×
19.01.2018
218.016.048c

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ ГЕКСАФТОРИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз гексафторида урана, при этом гексафторид урана предварительно охлаждают до температуры ≤-40°C, а в воду добавляют фторид аммония и лед, количество которого выбирают из условия компенсации тепловыделения при гидролизе гексафторида урана, при этом гексафторид урана постепенно загружают в полученную смесь, а его количество выбирают обратно пропорционально росту температуры раствора продуктов, далее осуществляют обработку продуктов гидролиза аммиачной водой, фильтрацию и термообработку осадка. Изобретение позволяет с высокой эффективностью и производительностью перерабатывать значительное количество гексафторида урана. При этом способ не требует сложной агрегированной системы аппаратов и может быть применен для переработки как высокообогащенного, так и обедненного (отвального) по изотопу U гексафторида урана, в том числе после длительного периода его хранения. 6 з.п. ф-лы, 4 пр.

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана (UO2F2) и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида.

Способы переработки гексафторида урана (UF6) делятся на две категории - «сухие» или пирометаллургические и «мокрые» или гидрометаллургические методы. Пирометаллургические способы заключаются в обработке гексафторида урана при температуре 600-1000°С водяным паром или другими газообразными реагентами - продуктами горения кислородно-водородного пламени. Процессы пирогидролиза гексафторида урана перегретым водяным хорошо изучены и широко применяются в промышленности (Б.В. Громов. «Введение в химическую технологию урана». М.: Атомиздат, 1978, стр. 286-287).

Известен способ получения порошка диоксида урана из гексафторида урана, включающий подачу в предварительно разогретую первую реакционную зону реакционной камеры гексафторида урана и водяного пара, подачу во вторую реакционную зону реакционной камеры смеси водяного пара и водорода с созданием в этой зоне псевдоожиженного слоя для восстановления в ней полученного в первой реакционной зоне диоксидифторида до диоксида урана, выгрузку порошка из реакционной камеры и подачу его в печь, в которую вводят смесь водяного пара и водорода для обеспечения довосстановления непрореагировавшего диоксидифторида урана (патент RU 2381993, МПК C01G 43/025, опубл. 20.02.2010).

Общим недостатком этого и других «сухих» методов переработки гексафторида урана является необходимость использования для проведения процесса сложного и нестандартного аппаратурного оборудования из коррозионностойких в парах фтористого водорода металлов (никеля или сплавов на его основе). Кроме того, в некоторых случаях использование сложных комплексов реакторов и трубчатых вращающихся печей приводит к затруднениям в контроле параметров процессов, что обуславливает повышенные эксплуатационные затраты.

Гидрометаллургические методы переработки сводятся к гидролизу гексафторида урана в воде и последующей обработке продуктов гидролиза аммиаком, фильтрации и термообработке осадка (Н.П. Галкин, А.А. Майоров и др. «Химия и технология фтористых соединений урана». М., 1961, стр. 220-224).

Известен способ переработки гексафторида урана в диоксидифторид урана уранилфторид путем гидролиза водным раствором фтороводорода при перемешивании, с последующим отделением фтороводорода от диоксидифторида урана (патент RU 2311346, МПК C01G 43/06, опубл. 27.11.2007). Недостатком данного способа является использование агрессивного фтороводорода и сложность аппаратурного оформления процесса отделения фтороводорода от диоксидифторида урана.

Наиболее близким по технической сущности является способ переработки гексафторида урана, который заключается в том, что растворяют гексафторид урана в воде с получением раствора диоксидифторида урана, полученный раствор обрабатывают аммиачной водой с получением твердого полиураната аммония и раствора фторида аммония. Твердую фракцию отфильтровывают и прокаливают при температуре 450-600°С до октаоксида триурана и далее раствор после фильтрации упаривают до получения твердого фторида аммония (патент RU 2489357, МПК C01G 43/06, опубл. 10.08.2013). Этот способ выбран в качестве прототипа. Недостатком данного способа является то, что он применим при небольших загрузках UF6 (до 10 г). При больших загрузках UF6 (более 10,0 г), вследствие высокого значения теплоты реакции гидролиза (118 ккал/моль) и большого тепловыделения, происходит сильный неконтролируемый разогрев образующегося раствора, что приводит к испарению (возгонке) UF6 и уменьшению выхода продукта, а также необходимости применения сложной агрегированной системы улавливания и конденсации испарившего UF6 (конденсаторы, скрубберы, сорбенты и т.п.).

Задачей настоящего изобретения является разработка способа, позволяющего с высокой эффективностью перерабатывать значительное количество гексафторида урана и не требующего при этом дополнительной сложной агрегированной системы аппаратов.

Поставленная задача решается тем, что в способе переработки гексафторида урана, включающем его гидролиз, обработку продуктов гидролиза аммиачной водой, фильтрацию и термообработку осадка, согласно изобретению гексафторид урана предварительно охлаждают до температуры ≤-40°С, перед гидролизом гексафторида в воду добавляют фторид аммония (NH4F) и лед, количество которого выбирают из условия компенсации тепловыделения при гидролизе гексафторида урана, а затем в полученную смесь постепенно загружают гексафторид урана, количество которого выбирают обратно пропорционально росту температуры раствора продуктов гидролиза.

Глубокое охлаждение гексафторида урана до температуры ≤(-40)°С позволяет без применения специальной агрегированной аппаратуры осуществлять работу с гексафторидом урана в открытом виде при атмосферном давлении, поскольку указанная температура является границей резкого снижения давления паров UF6 при атмосферном давлении.

Перед гидролизом гексафторида в воду добавляют фторид аммония и лед. Добавление фторида аммония приводит к образованию комплексов с гексафторидом и диоксидифторидом урана (NH4UF7, (NH4)3UO2F5), что способствует более полному превращению UF6 в готовый продукт. Кроме того, образование комплексов с гексафторидом приводит к снижению давления паров UF6 и тем самым уменьшает потери урана в процессе его гидролиза. Добавление льда перед гидролизом позволяет компенсировать тепловыделение при гидролизе гексафторида. При этом количество льда для выполнения условий компенсации тепловыделения определяется величиной суммарной загрузки гексафторида урана и воды. Исходя из тех же соображений, гексафторид урана загружают в полученную смесь постепенно, уменьшая загрузку обратно пропорционально росту температуры в процессе гидролиза UF6..

В частных случаях осуществления изобретения охлажденный UF6 постепенно порциями погружают в водный раствор фторида аммония и льда. Величину загружаемых порций гексафторида урана можно определить экспериментально или рассчитать по формуле:

,

где

ΔT=Tni-Tno - рост температуры раствора в процессе гидролиза гексафторида урана, °С;

Тno - начальная температура воды и льда, °С;

Тni - температура воды и льда после i-й загрузки, °С;

ΔM - масса порционной загрузки UF6, г.

При этом интервал между загрузками гексафторида урана можно рассчитать по формуле:

,

где

ΔТ=Тni-Тno - рост температуры раствора в процессе гидролиза гексафторида, °С;

Δt - интервал времени между порциями гексафторида, мин.

Оптимальное объемное соотношение льда и воды составляет 1:(4-5), поскольку увеличение объема льда может затруднить теплообмен и снизить поглощающую способность гидролизующей системы, особенно в начальный период.

Оптимальное весовое отношение фторида аммония к гексафториду урана составляет (1-3):10. Оно подобрано экспериментальным путем из условия обеспечения образования водорастворимых комплексов NH4UF7 и (NH4)3UO2F5.

Гексафторид загружают в смесь воды, льда и фторида аммония постепенно при весовом отношении общего количества гексафторид урана к воде и льду, равном 1:(5-7). Указанное соотношение ингредиентов является оптимальным и обеспечивает полную растворимость образующихся диоксидифторида урана и его комплекса с фторидом аммония без кристаллизации продуктов реакции.

Охлаждение гексафторида урана можно проводить жидким азотом или «сухим льдом».

Сведения, подтверждающие возможность осуществления изобретения.

Пример 1

600 г гексафторида урана охлаждали жидким азотом до температуры -85°С. В воде (3000 мл) растворяли 180 г фторида аммония, далее добавляли 600 мл льда.

Охлажденный UF6 постепенно порциями по ≤100 г погружали в водный раствор фторида аммония и льда с получением раствора диоксидифторида урана, его комплекса с фторидом аммония и бифторида аммония (NH4HF2):

UF6+2Н2O=UO2F2+4HF;

UO2F2+3NH4F=(NH4)3UO2F5;

NH4F+HF=NH4HF2 .

В процессе гидролиза гексафторида урана за счет тепловыделения температура гидролизующей системы (вода, лед, фторид аммония, диоксидифторид урана) увеличивалась с 3°С до 23°С. Величину загружаемых порций рассчитывали по формуле .

Согласно формуле (1) порции UF6 уменьшали обратно пропорционально росту температуры раствора в процессе гидролиза:

При ΔТ=0°С ΔМ=100/{1+0,1(0)}=100 г.

При ΔТ=5°С ΔМ=100/{1+0,1(5)}=66,6 г.

При ΔТ=10°С ΔМ=100/{1+0,1(10)}=50 г.

При ΔТ=20°С ΔМ=100/(1+0,1(20)}=33,3 г.

Интервал между порциями гексафторида урана увеличивали прямо пропорционально росту температуры раствора и в соответствии с формулой (2).

Δt=1+0,2ΔТ интервал составлял:

При ΔТ=0°С Δt=1+0,2(0)=1 мин.

При ΔТ=5°С Δt=1+0,2(5)=2 мин.

При ΔТ=10°С Δt=1+0,2(10)=3 мин.

При ΔТ=20°С Δt=1+0,2(20)=5 мин.

Полученный раствор обрабатывали 1050 мл 25% аммиачной воды с получением твердого ураната аммония (NH4)2U2O7 и раствора фторида аммония NH4F:

2UO2F2+6NH4OH=(NH4)2U2O7+4NH4F+3H2O.

Уранат аммония (NH4)2U2O7 фильтрационно отделяли от раствора фторида аммония и прокаливали при температуре 600°С до октаоксида триурана:

3(NH4)2U2O7=2U3O8+6NH3+3H2O+O2.

В результате перечисленных операций получили порошок U3O8 массой 478,2 г. Химический выход урана составил 99,93%.

Пример 2

600 г гексафторида урана охлаждали «сухим льдом» (твердая двуокись углерода) до температуры -44°С. В воде (3000 мл) растворяли 60 г фторида аммония и далее добавляли 600 мл льда и затем в полученную смесь постепенно порциями загружали гексафторид урана. Интервал между порционными загрузками гексафторида урана, как и в примере №1, с ростом температуры, согласно формуле (2), увеличивали с 1 мин до 5 мин. Полученный раствор обработали 1050 мл 25% аммиачной воды, фильтрационно отделили твердый продукт (NH4)2U2O7 и прокалили его при 600°С. Получили U3O8 массой 470,2 г. Химический выход урана составил 98,03%.

Пример 3

600 г гексафторида урана охлаждали жидким азотом до температуры -77°С. В воде (3200 мл) растворяли 60 г фторида аммония и далее добавляли 800 мл льда и затем в полученную смесь постепенно порциями загружали гексафторид урана. Интервал между порционными загрузками гексафторида урана, как и в примерах 1 и 2, с ростом температуры, согласно формуле (2), увеличивали с 1 мин до 5 мин. Полученный раствор обработали 1050 мл 25% аммиачной воды, фильтрационно отделили твердый продукт (NH4)2U2O7 и прокалили его при 600°С. Получили U3O8 массой 471,3 г. Химический выход урана составил 98,23%.

Пример 4

650 г гексафторида урана охлаждали жидким азотом до температуры -73°С. В воде (2650 мл) растворяли 120 г фторида аммония и далее добавляли 600 мл льда и затем в полученную смесь постепенно порциями загружали гексафторид урана. Интервал между порционными загрузками гексафторида урана, как и в предыдущих примерах, увеличивали с 1 мин до 5 мин. Полученный раствор обработали 1000 мл 25% аммиачной воды, фильтрационно отделили твердый продукт (NH4)2U2O7 и прокалили его при 600°С. Получили U3O8 массой 469,2 г. Химический выход урана составил 97,98%.

Таким образом, из приведенных примеров видно, что осуществление способа в соответствии с заявленным изобретением позволяет с высокой эффективностью и производительностью перерабатывать значительное количество гексафторида урана. При этом способ не требует сложной агрегированной системы аппаратов и может быть применен для переработки как обедненного (отвального), так и высокообогащенного по изотопу U235 гексафторида урана, в том числе после длительного периода его хранения.

Источник поступления информации: Роспатент

Showing 71-78 of 78 items.
29.05.2019
№219.017.62db

Способ определения кислородного коэффициента в диоксиде урана и устройство для его осуществления

Изобретение относится к области изготовления ядерного топлива в виде диоксида урана и может быть использовано для определения атомного кислородного коэффициента в диоксиде урана. Способ включает заполнение измерительного цилиндра 1% водным раствором хлористого натрия. Высчитывают массу навески...
Тип: Изобретение
Номер охранного документа: 0002688141
Дата охранного документа: 20.05.2019
04.06.2019
№219.017.736c

Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа

Способ включает напыление путем электронно-лучевого испарения материала покрытия в вакууме и осаждения паров на поверхности подложки при вращении подложек механизмом с планетарной передачей. Осуществляют прямой оптический контроль путем измерения спектра пропускания покрытия на каждом обороте...
Тип: Изобретение
Номер охранного документа: 0002690232
Дата охранного документа: 31.05.2019
06.06.2019
№219.017.7438

Способ получения таблетированного пористого диоксида урана

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток диоксида урана топливных сердечников высокотемпературных вентилируемых тепловыделяющих элементов (ТВЭЛОВ) преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного варианта....
Тип: Изобретение
Номер охранного документа: 0002690492
Дата охранного документа: 04.06.2019
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
12.04.2023
№223.018.45cb

Способ наведения лазерных пучков и устройство для его осуществления

Группа изобретений относится к области лазерной локации и лазерной связи в открытом пространстве. Способ наведения лазерных пучков заключается в том, что при помощи источника лазерного излучения формируют лазерный пучок, который разделяют на две части, при этом первый парциальный пучок посылают...
Тип: Изобретение
Номер охранного документа: 0002744040
Дата охранного документа: 02.03.2021
Showing 61-69 of 69 items.
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
20.05.2019
№219.017.5c97

Способ получения тетрафторида урана

Изобретение относится к химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом, который может применяться в производстве гексафторида урана или металлического урана. Способ включает смешивание порошков диоксида урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002687935
Дата охранного документа: 16.05.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
05.03.2020
№220.018.08c0

Генератор паров рабочего тела для термоэмиссионных преобразователей

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей (ТЭП), и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок,...
Тип: Изобретение
Номер охранного документа: 0002715733
Дата охранного документа: 03.03.2020
12.04.2023
№223.018.4537

Способ сорбционного извлечения тория из нитратных растворов урана и тория

Изобретение относится к гидрометаллургии урана и тория и может быть использовано для сорбционного извлечения тория из нитратных растворов урана и тория методом ионного обмена. Способ сорбционного извлечения тория из нитратных растворов урана и тория, включающий сорбцию тория на сульфокатионите...
Тип: Изобретение
Номер охранного документа: 0002759824
Дата охранного документа: 18.11.2021
16.05.2023
№223.018.6108

Способ переработки кислотоупорных урансодержащих материалов

Изобретение относится к гидрометаллургической переработке кислотоупорных урансодержащих материалов, а именно - техногенных отходов, образующихся в результате окислительной переработки твэлов сложного многокомпонентного состава. Способ включает измельчение исходного урансодержащего материала в...
Тип: Изобретение
Номер охранного документа: 0002743383
Дата охранного документа: 17.02.2021
17.06.2023
№223.018.7d7d

Способ получения углеграфитовых изделий

Изобретение может быть использовано для изготовления электродов, тиглей, нагревателей, материалов для атомной техники, например уран-графитовых тепловыделяющих элементов. Заготовки помещают в контейнер из графлекса или графита, используя в качестве засыпки карбамид в количестве 5-10 мас. %...
Тип: Изобретение
Номер охранного документа: 0002780454
Дата охранного документа: 23.09.2022
+ добавить свой РИД