×
19.01.2018
218.016.0168

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой. Способ измерения реактивной мощности в трехфазной симметричной электрической цепи включает измерение мгновенных величин токов и напряжений на каждой фазе. Измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов I, I и напряжений U, U в α-β системе координат формируют векторы тока I и напряжения U: далее определяют векторное произведение между векторами I и U: Q=I×U. Полученные проекции токов и напряжений в α-β системе координат перемножают Q=I⋅U и Q=-I⋅U, затем складывают и умножают на число фаз: где - оценка реактивной мощности трехфазной цепи. Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям: где I, I, I - мгновенные фазные токи; I, I - проекции токов в α-β системе координат; U, U, U - мгновенные фазные напряжения; U, U - проекции напряжений в α-β системе координат. Технический результат: повышение точности измерения. 1 з.п. ф-лы, 2 табл., 7 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой.

Известен способ измерения реактивной мощности [SU 1567990 А1, МПК 5 G01R 21/06, опубл. 30.06.1990], выбранный в качестве прототипа, включающий перемножение мгновенных значений тока и напряжения, выделение переменной составляющей произведения и усреднение ее с момента перехода через нуль одного из входных сигналов тока (напряжения) в течение интервала времени, в течение которого производится усреднение, заканчивают в момент ближайшего перехода через нуль другого сигнала напряжения (тока).

Недостатком предложенного способа является необходимость определения точки перехода синусоидального сигнала через нуль, которая влияет на точность измерения реактивной мощности.

Задачей изобретения является расширение арсенала средств аналогичного назначения.

Предложенный способ измерения реактивной мощности, так же как в прототипе, включает измерение мгновенных фазных величин токов и напряжений.

Согласно изобретению, измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов Iα, Iβ и напряжений Uα, Uβ в α-β системе координат формируют векторы тока Is и напряжения Us:

далее определяют векторное произведение между векторами Is и Us:

Qγ=Is×Us,

Полученные проекции токов и напряжений в α-β системе координат перемножают Q1=Iα⋅Uβ и Q2=-Iβ⋅Uα, затем складывают и умножают на число фаз:

где - оценка реактивной мощности трехфазной цепи.

Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям:

где IА, IВ, IС - мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA, UB, UC - мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Таким образом, измерение реактивной мощности осуществляют с большой точностью благодаря использованию векторного произведения мгновенных величин проекций токов и напряжений в двухфазной системе координат α-β.

В таблице 1 представлены данные фазных токов и напряжений.

В таблице 2 представлены параметры трехфазной цепи.

На фиг. 1 приведена схема устройства, реализующего способ измерения реактивной мощности в трехфазной цепи.

На фиг. 2 приведены осциллограммы напряжений в трехфазной цепи.

На фиг. 3 приведены осциллограммы токов в трехфазной цепи.

На фиг. 4 приведен график сигнала с выхода блока умножителя 16.

На фиг. 5 приведен график сигнала с выхода блока умножителя 17.

На фиг. 6 приведена осциллограмма реактивной мощности.

На фиг. 7 приведен график относительной ошибки реактивной мощности.

Предлагаемый способ осуществлен с помощью устройства (фиг. 1) для определения реактивной мощности в трехфазной симметричной электрической цепи, которое содержит блок нормирующий 1 (БН), блок преобразователя координат 2 (БПК) и блок вычисления реактивной мощности 3 (БВРМ).

Блок нормирующий 1 (БН) содержит шесть усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6).

Входы первого, второго и третьего усилителей-нормализаторов 4 (УН1), 5 (УН2) 6 (УН3) связаны с выходами датчиков фазных токов. Входы четвертого, пятого и шестого усилителей-нормализаторов 7 (УН4), 8 (УН5) и 9 (УН6) подключены к выходам датчиков фазных напряжений.

Блок преобразователя координат 2 (БПК) содержит два сумматора 10 (С1), 11 (С2) и четыре масштабирующих усилителя 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4).

Входы первого сумматора 10 (С1) соединены с выходами второго 5 (УН2) и третьего 6 (УН3) усилителей-нормализаторов. Выход первого сумматора 10 (С1) связан с входом второго масштабирующего усилителя 13 (МУ2). Входы второго сумматора 11 (С2) соединены с выходами пятого и шестого усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выход второго сумматора 11 (С2) связан с входом четвертого масштабирующего усилителя 15 (МУ4). Выход первого усилителя-нормализатора 4 (УН1) связан с входом первого масштабирующего усилителя 12 (МУ1). Выход четвертого усилителя-нормализатора 7 (УН4) связан с входом третьего масштабирующего усилителя 14 (МУ3).

Блок вычисления реактивной мощности 3 (БВРМ) содержит два умножителя 16 (У1), 17 (У2), третий сумматор 18 (С3) и пятый масштабирующий усилитель 19 (МУ5).

Выходы первого масштабирующего усилителя 12 (МУ1) и четвертого масштабирующего усилителя 15 (МУ4) соединены с входами первого умножителя 16 (У1). Выходы третьего масштабирующего усилителя 14 (МУ3) и второго масштабирующего усилителя 13 (МУ2) соединены с входами второго умножителя 17 (У2). Выходы первого умножителя 16 (У1) и второго умножителя 17 (У2) соединены с входами третьего сумматора 18 (С3), выход которого соединен с входом пятого масштабирующего усилителя 19 (МУ5), выход которого соединен с индикатором реактивной мощности.

В качестве усилителей нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) могут быть использованы - ЛА-УНИ4. Сумматоры 10 (C1), 11 (С2) и масштабирующие усилители 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4) могут быть реализованы на базе DSP-микроконтроллеров фирмы «Texas Instruments» с применением стандартных библиотек. Умножители 16 (У1), 17 (У2), сумматор 18 (С3) и масштабирующие усилители 19 (МУ5) могут быть выполнены аналогично на базе DSP-микроконтроллеров фирмы «Texas Instruments».

Измерение реактивной мощности в трехфазной симметричной электрической цепи для одной мгновенной величины осуществляли следующим образом: при подключении усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) к трехфазным датчикам тока и напряжения выходные сигналы мгновенных величин токов IА_Н, IВ_Н, IС_Н и напряжений UA_H, UB_H, UC_H с этих блоков (фиг. 2, 3) подавали в блок преобразования координат 2 (БПК), где на основе этих данных (таблица 1) определили проекции Iα, Iβ токов и напряжений Uα, Uβ. Выходные сигналы IА_Н, IА_Н с усилителей-нормализаторов 4 (УH1), 7 (УН4) преобразовали масштабирующими усилителями 12 (МУ1), 14 (МУ3). С помощью сумматора 10 (С1) сложили выходные сигналы IВ_Н, IС_Н с усилителей-нормализаторов 5 (УН2), 6 (УН3). С помощью сумматора 11 (С2) сложили выходные сигналы UB_Н, UC_H с усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выходные сигналы сумматоров 10 (С1) и 11 (С2) преобразовали масштабирующими усилителями 13 (МУ2) и 15 (МУ4):

где IA_Н, IВ_Н, IС_Н - нормализованные мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA_H, UB_H, UC_H - нормализованные мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Выходные значения блоков 12 (МУ1), 13 (МУ2) и 14 (МУ1), 15 (МУ2), которые являются проекциями токов Iα, Iβ и напряжений Uα, Uβ, подали в блок вычисления реактивной мощности 3 (БВРМ), где осуществили перемножение выходных сигналов Q1=Iα·Uβ (фиг. 4) и Q2=-Iβ⋅Uα (фиг. 5) в блоках умножения 16 (У1) и 17 (У2), произведения которых Q1 и Q2 затем сложили в сумматоре 18 (С3) Q0=(Q1+Q2), выходной сигнал которого преобразовали в масштабирующем усилителе 19 (МУ5) путем умножения на число фаз:

где - оценка реактивной мощности трехфазной цепи (фиг. 6).

Адекватность определения оценки реактивной мощности была установлена аналитически на основе определения относительной погрешности Δ:

где QT - расчетная величина реактивной мощности аналитическим способом;

- оценка реактивной мощности в трехфазной цепи.

На основании данных из таблицы 2 произвели аналитический расчет реактивной мощности QT. Вначале определили индуктивные сопротивления ХА, ХВ, ХС фаз А, В, С:

ХА=ω⋅LA=314,59⋅30⋅10-3=9,4 Ом,

ХВ=ω⋅LВ=314,59⋅30⋅10-3=9,4 Ом,

ХС=ω⋅LС=314,59⋅30⋅10-3=9,4 Ом,

где LА, LB, LC индуктивные сопротивления; ω=2⋅π⋅ƒ=2⋅3,14⋅50=314,59 - циклическая частота, ƒ - частота питающей цепи.

Далее рассчитали токи IФА, IФВ, IФС для каждой фазы:

где UФ - фазное напряжение.

Затем определили sin(ϕA), sin(ϕB), sin(ϕC):

Далее на основе расчетных данных определили реактивную мощность в трехфазной цепи:

QT=UФ⋅IФА⋅sin(ϕA)+UФ⋅IФВ⋅sin(ϕB)+

+UФ⋅IФС⋅sin(ϕC)=3⋅220⋅16,01⋅0,686=7,247⋅103 Вар.

Затем рассчитали относительную погрешность определения оценки реактивной мощности Q для трехфазной симметричной цепи:

Анализ относительной погрешности оценки вычисления реактивной мощности показал, что точность измерения для цепи с симметричной нагрузкой определяется точностью измерения мгновенных величин тока и напряжения и шагом расчета (фиг. 7).


СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Источник поступления информации: Роспатент

Showing 251-260 of 267 items.
01.11.2019
№219.017.dcff

Способ определения структурно-стратиграфических особенностей строения снежного покрова

Область использования изобретения - исследования физических свойств снежного покрова. Сущность изобретения заключается в том, что выполняют закладку снежного шурфа прямоугольного сечения, затем с помощью жесткой прямоугольной темной пластины-экрана, высотой выше исследуемого снежного покрова,...
Тип: Изобретение
Номер охранного документа: 0002704432
Дата охранного документа: 28.10.2019
02.11.2019
№219.017.ddde

Устройство для токовой защиты электроустановки

Использование: в области электротехники. Технический результат - повышение надежности защиты электроустановки при коротком замыкании. Устройство для токовой защиты электроустановки содержит геркон с переключающим, замыкающим и размыкающим контактами, установленный в магнитном поле токоведущей...
Тип: Изобретение
Номер охранного документа: 0002704792
Дата охранного документа: 31.10.2019
12.04.2023
№223.018.4324

Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами палладия

Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами палладия, включает модифицирование графитового электрода коллоидными частицами палладия...
Тип: Изобретение
Номер охранного документа: 0002793604
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4d3d

Водорастворимый контейнер для доставки реагента в скважину

Изобретение относится к области бурения скважин и нефтедобычи, в частности к подземному оборудованию скважины, а именно к контейнеру, предназначенному для доставки твердого реагента в скважину и для подачи его в технологическую или в пластовую жидкости. Технический результат – герметичность и...
Тип: Изобретение
Номер охранного документа: 0002793314
Дата охранного документа: 31.03.2023
16.05.2023
№223.018.6241

Оборотный транспортный контейнер для низкоактивных и среднеактивных радиоактивных отходов

Изобретение относится к ядерной технике в области обращения с низкоактивными, среднеактивными радиоактивными отходами. Оборотный транспортный контейнер содержит корпус, крышку, установленную в верхней части корпуса, и вкладыш, который размещен внутри корпуса. Корпус контейнера выполнен...
Тип: Изобретение
Номер охранного документа: 0002783912
Дата охранного документа: 22.11.2022
16.05.2023
№223.018.6271

Способ ионно-лучевой обработки внутренней поверхности протяженных отверстий

Изобретение относится к машиностроению и может быть использовано при обработке внутренней поверхности протяженных отверстий металлических изделий или труб для повышения их поверхностной твердости, коррозионной стойкости и износостойкости. Технический результат - расширение арсенала способов...
Тип: Изобретение
Номер охранного документа: 0002781774
Дата охранного документа: 18.10.2022
21.05.2023
№223.018.68fc

Упругодеформируемое гелеобразное топливо

Изобретение относится к топливу. Предложено упругодеформируемое гелеобразное топливо, содержащее водный раствор поливинилового спирта, эмульгатор полиоксиэтилен, бурый уголь, масло индустриальное, характеризующееся тем, что дополнительно содержит нанопорошок алюминия с размером частиц 90-100 нм...
Тип: Изобретение
Номер охранного документа: 0002794674
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.68fd

Упругодеформируемое гелеобразное топливо

Изобретение относится к топливу. Предложено упругодеформируемое гелеобразное топливо, содержащее водный раствор поливинилового спирта, эмульгатор полиоксиэтилен, бурый уголь, масло индустриальное, характеризующееся тем, что дополнительно содержит нанопорошок алюминия с размером частиц 90-100 нм...
Тип: Изобретение
Номер охранного документа: 0002794674
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6902

2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновые кислоты, их соли и способы их получения

Изобретение относится к способам получения 2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновых кислот и их солей, имеющих общую формулу отличающимся тем, что эквимолярные количества R-, R-замещенного бензила и N-карбамоиламинокислоты суспензируют в этаноле или в метаноле при комнатной...
Тип: Изобретение
Номер охранного документа: 0002794719
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6904

2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновые кислоты, их соли и способы их получения

Изобретение относится к способам получения 2-(2,5-диоксо-4,4-диарилимидазолидин-1-ил)карбоновых кислот и их солей, имеющих общую формулу отличающимся тем, что эквимолярные количества R-, R-замещенного бензила и N-карбамоиламинокислоты суспензируют в этаноле или в метаноле при комнатной...
Тип: Изобретение
Номер охранного документа: 0002794719
Дата охранного документа: 24.04.2023
Showing 161-161 of 161 items.
17.06.2023
№223.018.7d96

Способ определения параметров электродвигателя постоянного тока

Изобретение относится к автоматизированному электроприводу и может быть использовано для построения адаптивных систем управления двигателями постоянного тока. Способ определения параметров электродвигателя постоянного тока заключается в том, что в течение пуска и работы электродвигателя...
Тип: Изобретение
Номер охранного документа: 0002789019
Дата охранного документа: 27.01.2023
+ добавить свой РИД