×
19.01.2018
218.016.0168

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой. Способ измерения реактивной мощности в трехфазной симметричной электрической цепи включает измерение мгновенных величин токов и напряжений на каждой фазе. Измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов I, I и напряжений U, U в α-β системе координат формируют векторы тока I и напряжения U: далее определяют векторное произведение между векторами I и U: Q=I×U. Полученные проекции токов и напряжений в α-β системе координат перемножают Q=I⋅U и Q=-I⋅U, затем складывают и умножают на число фаз: где - оценка реактивной мощности трехфазной цепи. Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям: где I, I, I - мгновенные фазные токи; I, I - проекции токов в α-β системе координат; U, U, U - мгновенные фазные напряжения; U, U - проекции напряжений в α-β системе координат. Технический результат: повышение точности измерения. 1 з.п. ф-лы, 2 табл., 7 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой.

Известен способ измерения реактивной мощности [SU 1567990 А1, МПК 5 G01R 21/06, опубл. 30.06.1990], выбранный в качестве прототипа, включающий перемножение мгновенных значений тока и напряжения, выделение переменной составляющей произведения и усреднение ее с момента перехода через нуль одного из входных сигналов тока (напряжения) в течение интервала времени, в течение которого производится усреднение, заканчивают в момент ближайшего перехода через нуль другого сигнала напряжения (тока).

Недостатком предложенного способа является необходимость определения точки перехода синусоидального сигнала через нуль, которая влияет на точность измерения реактивной мощности.

Задачей изобретения является расширение арсенала средств аналогичного назначения.

Предложенный способ измерения реактивной мощности, так же как в прототипе, включает измерение мгновенных фазных величин токов и напряжений.

Согласно изобретению, измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов Iα, Iβ и напряжений Uα, Uβ в α-β системе координат формируют векторы тока Is и напряжения Us:

далее определяют векторное произведение между векторами Is и Us:

Qγ=Is×Us,

Полученные проекции токов и напряжений в α-β системе координат перемножают Q1=Iα⋅Uβ и Q2=-Iβ⋅Uα, затем складывают и умножают на число фаз:

где - оценка реактивной мощности трехфазной цепи.

Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям:

где IА, IВ, IС - мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA, UB, UC - мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Таким образом, измерение реактивной мощности осуществляют с большой точностью благодаря использованию векторного произведения мгновенных величин проекций токов и напряжений в двухфазной системе координат α-β.

В таблице 1 представлены данные фазных токов и напряжений.

В таблице 2 представлены параметры трехфазной цепи.

На фиг. 1 приведена схема устройства, реализующего способ измерения реактивной мощности в трехфазной цепи.

На фиг. 2 приведены осциллограммы напряжений в трехфазной цепи.

На фиг. 3 приведены осциллограммы токов в трехфазной цепи.

На фиг. 4 приведен график сигнала с выхода блока умножителя 16.

На фиг. 5 приведен график сигнала с выхода блока умножителя 17.

На фиг. 6 приведена осциллограмма реактивной мощности.

На фиг. 7 приведен график относительной ошибки реактивной мощности.

Предлагаемый способ осуществлен с помощью устройства (фиг. 1) для определения реактивной мощности в трехфазной симметричной электрической цепи, которое содержит блок нормирующий 1 (БН), блок преобразователя координат 2 (БПК) и блок вычисления реактивной мощности 3 (БВРМ).

Блок нормирующий 1 (БН) содержит шесть усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6).

Входы первого, второго и третьего усилителей-нормализаторов 4 (УН1), 5 (УН2) 6 (УН3) связаны с выходами датчиков фазных токов. Входы четвертого, пятого и шестого усилителей-нормализаторов 7 (УН4), 8 (УН5) и 9 (УН6) подключены к выходам датчиков фазных напряжений.

Блок преобразователя координат 2 (БПК) содержит два сумматора 10 (С1), 11 (С2) и четыре масштабирующих усилителя 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4).

Входы первого сумматора 10 (С1) соединены с выходами второго 5 (УН2) и третьего 6 (УН3) усилителей-нормализаторов. Выход первого сумматора 10 (С1) связан с входом второго масштабирующего усилителя 13 (МУ2). Входы второго сумматора 11 (С2) соединены с выходами пятого и шестого усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выход второго сумматора 11 (С2) связан с входом четвертого масштабирующего усилителя 15 (МУ4). Выход первого усилителя-нормализатора 4 (УН1) связан с входом первого масштабирующего усилителя 12 (МУ1). Выход четвертого усилителя-нормализатора 7 (УН4) связан с входом третьего масштабирующего усилителя 14 (МУ3).

Блок вычисления реактивной мощности 3 (БВРМ) содержит два умножителя 16 (У1), 17 (У2), третий сумматор 18 (С3) и пятый масштабирующий усилитель 19 (МУ5).

Выходы первого масштабирующего усилителя 12 (МУ1) и четвертого масштабирующего усилителя 15 (МУ4) соединены с входами первого умножителя 16 (У1). Выходы третьего масштабирующего усилителя 14 (МУ3) и второго масштабирующего усилителя 13 (МУ2) соединены с входами второго умножителя 17 (У2). Выходы первого умножителя 16 (У1) и второго умножителя 17 (У2) соединены с входами третьего сумматора 18 (С3), выход которого соединен с входом пятого масштабирующего усилителя 19 (МУ5), выход которого соединен с индикатором реактивной мощности.

В качестве усилителей нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) могут быть использованы - ЛА-УНИ4. Сумматоры 10 (C1), 11 (С2) и масштабирующие усилители 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4) могут быть реализованы на базе DSP-микроконтроллеров фирмы «Texas Instruments» с применением стандартных библиотек. Умножители 16 (У1), 17 (У2), сумматор 18 (С3) и масштабирующие усилители 19 (МУ5) могут быть выполнены аналогично на базе DSP-микроконтроллеров фирмы «Texas Instruments».

Измерение реактивной мощности в трехфазной симметричной электрической цепи для одной мгновенной величины осуществляли следующим образом: при подключении усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) к трехфазным датчикам тока и напряжения выходные сигналы мгновенных величин токов IА_Н, IВ_Н, IС_Н и напряжений UA_H, UB_H, UC_H с этих блоков (фиг. 2, 3) подавали в блок преобразования координат 2 (БПК), где на основе этих данных (таблица 1) определили проекции Iα, Iβ токов и напряжений Uα, Uβ. Выходные сигналы IА_Н, IА_Н с усилителей-нормализаторов 4 (УH1), 7 (УН4) преобразовали масштабирующими усилителями 12 (МУ1), 14 (МУ3). С помощью сумматора 10 (С1) сложили выходные сигналы IВ_Н, IС_Н с усилителей-нормализаторов 5 (УН2), 6 (УН3). С помощью сумматора 11 (С2) сложили выходные сигналы UB_Н, UC_H с усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выходные сигналы сумматоров 10 (С1) и 11 (С2) преобразовали масштабирующими усилителями 13 (МУ2) и 15 (МУ4):

где IA_Н, IВ_Н, IС_Н - нормализованные мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA_H, UB_H, UC_H - нормализованные мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Выходные значения блоков 12 (МУ1), 13 (МУ2) и 14 (МУ1), 15 (МУ2), которые являются проекциями токов Iα, Iβ и напряжений Uα, Uβ, подали в блок вычисления реактивной мощности 3 (БВРМ), где осуществили перемножение выходных сигналов Q1=Iα·Uβ (фиг. 4) и Q2=-Iβ⋅Uα (фиг. 5) в блоках умножения 16 (У1) и 17 (У2), произведения которых Q1 и Q2 затем сложили в сумматоре 18 (С3) Q0=(Q1+Q2), выходной сигнал которого преобразовали в масштабирующем усилителе 19 (МУ5) путем умножения на число фаз:

где - оценка реактивной мощности трехфазной цепи (фиг. 6).

Адекватность определения оценки реактивной мощности была установлена аналитически на основе определения относительной погрешности Δ:

где QT - расчетная величина реактивной мощности аналитическим способом;

- оценка реактивной мощности в трехфазной цепи.

На основании данных из таблицы 2 произвели аналитический расчет реактивной мощности QT. Вначале определили индуктивные сопротивления ХА, ХВ, ХС фаз А, В, С:

ХА=ω⋅LA=314,59⋅30⋅10-3=9,4 Ом,

ХВ=ω⋅LВ=314,59⋅30⋅10-3=9,4 Ом,

ХС=ω⋅LС=314,59⋅30⋅10-3=9,4 Ом,

где LА, LB, LC индуктивные сопротивления; ω=2⋅π⋅ƒ=2⋅3,14⋅50=314,59 - циклическая частота, ƒ - частота питающей цепи.

Далее рассчитали токи IФА, IФВ, IФС для каждой фазы:

где UФ - фазное напряжение.

Затем определили sin(ϕA), sin(ϕB), sin(ϕC):

Далее на основе расчетных данных определили реактивную мощность в трехфазной цепи:

QT=UФ⋅IФА⋅sin(ϕA)+UФ⋅IФВ⋅sin(ϕB)+

+UФ⋅IФС⋅sin(ϕC)=3⋅220⋅16,01⋅0,686=7,247⋅103 Вар.

Затем рассчитали относительную погрешность определения оценки реактивной мощности Q для трехфазной симметричной цепи:

Анализ относительной погрешности оценки вычисления реактивной мощности показал, что точность измерения для цепи с симметричной нагрузкой определяется точностью измерения мгновенных величин тока и напряжения и шагом расчета (фиг. 7).


СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Источник поступления информации: Роспатент

Showing 221-230 of 267 items.
01.05.2019
№219.017.47a3

Способ вихретокового контроля внутреннего диаметра металлических труб

Изобретение относится к методам неразрушающего контроля металлических труб и может быть использовано для контроля их внутреннего диаметра. Сущность: внутри трубы размещают две пары расположенных соосно на фиксированном расстоянии один от другого накладных вихретоковых преобразователей при...
Тип: Изобретение
Номер охранного документа: 0002686520
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.47d0

Парогазовая установка

Изобретение относится к теплоэнергетике, а именно к установкам с более чем двумя двигателями, подающими энергию внешним потребителям и работающими на разных рабочих телах с термически связанными циклами двигателей, и предназначено для использования на тепловых электростанциях. Парогазовая...
Тип: Изобретение
Номер охранного документа: 0002686541
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.4827

Цифровой феррозондовый магнитометр

Изобретение относится к области электроизмерительной техники и может быть использовано для измерения трех ортогональных компонент вектора индукции магнитного поля. Цифровой феррозондовый магнитометр содержит цифро-аналоговый преобразователь, к которому подключен усилитель тока, который соединен...
Тип: Изобретение
Номер охранного документа: 0002686519
Дата охранного документа: 29.04.2019
08.05.2019
№219.017.4919

Способ измерения теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения

Изобретение относится к измерительной технике, а именно к неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения. Предложен способ измерения теплового сопротивления между корпусом...
Тип: Изобретение
Номер охранного документа: 0002686859
Дата охранного документа: 06.05.2019
09.05.2019
№219.017.49af

Способ активации нанопорошка алюминия

Изобретение относится к порошковой металлургии, в частности, к обработке для улучшения свойств нанопорошков алюминия. Может использоваться при приготовлении твердых ракетных топлив, пиротехнических составов. Нанопорошок алюминия, полученны электрическим взрывом алюминиевой проволоки, насыпают в...
Тип: Изобретение
Номер охранного документа: 0002687121
Дата охранного документа: 07.05.2019
09.05.2019
№219.017.4a26

Устройство для получения порошка на основе карбида титана

Изобретение может быть использовано в неорганической химии. Устройство для получения порошка на основе карбида титана содержит цилиндрические анод и катод, выполненные из графита. Катод выполнен в виде вертикально расположенного стакана, к которому прикреплен диэлектрический держатель, в...
Тип: Изобретение
Номер охранного документа: 0002686897
Дата охранного документа: 06.05.2019
14.05.2019
№219.017.51ba

Устройство для исследования процесса горения порошков металлов или их смесей

Изобретение относится к области квантовой электроники, а именно неразрушающему контролю и диагностике оптическими методами и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом....
Тип: Изобретение
Номер охранного документа: 0002687308
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51be

Устройство для определения динамической жесткости несущих элементов металлорежущих станков

Изобретение относится к устройству для определения динамической жесткости несущих элементов металлорежущих станков в виде станины, передней и задней бабки и суппорта. Устройство содержит толкатель и плоскую Г-образную державку. Толкатель содержит втулку, в которую вставлена плунжерная пара, на...
Тип: Изобретение
Номер охранного документа: 0002687341
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51dc

Устройство для измерения теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения

Изобретение относится к измерительной технике, а именно неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения. Сущность: устройство для измерения теплового сопротивления между корпусом...
Тип: Изобретение
Номер охранного документа: 0002687300
Дата охранного документа: 13.05.2019
14.05.2019
№219.017.51e1

Способ контроля параметров вторичного источника бесперебойного питания

Изобретение относится к области измерения электрических величин, а именно к измерению токов и напряжений при испытаниях и проверке источников бесперебойного питания, и может быть использовано в испытательных стендах космических аппаратов. Способ заключается в том, что в процессе работы у...
Тип: Изобретение
Номер охранного документа: 0002687302
Дата охранного документа: 13.05.2019
Showing 161-161 of 161 items.
17.06.2023
№223.018.7d96

Способ определения параметров электродвигателя постоянного тока

Изобретение относится к автоматизированному электроприводу и может быть использовано для построения адаптивных систем управления двигателями постоянного тока. Способ определения параметров электродвигателя постоянного тока заключается в том, что в течение пуска и работы электродвигателя...
Тип: Изобретение
Номер охранного документа: 0002789019
Дата охранного документа: 27.01.2023
+ добавить свой РИД