПа, предел прочности 360-380 МПа и относительное удлинение (12-14)%, которые практически не снижаются после теста на общую коррозию по стандарту ASTMG110-92.

Максимальное удлинение до разрыва, полученное при температуре 460°С и оптимальной скорости сверхпластической деформации 10-2 с-1, составило 390±10%.

Пример 5

Листы из сплава с химическим составом Al - 1,2% Mg - 1,2% Si - 1,2% Fe- 0,8% Ni - 0,6% Cu - 0,2% Zr - 0,2% Sc получены по технологической схеме, описанной в примере 1. В состаренном состоянии листы имеют предел текучести 330-340 МПа, предел прочности 360-380 МПа и относительное удлинение (10-12)%, которые практически не снижаются после теста на общую коррозию по стандарту ASTMG110-92.

Максимальное удлинение до разрыва, полученное при температуре 460°С и оптимальной скорости сверхпластической деформации 10-2 с-1, составило 395±10%.

Пример 6

Листы из сплава с химическим составом Al - 1,2% Mg - 0,5% Si - 0,5%Fe - 0,5% Ni - 0,6% Cu - 0,2%Zr - 0,2% Sc получены по технологической схеме, описанной в примере 1. В состаренном состоянии листы имеют предел текучести 310-320 МПа, предел прочности 350-370 МПа и относительное удлинение (14-15) %, которые практически не снижаются после теста на общую коррозию по стандарту ASTMG110-92.

Максимальное удлинение до разрыва, полученное при температуре 460°С и оптимальной скорости сверхпластической деформации 10-2 с-1, составило 300±10%.

Источник поступления информации: Роспатент

Showing 311-320 of 323 items.
23.04.2023
№223.018.51ab

Способ получения модифицированных наночастиц магнетита, легированных гадолинием

Изобретение относится к области неорганической химии, а именно к способу получения модифицированных наночастиц магнетита, легированных гадолинием. Данные наночастиц могут быть использованы, например, в качестве двойных контрастных агентов для МРТ-диагностики. Способ получения модифицированных...
Тип: Изобретение
Номер охранного документа: 0002738118
Дата охранного документа: 08.12.2020
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
23.04.2023
№223.018.5219

Способ комбинаторного получения новых композиций материалов в многокомпонентной системе

Изобретение относится к области металлургии, в частности к способу комбинаторного получения композиций материалов в многокомпонентной системе. Может использоваться для построения фазовых диаграмм и поиска новых интерметаллических соединений в многокомпонентных системах. Из тугоплавкого...
Тип: Изобретение
Номер охранного документа: 0002745223
Дата охранного документа: 22.03.2021
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.5654

Способ переработки минерального сырья, содержащего сульфиды металлов

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и промпродуктов обогащения, богатых руд, а именно к выщелачиванию металлов из сульфидного минерального сырья....
Тип: Изобретение
Номер охранного документа: 0002739492
Дата охранного документа: 24.12.2020
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.5822

Способ растворения сульфидов металлов с использованием озона и пероксида водорода

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и продуктов обогащения, богатых руд. Способ растворения сульфидов металлов с использованием озона и пероксида...
Тип: Изобретение
Номер охранного документа: 0002768928
Дата охранного документа: 25.03.2022
16.05.2023
№223.018.5e79

Способ получения поликристаллических алмазных пленок

Изобретение относится к области материаловедения и может быть использовано при изготовлении теплоотводов, детекторов ионизирующего излучения, инфракрасных окон, упрочняющих и износостойких покрытий на деталях и режущем инструменте. Сначала готовят суспензию, содержащую наноалмазные порошки, и...
Тип: Изобретение
Номер охранного документа: 0002750234
Дата охранного документа: 24.06.2021
16.05.2023
№223.018.602d

Лазер с устройствами юстировки

Изобретение относится к области квантовой электроники и лазерной техники, в частности к твердотельным ВКР-лазерам, и может быть применено в нелинейной оптике, аналитической спектроскопии, оптическом приборостроении, медицине, экологии, фотодинамической терапии. Лазер с источником накачки,...
Тип: Изобретение
Номер охранного документа: 0002749046
Дата охранного документа: 03.06.2021
Showing 181-182 of 182 items.
07.09.2019
№219.017.c8b9

Латунь для сверхпластической формовки деталей с малой остаточной пористостью

Изобретение относится к области цветной металлургии, а именно к составам латуни, и предназначено для изготовления сверхпластичных листов из сплава системы Cu-Zn-Al. Лист из двухфазной латуни для сверхпластической формовки изделий с пониженной остаточной пористостью, не превышающей 1,5%,...
Тип: Изобретение
Номер охранного документа: 0002699423
Дата охранного документа: 05.09.2019
16.05.2023
№223.018.63f2

Сплав системы al-mg с гетерогенной структурой для высокоскоростной сверхпластической формовки

Изобретение относится к области алюминиевых сплавов с микрозеренной структурой, в частности к сплавам системы Al-Mg, которые могут быть использованы для изготовления методом сверхпластической формовки полуфабрикатов и изделий в различных отраслях промышленности. Сплав с гетерогенной структурой...
Тип: Изобретение
Номер охранного документа: 0002772479
Дата охранного документа: 20.05.2022
+ добавить свой РИД