×
19.01.2018
218.016.0168

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой. Способ измерения реактивной мощности в трехфазной симметричной электрической цепи включает измерение мгновенных величин токов и напряжений на каждой фазе. Измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов I, I и напряжений U, U в α-β системе координат формируют векторы тока I и напряжения U: далее определяют векторное произведение между векторами I и U: Q=I×U. Полученные проекции токов и напряжений в α-β системе координат перемножают Q=I⋅U и Q=-I⋅U, затем складывают и умножают на число фаз: где - оценка реактивной мощности трехфазной цепи. Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям: где I, I, I - мгновенные фазные токи; I, I - проекции токов в α-β системе координат; U, U, U - мгновенные фазные напряжения; U, U - проекции напряжений в α-β системе координат. Технический результат: повышение точности измерения. 1 з.п. ф-лы, 2 табл., 7 ил.

Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой.

Известен способ измерения реактивной мощности [SU 1567990 А1, МПК 5 G01R 21/06, опубл. 30.06.1990], выбранный в качестве прототипа, включающий перемножение мгновенных значений тока и напряжения, выделение переменной составляющей произведения и усреднение ее с момента перехода через нуль одного из входных сигналов тока (напряжения) в течение интервала времени, в течение которого производится усреднение, заканчивают в момент ближайшего перехода через нуль другого сигнала напряжения (тока).

Недостатком предложенного способа является необходимость определения точки перехода синусоидального сигнала через нуль, которая влияет на точность измерения реактивной мощности.

Задачей изобретения является расширение арсенала средств аналогичного назначения.

Предложенный способ измерения реактивной мощности, так же как в прототипе, включает измерение мгновенных фазных величин токов и напряжений.

Согласно изобретению, измеренные мгновенные величины фазных токов и напряжений масштабируют, затем преобразуют из естественной трехфазной системы координат в двухфазную α-β систему координат. На основе полученных проекций токов Iα, Iβ и напряжений Uα, Uβ в α-β системе координат формируют векторы тока Is и напряжения Us:

далее определяют векторное произведение между векторами Is и Us:

Qγ=Is×Us,

Полученные проекции токов и напряжений в α-β системе координат перемножают Q1=Iα⋅Uβ и Q2=-Iβ⋅Uα, затем складывают и умножают на число фаз:

где - оценка реактивной мощности трехфазной цепи.

Преобразование фазных токов и напряжений из естественной трехфазной системы координат в двухфазную осуществляют согласно следующим выражениям:

где IА, IВ, IС - мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA, UB, UC - мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Таким образом, измерение реактивной мощности осуществляют с большой точностью благодаря использованию векторного произведения мгновенных величин проекций токов и напряжений в двухфазной системе координат α-β.

В таблице 1 представлены данные фазных токов и напряжений.

В таблице 2 представлены параметры трехфазной цепи.

На фиг. 1 приведена схема устройства, реализующего способ измерения реактивной мощности в трехфазной цепи.

На фиг. 2 приведены осциллограммы напряжений в трехфазной цепи.

На фиг. 3 приведены осциллограммы токов в трехфазной цепи.

На фиг. 4 приведен график сигнала с выхода блока умножителя 16.

На фиг. 5 приведен график сигнала с выхода блока умножителя 17.

На фиг. 6 приведена осциллограмма реактивной мощности.

На фиг. 7 приведен график относительной ошибки реактивной мощности.

Предлагаемый способ осуществлен с помощью устройства (фиг. 1) для определения реактивной мощности в трехфазной симметричной электрической цепи, которое содержит блок нормирующий 1 (БН), блок преобразователя координат 2 (БПК) и блок вычисления реактивной мощности 3 (БВРМ).

Блок нормирующий 1 (БН) содержит шесть усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6).

Входы первого, второго и третьего усилителей-нормализаторов 4 (УН1), 5 (УН2) 6 (УН3) связаны с выходами датчиков фазных токов. Входы четвертого, пятого и шестого усилителей-нормализаторов 7 (УН4), 8 (УН5) и 9 (УН6) подключены к выходам датчиков фазных напряжений.

Блок преобразователя координат 2 (БПК) содержит два сумматора 10 (С1), 11 (С2) и четыре масштабирующих усилителя 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4).

Входы первого сумматора 10 (С1) соединены с выходами второго 5 (УН2) и третьего 6 (УН3) усилителей-нормализаторов. Выход первого сумматора 10 (С1) связан с входом второго масштабирующего усилителя 13 (МУ2). Входы второго сумматора 11 (С2) соединены с выходами пятого и шестого усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выход второго сумматора 11 (С2) связан с входом четвертого масштабирующего усилителя 15 (МУ4). Выход первого усилителя-нормализатора 4 (УН1) связан с входом первого масштабирующего усилителя 12 (МУ1). Выход четвертого усилителя-нормализатора 7 (УН4) связан с входом третьего масштабирующего усилителя 14 (МУ3).

Блок вычисления реактивной мощности 3 (БВРМ) содержит два умножителя 16 (У1), 17 (У2), третий сумматор 18 (С3) и пятый масштабирующий усилитель 19 (МУ5).

Выходы первого масштабирующего усилителя 12 (МУ1) и четвертого масштабирующего усилителя 15 (МУ4) соединены с входами первого умножителя 16 (У1). Выходы третьего масштабирующего усилителя 14 (МУ3) и второго масштабирующего усилителя 13 (МУ2) соединены с входами второго умножителя 17 (У2). Выходы первого умножителя 16 (У1) и второго умножителя 17 (У2) соединены с входами третьего сумматора 18 (С3), выход которого соединен с входом пятого масштабирующего усилителя 19 (МУ5), выход которого соединен с индикатором реактивной мощности.

В качестве усилителей нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) могут быть использованы - ЛА-УНИ4. Сумматоры 10 (C1), 11 (С2) и масштабирующие усилители 12 (МУ1), 13 (МУ2), 14 (МУ3), 15 (МУ4) могут быть реализованы на базе DSP-микроконтроллеров фирмы «Texas Instruments» с применением стандартных библиотек. Умножители 16 (У1), 17 (У2), сумматор 18 (С3) и масштабирующие усилители 19 (МУ5) могут быть выполнены аналогично на базе DSP-микроконтроллеров фирмы «Texas Instruments».

Измерение реактивной мощности в трехфазной симметричной электрической цепи для одной мгновенной величины осуществляли следующим образом: при подключении усилителей-нормализаторов 4 (УН1), 5 (УН2), 6 (УН3), 7 (УН4), 8 (УН5) и 9 (УН6) к трехфазным датчикам тока и напряжения выходные сигналы мгновенных величин токов IА_Н, IВ_Н, IС_Н и напряжений UA_H, UB_H, UC_H с этих блоков (фиг. 2, 3) подавали в блок преобразования координат 2 (БПК), где на основе этих данных (таблица 1) определили проекции Iα, Iβ токов и напряжений Uα, Uβ. Выходные сигналы IА_Н, IА_Н с усилителей-нормализаторов 4 (УH1), 7 (УН4) преобразовали масштабирующими усилителями 12 (МУ1), 14 (МУ3). С помощью сумматора 10 (С1) сложили выходные сигналы IВ_Н, IС_Н с усилителей-нормализаторов 5 (УН2), 6 (УН3). С помощью сумматора 11 (С2) сложили выходные сигналы UB_Н, UC_H с усилителей-нормализаторов 8 (УН5) и 9 (УН6). Выходные сигналы сумматоров 10 (С1) и 11 (С2) преобразовали масштабирующими усилителями 13 (МУ2) и 15 (МУ4):

где IA_Н, IВ_Н, IС_Н - нормализованные мгновенные фазные токи;

Iα, Iβ - проекции токов в α-β системе координат;

UA_H, UB_H, UC_H - нормализованные мгновенные фазные напряжения;

Uα, Uβ - проекции напряжений в α-β системе координат.

Выходные значения блоков 12 (МУ1), 13 (МУ2) и 14 (МУ1), 15 (МУ2), которые являются проекциями токов Iα, Iβ и напряжений Uα, Uβ, подали в блок вычисления реактивной мощности 3 (БВРМ), где осуществили перемножение выходных сигналов Q1=Iα·Uβ (фиг. 4) и Q2=-Iβ⋅Uα (фиг. 5) в блоках умножения 16 (У1) и 17 (У2), произведения которых Q1 и Q2 затем сложили в сумматоре 18 (С3) Q0=(Q1+Q2), выходной сигнал которого преобразовали в масштабирующем усилителе 19 (МУ5) путем умножения на число фаз:

где - оценка реактивной мощности трехфазной цепи (фиг. 6).

Адекватность определения оценки реактивной мощности была установлена аналитически на основе определения относительной погрешности Δ:

где QT - расчетная величина реактивной мощности аналитическим способом;

- оценка реактивной мощности в трехфазной цепи.

На основании данных из таблицы 2 произвели аналитический расчет реактивной мощности QT. Вначале определили индуктивные сопротивления ХА, ХВ, ХС фаз А, В, С:

ХА=ω⋅LA=314,59⋅30⋅10-3=9,4 Ом,

ХВ=ω⋅LВ=314,59⋅30⋅10-3=9,4 Ом,

ХС=ω⋅LС=314,59⋅30⋅10-3=9,4 Ом,

где LА, LB, LC индуктивные сопротивления; ω=2⋅π⋅ƒ=2⋅3,14⋅50=314,59 - циклическая частота, ƒ - частота питающей цепи.

Далее рассчитали токи IФА, IФВ, IФС для каждой фазы:

где UФ - фазное напряжение.

Затем определили sin(ϕA), sin(ϕB), sin(ϕC):

Далее на основе расчетных данных определили реактивную мощность в трехфазной цепи:

QT=UФ⋅IФА⋅sin(ϕA)+UФ⋅IФВ⋅sin(ϕB)+

+UФ⋅IФС⋅sin(ϕC)=3⋅220⋅16,01⋅0,686=7,247⋅103 Вар.

Затем рассчитали относительную погрешность определения оценки реактивной мощности Q для трехфазной симметричной цепи:

Анализ относительной погрешности оценки вычисления реактивной мощности показал, что точность измерения для цепи с симметричной нагрузкой определяется точностью измерения мгновенных величин тока и напряжения и шагом расчета (фиг. 7).


СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
СПОСОБ ИЗМЕРЕНИЯ РЕАКТИВНОЙ МОЩНОСТИ В ТРЕХФАЗНОЙ СИММЕТРИЧНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Источник поступления информации: Роспатент

Showing 11-20 of 267 items.
10.11.2015
№216.013.8ab4

Вакуумный выключатель тока

Изобретение относится к силовой коммутационной аппаратуре и предназначено для использования в вакуумных выключателях и контакторах постоянного и переменного тока. Вакуумный выключатель тока содержит дугогасительную камеру с аксиальными подвижным и неподвижным электродами, снабженными кольцевыми...
Тип: Изобретение
Номер охранного документа: 0002567115
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.92b9

Способ определения статических характеристик нагрузки по напряжению

Изобретение относится к области электротехники и может быть использовано для определения статических характеристик нагрузки по напряжению. Способ определения статических характеристик нагрузки по напряжению заключается в том, что в узле нагрузки производят последовательные изменения напряжения,...
Тип: Изобретение
Номер охранного документа: 0002569179
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.94b1

Способ получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами

Изобретение относится к способу получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами. Способ включает конденсацию мета-хлорбензгидриламина, закрепленного на магнитных наночастицах FeO@SOH, с цианатами щелочных металлов при...
Тип: Изобретение
Номер охранного документа: 0002569684
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.959c

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002569920
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9734

Устройство для максимальной токовой защиты

Изобретение относится к электротехнике и может быть использовано для максимальной токовой защиты закрытых токопроводов от токов коротких замыканий. Техническим результатом является упрощение конструкции. Устройство содержит пластину, один конец которой закреплен в прорези планки, прикрепленной...
Тип: Изобретение
Номер охранного документа: 0002570328
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9740

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002570340
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9757

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ определения параметров электродвигателя заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов...
Тип: Изобретение
Номер охранного документа: 0002570363
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975b

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002570367
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97cf

Солнечная установка

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим установкам с датчиками слежения за Солнцем, и может быть использовано в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального...
Тип: Изобретение
Номер охранного документа: 0002570483
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a239

Способ определения статических характеристик нагрузки по напряжению с защитой от аномальных искажений

Изобретение относится к области электротехники. Способ заключается в том, что, в узле нагрузки производят последовательные изменения напряжения, измеряют значения мощности и напряжения на нагрузке и осуществляют перевод в относительные единицы. Причем измерение значения мощности и напряжения на...
Тип: Изобретение
Номер охранного документа: 0002573171
Дата охранного документа: 20.01.2016
Showing 11-20 of 161 items.
10.12.2015
№216.013.9740

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002570340
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9757

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ определения параметров электродвигателя заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов...
Тип: Изобретение
Номер охранного документа: 0002570363
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975b

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002570367
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97cf

Солнечная установка

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим установкам с датчиками слежения за Солнцем, и может быть использовано в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального...
Тип: Изобретение
Номер охранного документа: 0002570483
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a239

Способ определения статических характеристик нагрузки по напряжению с защитой от аномальных искажений

Изобретение относится к области электротехники. Способ заключается в том, что, в узле нагрузки производят последовательные изменения напряжения, измеряют значения мощности и напряжения на нагрузке и осуществляют перевод в относительные единицы. Причем измерение значения мощности и напряжения на...
Тип: Изобретение
Номер охранного документа: 0002573171
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a351

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002573451
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0ac

Электропривод переменного тока

Изобретение относится к области электротехники и может быть использовано для регулирования частоты вращения ротора асинхронных электроприводов с тиристорным преобразователем напряжения. Технический результат: обеспечение определения оценки частоты вращения асинхронного двигателя во всем...
Тип: Изобретение
Номер охранного документа: 0002576330
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c543

Фильтрующий материал для очистки питьевой воды

Изобретение относится к сорбционно-фильтрующим материалам и может быть использовано при очистке хозяйственно-питьевых и промышленных сточных вод предприятий различных отраслей промышленности. Зернистый природный материал содержит на поверхности каталитически активный слой, состоящий из смеси...
Тип: Изобретение
Номер охранного документа: 0002574754
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c5aa

Способ измерения погонной емкости одножильного электрического провода

Изобретение относится к измерительной технике, в частности к измерениям погонной емкости одножильного электрического провода в процессе его производства. Способ заключается в создании гармонического электрического поля между участком поверхности изоляции провода и заземленной электропроводящей...
Тип: Изобретение
Номер охранного документа: 0002578658
Дата охранного документа: 27.03.2016
10.02.2016
№216.014.ce78

Способ измерения тока короткого замыкания

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для измерения токов в электроустановках. Способ измерения тока короткого замыкания заключается в том, что четыре геркона устанавливают на безопасных расстояниях h, h, h, h от проводника, угол между...
Тип: Изобретение
Номер охранного документа: 0002575139
Дата охранного документа: 10.02.2016
+ добавить свой РИД