×
19.01.2018
218.016.0650

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ ТЕХНОЛОГИЧЕСКИХ НАРУШЕНИЙ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу автоматического контроля технологического состояния алюминиевого электролизера с обожженными анодами, закрепленными на анодной шине. Способ включает измерение напряжения в нескольких точках по длине анодной шины электролизера и определение токов по анодам путем решения обратной задачи для уравнения распределения напряжения по анодной шине, рассчитанные значения тока по анодам фильтруют, рассчитывают шум тока по анодам с последующей фильтрацией, рассчитывают среднесуточный абсолютный прирост фильтрованного шума по анодам, сравнивают значения тока по аноду и абсолютного приращения среднесуточного шума по аноду с заданным значением и выявляют технологические нарушения на аноде. Обеспечивается возможность снижения количества технологических нарушений и повышения качества управления технологическим процессом в целом. 5 з.п. ф-лы, 4 ил.

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, и может быть использовано при автоматическом управлении технологическим процессом производства алюминия.

Известен способ контроля технологического состояния алюминиевого электролизера, включающий измерение токов, протекающих по анодной штанге, с помощью датчиков (патент US №6136177, МПК С25С 1/100, 2000). В способе предлагается использовать датчики тока на основе измерения магнитного поля (эффект Холла).

Также известен способ автоматического контроля технологического состояния алюминиевого электролизера с обожженными анодами, закрепленными на анодной шине, включающий измерение напряжения на конструктивных элементах электролизера с использованием датчиков напряжения, связанных с вычислительным блоком, и определение токов по анодам (патент US №4786379, МПК С25С 3/20, 1988). Определение токов по отдельному аноду основано на измерениях напряжения на вертикальном участке фиксированной длины анодной штанги. Эти данные передаются в вычислительный блок, где ток рассчитывается по известному сечению штанги и удельной электропроводности материала анодной штанги. Коррекция температурной зависимости электропроводности проводится на основе данных от датчиков температуры на анодных штангах.

Основной недостаток способов-аналогов обусловлен тем, что измерение напряжения проводится непосредственно на анодных штангах. При использовании указанных выше способов для непрерывного мониторинга токораспределения по всем анодам электролизера необходима перенастройка системы. При каждой замене анода проводится полный или частичный демонтаж и монтаж измерительного узла на анодной штанге.

В качестве ближайшего аналога выбран способ автоматического контроля технологического состояния алюминиевого электролизера (Патент RU 2307881, С25С 3/20, опубл. 10.10.2007), включающий измерение напряжения на конструктивных элементах электролизера с использованием датчиков напряжения, связанных с вычислительным блоком, и определение токов, при этом измерение напряжения осуществляют в нескольких точках по длине анодной шины электролизера, число которых выбирают большим числа определяемых токов, а определение токов проводят по анодам, анодным стоякам и анодным перемычкам путем решения обратной задачи для уравнения распределения напряжения по анодной шине.

Общим с указанным способом является измерение напряжения на конструктивных элементах электролизера и определение токов по анодам.

Недостатком ближайшего аналога является то, что реализация способа предназначена лишь для визуализации индивидуальных значений тока по анодам в АСУТП электролиза алюминия и не предусматривает автоматическую диагностику технологических нарушений на электролизере.

Задачей изобретения является повышение качества управления технологическим процессом.

Технический результат, получаемый при реализации предлагаемого технического решения, заключается в сокращении времени обнаружения технологических нарушений на анодах электролизера за счет их ранней диагностики.

Технический результат достигается за счет того, что в способе автоматического контроля технологического состояния алюминиевого электролизера с обожженными анодами, закрепленными на анодной шине, включающий измерение напряжения в нескольких точках по длине анодной шины электролизера и определение токов по анодам путем решения обратной задачи для уравнения распределения напряжения по анодной шине, согласно изобретению рассчитанные значения тока по анодам фильтруют, рассчитывают шум тока по анодам с последующей фильтрацией, рассчитывают среднесуточный абсолютный прирост фильтрованного шума по анодам, сравнивают значения тока по аноду и абсолютного приращения среднесуточного шума по аноду с заданным значением и выявляют технологические нарушения на аноде.

Способ дополняют частные признаки его реализации.

Ток по каждому аноду фильтруют, используя фильтр Калмана:

,

где: In(фильтр.) - фильтрованное значение тока по аноду, кА;

In(измерен.) - измеренное значение тока по аноду, кА;

In-1(фильтр.) _ предыдущее фильтрованное значение тока по аноду, кА;

n - номер значения;

smooth - коэффициент сглаживания (smooth>1).

При этом первое фильтрованное значение тока по аноду принимают как:

I1(фильтр.)=I1(измерен.),

где: I1(фильтр.) _ первое фильтрованное значение тока по аноду, кА,

I1(измерен.) - первое измеренное значение тока по аноду, кА,

Рассчитывают шум тока по каждому аноду как:

ΔI=Imax-Imin,

где: ΔI - шум тока по аноду (минутное значение), кА;

Imax - максимальное секундное значение измеренного тока анода на минутном интервале, кА;

Imin - минимальное секундное значение измеренного тока анода на минутном интервале, кА.

Шум тока по каждому аноду фильтруют, используя фильтр Калмана:

,

где: ΔIn(фильтр) - фильтрованное значение шума тока по аноду, кА;

ΔIn - шум тока по аноду, кА;

ΔIn-1(фильтр.) _ предыдущее фильтрованное значение шума тока по аноду, кА;

n - номер значения;

smooth - коэффициент сглаживания (smooth>1).

При этом первое фильтрованное значение шума тока по аноду принимают как:

ΔI1(фильтр.)=ΔI1,

где: ΔI1(фильтр) - фильтрованное значение шума тока по аноду, кА;

ΔI1 - шум тока по аноду, кА;

Рассчитывают среднесуточный фильтрованный шум тока по аноду и определяют его абсолютный прирост:

ΔIабс.пр.(среднесут.)=ΔIn(среднесут.)-ΔIn-1(среднесут.),

где: ΔIабс.пр.(среднесут.) - абсолютный прирост среднесуточного фильтрованного шума тока по аноду, кА/сут;

ΔIn(среднесут.) _ текущее среднесуточное значение фильтрованного шума тока по аноду, кА;

ΔIn-1(среднесут.) _ предыдущее среднесуточное значение фильтрованного шума тока по аноду, кА.

Технологические нарушения на аноде определяют в первой половине жизненного цикла анода.

Обнаружение технологических нарушений на анодах («конусов») производится по изменениям тока и шума тока по анодам от заданных значений.

Предлагаемый способ отличается от прототипа следующим.

Во-первых, измеренные значения токов по анодам фильтруют методом Калмана. Это позволяет уменьшить влияние шумов аппаратной части на измеряемые значения.

Во-вторых, рассчитывают шум тока по аноду, фильтруют его, рассчитывают среднесуточное значение и его абсолютный прирост.

В-третьих, способ позволяет выявлять технологические расстройства на подошве анодов.

В-четвертых, способ диагностирует технологические нарушения на ранней стадии их возникновения, что позволяет сократить время работы электролизера с технологическим расстройством.

Сущность изобретения поясняется чертежами, где показано:

на фиг. 1 представлен график динамики тока и шума тока по аноду с наличием «конуса» в течение 10 суток после установки.

На фиг. 2 представлен график динамики тока по аноду без технологического нарушения и с наличием «конуса».

На фиг. 3 представлен пример обнаружения «конуса» по предлагаемому алгоритму.

На фиг. 4 представлен график целевой нагрузки для нового анода.

Сущность предложенного способа заключается в следующем.

По мере увеличения мощности электролизеров увеличилось и количество устанавливаемых анодов. Как следствие, при вовлечении в производство анодов низкого качества возникает высокая погрешность в обнаружении проблемного анода, а при работе на низком междуполюсном расстоянии (МПР) потребность в оперативном обнаружении проблемных анодов возрастает на порядок.

Одним из основных определяющих факторов достижения высоких ТЭП на серии электролизеров является минимальное количество электролизеров с технологическими нарушениями. Поэтому необходимо максимально быстро установить и устранить первопричину технологического расстройства в случае его возникновения, разработать и осуществлять корректирующие мероприятия по предупреждению его повторного возникновения.

Ключевым технологическим нарушением, значительно снижающим выход по току, является нарушение на подошве анодов («конус»). Под данным нарушением понимается образование на рабочей поверхности анодов локальных участков, на которых МПР значительно ниже.

В ходе проведения многочисленных лабораторных и экспериментальных исследований была выдвинута гипотеза, которая объясняет причины образования «конусов», а именно:

- за счет флуктуаций в аноде (неравномерностей) возникают большие локальные токи, как следствие, большое сопротивление анода и низкая нагрузка на аноде;

- на поверхности анода за счет локальной высокой плотности возникают большие перенапряжения (~0,7 В), приводящие к разряду ионов фтора (CxFy), и поверхность пассивируется;

- далее в районе пассивированной поверхности ток перестает идти и перераспределяется по подошве анода;

- на пассивированной поверхности анода начинает образовываться «конус».

Если рассматривать динамику взятия нагрузки на рядовом аноде без технологических нарушений (фиг. 2), примерно на третьи сутки после установки токовая нагрузка достигает номинального значения и рост прекращается, а анод с технологическим нарушением имеет аномально низкую нагрузку (ниже номинального значения), при этом ток растет по линейной зависимости.

В заявляемом способе диагностику нарушений предлагается выявлять на основании оценки динамики токовой нагрузки по аноду и абсолютному приросту среднесуточного шума тока по аноду.

Посредством мониторинга информации о взятии нагрузки анодов нормального качества без технологических отклонений был разработан график целевой нагрузки для нового анода (фиг. 4). Данный график предназначен для установки заданного значения токовой нагрузки в соответствии с возрастом анода. Отклонение от заданного значения токовой нагрузки является одним из факторов для выявления нарушений на аноде.

Еще одним фактором для выявления нарушений на аноде является абсолютный прирост среднесуточного шума тока по аноду. Если прирост шума по аноду составляет более 0,15 кА/сут., то выполняется второе условие для идентификации нарушения на аноде. Заданное значение абсолютного прироста шума тока было получено на основе экспертных данных и является минимальным значением, при котором были выявлены нарушения на аноде.

Сопоставляя эти два фактора (динамика токовой нагрузки и прирост среднесуточного шума), можно утверждать о наличии «конуса» на аноде и принимать меры по его устранению.

Рассмотрим пример диагностики нарушения на аноде по предлагаемому способу. На фиг. 1 представлен график динамики тока и шума тока по аноду с наличием «конуса» в течение 10 суток после установки, где четко виден процесс образования нарушения на подошве анода, который условно можно разбить на 4 этапа:

Этап №1 - после установки анода первые двое суток затвердевшее сырье на аноде постепенно расплавляется, анод нагревается, начинает брать токовую нагрузку и его подошва выходит на горизонт анодного массива, однако токовая нагрузка значительно ниже номинального значения;

Этап №2 - после того как подошва анода вышла на горизонт анодного массива, на локальных участках начинают образовываться «отставания». О данном факте свидетельствует рост шума тока по аноду. Данный этап мы интерпретировали как начало формирования «конуса» и нахождение его в расплаве;

Этап №3 - на данном этапе «конус» сформировался и его высота достигает МПР. Как следствие, идет подмыкание, о чем свидетельствует значительный рост шума тока по аноду;

Этап №4 - на данном этапе «конус» полностью замкнул на металл, это видно из остановки роста шума тока по аноду, и «конус» начинает расти, о чем свидетельствует линейное повышение тока по аноду.

Согласно предлагаемому способу необходимо выполнить оценку динамики токовой нагрузки по аноду и абсолютный прирост среднесуточного шума. На фиг. 3 видно, что динамика тока анода значительно ниже целевого графика нагрузки для нового анода и абсолютный прирост шума на 5 сутки составляет 0,15 кА, следовательно, нарушение имеет место быть.

В данном примере если применять типичный подход по управлению токовой нагрузкой на анодах, то «конус» будет обнаружен только после превышения токовой нагрузки номинального значения, а именно на 10-12 сутки после установки. Применение разработанного подхода по обнаружению «конусов» по динамике тока и шума тока по аноду позволяет выявить нарушение на 5-7 сутки после его установки (3 этап, фиг. 1).

Выявление нарушений на аноде осуществляется в следующей последовательности:

1. измеряют ток по аноду;

2. фильтруют значения тока;

3. рассчитывают шум тока по аноду;

4. фильтруют значения шума тока по аноду;

5. рассчитывают среднесуточный фильтрованный шум тока по аноду;

6. рассчитывают абсолютный прирост среднесуточного фильтрованного шума тока по аноду;

7. выполняют оценку динамики фильтрованных значений тока по аноду и среднесуточного шума по аноду с заданным значением;

8. выявляют нарушение на аноде.

Между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом существует причинно-следственная связь, а именно: выявление «конусов» на ранней стадии позволяет оперативно принять меры по их устранению, тем самым сократив время работы электролизера с нарушенным технологическим режимом.

Суммируя вышесказанное, предлагаемый способ за счет снижения количества технологических нарушений позволяет повысить качество управления технологическим процессом в целом.


СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ ТЕХНОЛОГИЧЕСКИХ НАРУШЕНИЙ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА
СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ ТЕХНОЛОГИЧЕСКИХ НАРУШЕНИЙ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА
СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ ТЕХНОЛОГИЧЕСКИХ НАРУШЕНИЙ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА
Источник поступления информации: Роспатент

Showing 141-150 of 231 items.
16.06.2018
№218.016.6261

Катодный токоподводящий стержень алюминиевого электролизера

Изобретение относится к устройству катодного токоподводящего стержня для катодного устройства алюминиевого электролизера. Катодный токоподводящий стержень содержит металлическую основу с внутренней полостью и вкладыш, выполненный из материала с высокой удельной электропроводностью,...
Тип: Изобретение
Номер охранного документа: 0002657682
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6277

Способ получения алюминиевого сплава, легированного кремнием

Изобретение относится к цветной металлургии, а именно к технологии производства алюминиевых сплавов. Способ получения алюминиевого сплава, легированного кремнием, включает введение в расплав алюминия кремния и тугоплавких металлов, при этом перед введением в расплав алюминия жидкий кремний...
Тип: Изобретение
Номер охранного документа: 0002657681
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.62b9

Способ приготовления галогенидсодержащего флюса для обработки алюминия и его сплавов

Изобретение относится к способу приготовления галогенидсодержащих флюсов. Способ включает взвешивание компонентов флюса, порционную загрузку в печь и плавление галогенидов, составляющих основу флюса, с последующим введением в расплав остальных галогенидов металлов, перемешивание расплава флюса,...
Тип: Изобретение
Номер охранного документа: 0002657680
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.637a

Способ получения катанки из термостойкого сплава на основе алюминия

Изобретение относится к области металлургии, в частности к технологии получения алюминиевых сплавов, и может быть использовано для получения изделий электротехнического назначения, способных работать при повышенных температурах. Способ получения катанки из термостойкого сплава на основе...
Тип: Изобретение
Номер охранного документа: 0002657678
Дата охранного документа: 14.06.2018
04.07.2018
№218.016.6a35

Кристаллизатор для литья алюминиевых слитков

Изобретение относится к литейному производству и может быть использовано при непрерывном литье алюминиевых слитков. Кристаллизатор содержит корпус (1) и крышку (2). Внутри крышки выполнено устройство подачи смазки, состоящее из проточки (5), выполненной со стороны внешнего контура крышки, и...
Тип: Изобретение
Номер охранного документа: 0002659548
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a81

Литейный алюминиево-кремниевый сплав

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении фасонных отливок различными методами литья, в частности дисков автомобильных колес методом литья под низким давлением. Литейный алюминиево-кремниевый сплав содержит, мас....
Тип: Изобретение
Номер охранного документа: 0002659514
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6abc

Термостойкий сплав на основе алюминия

Изобретение относится к технологии алюминиевых сплавов и может быть использовано при получении изделий, работающих при повышенных температурах. Алюминиевый сплав, содержащий цирконий и по меньшей мере один элемент, выбранный из группы, содержащей железо и никель, имеет структуру, представляющую...
Тип: Изобретение
Номер охранного документа: 0002659546
Дата охранного документа: 02.07.2018
08.07.2018
№218.016.6dfe

Электрод алюминиевого электролизера (варианты)

Изобретение относится к вертикальным или наклонным электродам электролизера для электролитического получения алюминия из оксида алюминия. Электрод содержит основу электрода и поверхностное покрытие на основе тугоплавкой керамики. По первому варианту изобретения основа электрода выполнена из...
Тип: Изобретение
Номер охранного документа: 0002660448
Дата охранного документа: 06.07.2018
28.08.2018
№218.016.800e

Способ литья алюминиевых плоских слитков

Изобретение относится к металлургии. Расплав алюминия подготавливают в миксере. Дегазируют и подают в расплав алюминия прутковую лигатуру состава AlTiB 5/1 в объеме не более 3 кг/т расплава, при этом температуру расплава алюминия в кристаллизаторе поддерживают 700-710°С. Осуществляют фильтрацию...
Тип: Изобретение
Номер охранного документа: 0002665026
Дата охранного документа: 24.08.2018
09.09.2018
№218.016.8537

Способ получения восстановителя для производства технического кремния

Изобретение относится к технологии производства восстановителей для металлургии. Предложен способ переработки углеродсодержащего сырья с получением восстановителя для производства технического кремния, который включает термообработку углеродсодержащего сырья в кипящем слое при температуре...
Тип: Изобретение
Номер охранного документа: 0002666420
Дата охранного документа: 07.09.2018
Showing 141-146 of 146 items.
16.05.2019
№219.017.5275

Способ защиты угольной части анода от окисления

Изобретение относится к производству алюминия в электролизерах с обожженным анодом. Способ защиты угольной части анода от окисления включает нанесение глинозема на подошву и боковые стенки анода путем погружения анода в емкость с коллоидным раствором глинозема с размером частиц 3-5 мм с...
Тип: Изобретение
Номер охранного документа: 0002687526
Дата охранного документа: 14.05.2019
14.08.2019
№219.017.bf34

Устройство для определения направления движения электролита в алюминиевом электролизере

Изобретение относится к устройству для определения направления движения электролита в алюминиевом электролизере. Устройство содержит лопасть, поворачивающуюся под воздействием сил движущего электролита, закрепленную на изогнутом стержне, на верхнем горизонтальном торце которого размещен конус с...
Тип: Изобретение
Номер охранного документа: 0002697137
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf71

Анодный блок алюминиевого электролизера

Изобретение относится к анодному блоку алюминиевых электролизеров. Анодный блок алюминиевого электролизера выполнен с расположенными на его нижней рабочей поверхности каналами, для этого в подошве анода размещены изготовленные из алюминиевого прутка алюминиевые решетки, расположенные под...
Тип: Изобретение
Номер охранного документа: 0002697149
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf87

Способ окисления углерода, содержащегося в электролите алюминиевого электролизера

Изобретение относится к способу окисления углерода электролита алюминиевого электролизера. Способ включает подачу воздуха в электролит, при этом подают отработанный сжатый осушенный воздух от пневмоцилиндра привода штока загрузочного устройства дозирования сырья алюминиевого электролизера в...
Тип: Изобретение
Номер охранного документа: 0002697141
Дата охранного документа: 12.08.2019
25.03.2020
№220.018.0fd2

Способ обжига подины алюминиевого электролизёра

Изобретение относится к способу обжига подины алюминиевого электролизера с обожженными или инертными анодами. Способ включает покрытие подины электропроводным материалом, размещение на нем обожженных анодов, соединенных с анодными шинами анодной ошиновки электролизера, пропускание...
Тип: Изобретение
Номер охранного документа: 0002717438
Дата охранного документа: 23.03.2020
24.06.2020
№220.018.2a57

Способ защиты катодных блоков алюминиевых электролизёров с обожженными анодами, защитная композиция и покрытие

Изобретение относится к области цветной металлургии, а именно к электролитическому производству алюминия, и может быть использовано для защиты катодных блоков алюминиевых электролизеров с обожженными анодами для уменьшения износа катодных блоков и продления срока службы. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002724236
Дата охранного документа: 22.06.2020
+ добавить свой РИД