×
29.12.2017
217.015.fbc6

Результат интеллектуальной деятельности: Способ получения бензола

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения бензола из углеводородных продуктов, включающий выделение из жидких продуктов пиролиза фракции углеводородов С-C, последующее ее гидрирование и гидродеалкилирование. Способ характеризуется тем, что к исходным жидким продуктам пиролиза добавляют высококипящие побочные фракции нефтехимических производств с массовым содержанием ароматических углеводородов 50-95 масс. % от общего количества углеводородов с углеродным числом С-С, при этом соотношение жидких продуктов пиролиза и высококипящих побочных фракций нефтехимических производств составляет 99-60:1-40 масс. %, при этом после гидрирования фракцию углеводородов С-C, выделенную из смеси жидких продуктов пиролиза и высококипящих побочных фракций нефтехимических производств, полностью направляют на экстрактивную ректификацию для выделения неароматических углеводородов, содержащую не более 1 масс. % бензола, и получения ароматических углеводородов с углеродным числом С-C, содержащую не более 0,1 масс. % неароматических углеводородов, с последующим выделением бензола обычной ректификацией и направлением остальных ароматических углеводородов с числом углеродных атомов C-C на гидродеалкилирование. Использование изобретения позволяет увеличить сырьевую базу производства бензола, снизить расходную норму на жидкие продукты пиролиза и квалифицированно утилизировать побочные продукты нефтехимических процессов, что в целом позволяет снизить себестоимость продукции. 3 н.п. ф-лы, 7 пр., 1 табл.

Изобретение относится к процессам получения бензола из жидких углеводородных продуктов, содержащих ароматические соединения, и может быть использовано в нефтеперерабатывающей, нефтехимической и химической промышленности.

Основным процессом производства бензола является его выделение из продуктов каталитического риформинга, который предназначен для ароматизации бензиновых фракций нефти с целью получения высокооктановых компонентов или ароматических углеводородов. Процесс проводят с помощью алюмоплатиновых катализаторов в присутствии водорода. Выделение ароматических углеводородов из продуктов каталитического риформинга осуществляют методом экстрактивной ректификации в колонне или в системе колонн с получением фракции неароматических углеводородов и фракции ароматических углеводородов с числом углеродных атомов С6-C8, которые разделяют методом обычной ректификации с получением бензола, толуола и ксилолов (Гайле А.А., Сомов В.Е. Процессы разделения и очистки продуктов переработки нефти и газа. СПб.: Химиздат, 2012.).

Известно, что в связи с ужесточением содержания бензола в автомобильных бензинах предлагаются различные способы выделения и получения бензола высокой чистоты из компонентов моторных топлив, полученных каталитическим риформингом. Так, описан способ, защищенный патентом РФ №2287514, МПК С07С 7/08, C10G 7/08, С07С 15/04, опубл. 20.11.2006, который заключается в ректификации катализата риформинга на три фракции: легкокипящую фракцию, содержащую в основном неароматические углеводороды С46 и не более 1%, предпочтительно не более 0,5 масс. % бензола, тяжелокипящую фракцию, содержащую в основном ароматические и неароматические углеводороды С7 и выше и не более 1%, предпочтительно не более 0,5 масс. % бензола, и бензольную фракцию, выкипающую в пределах 70-95°С и содержащую толуола - не более 0,1 масс. %, предпочтительно не более 0,02 масс. %, неароматических углеводородов с температурой кипения более 110°С - не более 0,02 масс. %, которую направляют на выделение бензола экстрактивной ректификацией с полярным растворителем. В связи с тем, что процесс предназначен для производства автомобильных бензинов выход бензола с продуктов каталитического риформинга минимален.

Известен способ получения бензола из продуктов ароматизации пропана и бутана процесса Cyclar (Гайле А.А., Сомов В.Е., Варшавский О.М. Ароматические углеводороды: Выделение, применение, рынок: Справочник. СПб.: Химиздат, 2000. с. 324-326). Процесс не получил широкого промышленного распространения из-за высоких расходных норм на сырье и очень высокой энергоемкости процесса.

Наиболее близким к заявленному техническому решению является способ получения бензола из жидких продуктов пиролиза по технологической схеме, которая включает в себя выделение ароматической фракции C6-C8, предварительную двухстадийную каталитическую гидроочистку, термическое гидродеалкилирование и дальнейшее разделение продуктов гидродеалкилирования в системе ректификационных колонн (Черный И.Р. Производство сырья для нефтехимических синтезов. М: Химия, 1983, с. 193-203). Согласно способу перед получением бензола жидкие продукты пиролиза направляют на разделение с целью удаления легкой фракции С5, высококипящих углеводородов С9 и выделения фракции углеводородов С68, содержащих бензол-толуол-ксилолы. Фракция углеводородов С6-C8 направляется на двухступенчатое гидрирование для удаления непредельных углеводородов и соединений серы. Гидрированная фракция углеводородов С6-C8 после смешения с водородом при температуре 593-760°С и давлении 3,4-7,0 МПа направляется в реактор термического гидродеалкилирования, где протекают реакции деалкилирования толуола, этилбензола и ксилолов, а также - крекинг парафиновых и нафтеновых углеводородов до легких газов : метана и этана. Полученный бензол выделяется методом ректификации.

Недостатком этого способа является ограниченность сырьевой базы этого процесса, для получения бензола методом гидродеалкилирования используются только ароматические фракции продуктов пиролиза. Кроме того, в процесс гидродеалкилирования направляется бензол, который не требует гидродеалкилирования, но при этом дополнительно загружает реактор, а также в процесс направляются ценные неароматические углеводороды, которые разлагаются до легких газов - метана и этана.

В то же время на нефтехимических заводах на установках дегидрирования, изомеризации, экстрактивной ректификации и др. образуются побочные жидкие углеводородные фракции. Эти продукты содержат ароматические, парафиновые и непредельные углеводороды с примесями воды, сернистых азотистых и других примесей. Вследствие нестабильной производительности этих продуктов, сложного состава, наличия примесей сложно организовать дальнейшую оптимальную переработку углеводородных фракций. Кроме того, выработка побочных углеводородных фракций на одной установке крайне незначительна, что делает нерациональным на каждом заводе формировать свою оригинальную систему переработки побочных продуктов. В результате подобные углеводородные фракции отгружаются потребителям в качестве низкокачественных растворителей и сырья для получения низкосортных топлив. Однако наиболее эффективно разработать специализированный процесс переработки подобных отходов с группы заводов.

Задачей, на решение которой направлено заявляемое изобретение, является разработка эффективного способа получения бензола с расширением сырьевой базы процесса гидродеалкилирования углеводородов за счет вовлечения в переработку побочных ароматических фракций нефтехимических заводов при сохранении качества получаемого бензола. В качестве таких продуктов могут быть использованы высококипящие фракции продуктов дегидрирования изопентана, н-бутана, изобутана, этилбензола, продуктов изомеризации бутиленов, смолы регенерации экстрагентов процессов выделения диеновых углеводородов, остатки от осветления ароматических растворителей, тяжелые фракции эпоксидата процесса совместного получения стирола и окиси пропилена.

Техническим результатом заявляемого изобретения является увеличение выработки бензола, снижение расходной нормы по жидким продуктам пиролиза, утилизация побочных продуктов нефтехимии, снижение себестоимости продукции.

Технический результат заявляемого изобретения достигается тем, что:

1) проводится смешение высококипящих побочных углеводородных фракций нефтехимических производств;

2) в жидкие продукты пиролиза осуществляется добавка высококипящих побочных продуктов;

3) проводят ректификацию смеси с удалением легкокипящих углеводородов с температурой кипения ниже, чем температура кипения бензола;

4) проводят ректификацию с удалением высококипящих углеводородов с температурой кипения выше температуры кипения ксилолов с получением фракции углеводородов С6-C8;

5) осуществляют двухстадийную гидроочистку полученной фракции углеводородов С68 для удаления непредельных углеводородов, сернистых, азотистых и кислородсодержащих соединений;

6) проводят экстрактивную ректификацию с разделением продукта на неароматические и ароматические углеводороды С68, последние разделяют методом ректификации с выделением бензола и получением алкилароматических углеводородов С78;

7) проводят гидродеалкилирование алкилароматической фракции C7-C8;

8) осуществляют выделение бензола из продуктов гидродеалкилирования известным методом;

9) для снижения нагрузки по примесям на узлы гидроочистки высококипящие побочные продукты нефтехимических производств перед подмешиванием в жидкие продукты пиролиза могут быть промыты водой в системе смеситель-отстойник или в насадочных, или тарельчатых колоннах.

Способ получения ароматических углеводородов по заявленному изобретению осуществляют следующим образом.

Побочные продукты с различных производств дегидрирования и изомеризации углеводородов, смол регенерации экстрагентов, остатки от осветления ароматических растворителей, тяжелой фракции эпоксидата смешивают в усреднительной емкости таким образом, чтобы в полученной смеси массовое содержание ароматических углеводородов составляет 50-95 масс. % от общего количества углеводородов с углеродным числом С68. Полученная смесь подмешивается в жидкое сырье пиролиза с концентрацией 1-40 масс. % от количества жидкого сырья пиролиза. Полученную смесь направляют в ректификационную колонну для выделения углеводородов с температурой кипения ниже температуры кипения бензола. После отделения низкокипящих углеводородов смесь направляют на ректификационную колонну для выделения углеводородов с температурой кипения выше температуры кипения ксилолов. Оставшуюся ароматическую фракцию направляют последовательно на первую стадию жидкофазного гидрирования и на вторую стадию газофазного гидрирования непредельных углеводородов, серо-, азот- и кислородсодержащих соединений. Гидрированную фракцию ароматических углеводородов полностью направляют на экстрактивную ректификацию для выделения неароматических углеводородов, содержащую не более 1 масс. % бензола, и получения ароматических углеводородов с углеродным числом С68, содержащую не более 0,1 масс. % неароматических углеводородов. Ароматические углеводороды с числом углеродных атомов С68 направляются в ректификационную колонну для их разделения на бензол и ароматические углеводороды с числом углеродных атомов C7-C8. Последнюю фракцию направляют в реакторы термического гидродеалкилирования. Продукты деалкилирования с реакторов направляют на разделение известным способом. Для снижения влияния примесей в смеси на работу реакторов гидрирования высококипящие побочные продукты перед подмешиванием в жидкие продукты пиролиза могут направляться на водную промывку, которую можно проводить в насадочной или тарельчатой колонне или в смесителях с дальнейшим отстоем в емкости для разделения водного и органического слоя. Вода для промывки высококипящих побочных продуктов подается в массовом соотношении 0,1÷1,0:1,0 соответственно.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1 (сравнительный). Исходное сырье для получения бензола -жидкие продукты пиролиза в количестве 200 г подают на лабораторную установку ректификации, где от продукта отделяют фракции углеводородов С5 и С9 и выделяют 156 г фракции углеводородов С6-C8, которые включают в основном бензол, толуол и ксилолы. Ректификацию жидких продуктов пиролиза проводят на лабораторной колонке, характеризующейся 40 теоретическими тарелками. Выделение С5 из жидких продуктов пиролиза проводится при атмосферном давлении и флегмовом числе 3,5. Кубовый остаток жидких продуктов пиролиза подвергают ректификации при вакуумном давлении минус 0,07 МПа - минус 0,06 МПа и флегмовом числе 4 для отделения фракции углеводородов С9 и выделения фракции углеводородов С68.

Выделенную фракцию углеводородов С6-C8 направляют сначала на жидкофазное гидрирование, далее на газофазную гидроочистку для насыщения непредельных углеводородов и удаления серосодержащих соединений. Процесс жидкофазного гидрирования проводят при температуре 70°С на входе и 170°С на выходе из реактора и давлении 4,5 МПа в присутствии палладиевого катализатора, процесс газофазного гидрирования проводят при температуре 300-320°С и давлении 4,0 МПа в присутствии кобальт-молибденового катализатора. Гидрирование проводят в реакторах со стационарным слоем катализатора при соотношении фракция углеводородов С68 : водород - 98,5:1,5 масс. %.

Гидрированную фракцию углеводородов С68 подают в реактор термического гидродеалкилирования, куда под давлением подается водород. Условия эксперимента и режим гидродеалкилирования приведен в таблице 1. Продукты гидродеалкилирования разделяют известным способом. Масса полученного бензола составляет 122 г.

Пример 2. Проводят смешение высококипящих побочных фракций процессов дегидрирования изопентана и изобутана с получением 2 г смеси (смесь №1), содержащей углеводороды С5 - 5,1 масс. %, бензол - 4,6 масс. %, толуол - 14,8 масс. %, ксилолы - 48,2 масс. %, стирол - 1,0 масс. %, этилбензол - 1,1 масс. %, неароматические углеводороды С68 - 3,7 масс. %, ароматические углеводороды С9+ - 20,2 масс. %, неароматические углеводороды С9+ - 1,3 масс. %. После смешения двух продуктов в полученной смеси содержание ароматических углеводородов составляет 95 масс. % от общего количества углеводородов с углеродным числом С68. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 1 масс. % с получением 199 г смеси, из которой на лабораторной установке отделяют фракции углеводородов С5 и С9. Полученную в количестве 156 г фракцию углеводородов С68 направляют на жидкофазное гидрирование и газофазную гидроочистку, которые ведут аналогично описанному в примере 1.

Гидрированную фракцию углеводородов С68 подают на экстрактивную ректификацию с использованием сульфолана в качестве растворителя. Процесс экстрактивной ректификации проводят на лабораторной установке, состоящей из колонки, имеющей 70 теоретических тарелок для экстракции ароматических углеводородов, и колонки, имеющей 70 теоретических тарелок для десорбции ароматических углеводородов из растворителя. Экстрактивную ректификацию проводят при массовом соотношении расхода растворителя и питания колонны 3:1. Верхом колонки выделяется дистиллят, состоящий из неароматических углеводородов и бензола с концентрацией не более 1 масс. %. В кубе колонки остается смесь растворителя и ароматических углеводородов С68, которую направляют в колонку-десорбер, где верхом выделяют ароматические углеводороды С68, в которых содержание неароматических углеводородов не превышает 0,1 масс. %.

Ароматические углеводороды С6-C8 направляют на выделение бензола обычной ректификацией, которую проводят на лабораторной колонке, характеризующейся 40 теоретическими тарелками. Выделение бензола из ароматических углеводородов С6-C8 ректификацией проводят при атмосферном давлении и флегмовом числе 3,5 в виде дистиллята. Кубовый остаток после выделения бензола, состоящий из толуола, ксилолов и этилбензола, направляют на гидродеалкилирование, которое ведут аналогично примеру 1, но при более низкой температуре и высоком давлении, меньшей подаче водорода, как показано в таблице 1. Общая масса полученного бензола составляет 123 г.

Пример 3. Проводят смешение высококипящих фракций продуктов дегидрирования изопентана, изобутана, н-бутана и этилбензола с получением 44 г смеси (смесь №2), содержащей углеводороды С5 - 3,2 масс. %, бензол - 3,8 масс. %, толуол - 12,3 масс. %, ксилолы - 41,3 масс. %, стирол - 4,5 масс. %, этилбензол - 6,9 масс. %, неароматические углеводороды С6-C8 - 7,7 масс. %, ароматические углеводороды С9+ - 18,8 масс. %, неароматические углеводороды С9+ - 1,5 масс. % (смесь 2). После смешения четырех продуктов в полученной смеси содержание ароматических углеводородов составляет 90 масс. % от общего количества углеводородов с углеродным числом С6-C8. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 20 масс. %. с получением 221 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре и низком давлении гидродеалкилирования, меньшей подаче водорода, как показано в таблице 1. Общая масса полученного бензола составляет 135 г.

Пример 4. Проводят смешение высококипящих фракций продуктов дегидрирования изобутана и изомеризации н-бутиленов с получением 19 г смеси (смесь №3), содержащей углеводороды С5 - 15,4 масс. %, бензол - 2,4 масс. %, толуол - 8,7 масс. %, ксилолы - 32,5 масс. %, стирол - 0,5 масс. %, этилбензол - 0,9 масс. %, неароматические углеводороды С6-C8 - 24,3 масс. %, ароматические углеводороды С9+ - 14,5 масс. %, неароматические углеводороды С9+ - 0,8 масс. %. После смешения четырех продуктов в полученной смеси содержание ароматических углеводородов составляет 65 масс. % от общего количества углеводородов с углеродным числом С6-C8. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 10 масс. % с получением 203 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре и низком давлении гидродеалкилирования, большей подачи водорода, как показано в таблице 1. Общая масса полученного бензола составляет 117 г.

Пример 5. Проводят смешение высококипящих фракций продуктов изомеризации бутиленов, смолы регенерации экстрагентов, остатков от осветления ароматических растворителей с получением 62 г смеси (смесь №4), содержащей углеводороды С5 - 16,8 масс. %, бензол - 3,1 масс. %, толуол - 10,4 масс. %, ксилолы - 13,9 масс. %, стирол - 0,4 масс. %, этилбензол - 0,7 масс. %, неароматические углеводороды С6-C8 - 28,6 масс. %, ароматические углеводороды С9+ - 21,7 масс. %, неароматические углеводороды С9+ - 2,4 масс. %, смолы - 2,0 масс. %. После смешения трех продуктов в полученной смеси содержание ароматических углеводородов составляет 50 масс. % от общего количества углеводородов с углеродным числом С68. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 30 масс. % с получением 205 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре и давлении гидродеалкилирования, большей подаче водорода, как показано в таблице 1. Общая масса полученного бензола составляет 112 г.

Пример 6. Проводят смешение высококипящих фракций дегидрирования изопентана, н-бутана, изобутана, этилбензола, продуктов изомеризации бутиленов, смолы регенерации экстрагентов, остатков от осветления ароматических растворителей, тяжелой фракции эпоксидата с получением 84 г смеси (смесь №5), содержащей углеводороды С5 - 9,7 масс. %, бензол - 5,8 масс. %, толуол - 18,7 масс. %, ксилолы - 20,9 масс. %, стирол -0,7 масс. %, этилбензол - 1,8 масс. %, неароматические углеводороды С6-C8 - 16,0 масс. %, ароматические углеводороды С9+ - 18,6 масс. %, неароматические углеводороды С9+ - 1,5 масс. %, кислородсодержащие органические соединения - 4,8 масс. %, смолы - 1,5 масс. %. После смешения трех продуктов в полученной смеси содержание ароматических углеводородов составляет 75 масс. % от общего количества углеводородов с углеродным числом С6-C8. Полученную смесь подмешивают в жидкие продукты пиролиза в количестве 40 масс. % с получением 210 г смеси, переработку которой ведут аналогично примеру 2, но при более высокой температуре, как показано в таблице 1. Общая масса полученного бензола составляет 121 г.

Пример 7. Аналогичен примеру 5, но перед подмешиванием смеси №5 в жидкие продукты пиролиза осуществляют промывку смеси №5 путем смешения с водой в массовом соотношении вода: смесь №5 - 0,1:1,0. После отстоя и разделения смеси на водный и углеводородный слой последний перерабатывают аналогично примеру 5. Общая масса полученного бензола составляет 120 г.

Таким образом, использование изобретения позволяет увеличить сырьевую базу производства бензола, снизить расходную норму на жидкие продукты пиролиза и квалифицированно утилизировать побочные продукты нефтехимических процессов, что в целом позволяет снизить себестоимость продукции.

Примечание: ВПБ - высококипящие побочные продукты нефтехимических производств; у/в - углеводороды; ГДА - гидродеалкилирование, ЖПП - жидкие продукты пиролиза.

Источник поступления информации: Роспатент

Showing 41-50 of 59 items.
13.09.2018
№218.016.8741

Способ получения полиальфаолефинов с кинематической вязкостью 10-25 сст

Изобретение относится к области производства синтетических масел на основе альфа-олефинов, конкретно к процессам олигомеризации октена-1 или смесей альфа-олефинов С-С. Описан способ получения полиальфаолефинов с кинематической вязкостью 10-25 сСт и низкой температурой застывания,...
Тип: Изобретение
Номер охранного документа: 0002666725
Дата охранного документа: 12.09.2018
13.09.2018
№218.016.8766

Способ получения полимеров бутадиена или сополимеров бутадиена со стиролом с низким содержанием 1,2-звеньев в бутадиеновой части

Изобретение относится к получению бутадиенового и бутадиен-стирольного каучуков с низким содержанием 1,2-звеньев в бутадиеновой части и узким молекулярно-массовым распределением. Способ получения таких полимеров осуществляют в среде углеводородного растворителя с применением инициирующей...
Тип: Изобретение
Номер охранного документа: 0002666724
Дата охранного документа: 12.09.2018
13.09.2018
№218.016.877a

Способ приготовления двухкомпонентной системы для синтеза полидициклопентадиена

Изобретение относится к химии высокомолекулярных соединений, а частности к гомополимеризации циклических углеводородов. Описан способ приготовления двухкомпонентной системы для получения полидициклопентадиена (поли-ДЦПД) на основе дициклопентадиена (ДЦПД), выделенного из фракции С-5 пиролиза...
Тип: Изобретение
Номер охранного документа: 0002666723
Дата охранного документа: 12.09.2018
04.10.2018
№218.016.8e8d

Способ определения адсорбционной емкости адсорбента по карбонилсульфиду

Изобретение относится к определению адсорбционной емкости адсорбентов, используемых для очистки углеводородов от карбонилсульфида. Способ заключается в пропускании углеводородного газа, содержащего карбонилсульфид, через контейнер, заполненный испытуемым адсорбентом, улавливании...
Тип: Изобретение
Номер охранного документа: 0002668536
Дата охранного документа: 01.10.2018
19.10.2018
№218.016.943d

Полиэтиленовая композиция для наружной оболочки кабеля и наружного изоляционного покрытия стальных труб

Изобретение относится к полимерной композиции для получения изолирующего слоя труб или силового кабеля. Композиция содержит 80-95 мас.% смеси полимеров этилена (А) и 5-20 мас.% смеси полимеров этилена (Б). При этом смесь (А) содержит компонент (1), представляющий собой гомополимер этилена с...
Тип: Изобретение
Номер охранного документа: 0002670101
Дата охранного документа: 18.10.2018
30.11.2018
№218.016.a24e

Способ совместного получения циклогексана и гексанового растворителя

Предложен способ совместного получения циклогексана и гексанового растворителя из гексансодержащей фракции, выделенной из широкой фракции легких углеводородов, включающий выделение в колонне фракционирования гексансодержащей фракции, гидроочистку выделенной гексансодержащей фракции в объемном...
Тип: Изобретение
Номер охранного документа: 0002673550
Дата охранного документа: 28.11.2018
20.12.2018
№218.016.a9bb

Способ подготовки проб полистирола для определения содержания цинка методом атомно-эмиссионной спектроскопии

Изобретение относится к области аналитической химии и может найти применение в лабораториях, осуществляющих аналитический контроль технологических производств, связанных с получением полистирола. Описан способ подготовки проб полистирола для определения содержания цинка методом...
Тип: Изобретение
Номер охранного документа: 0002675533
Дата охранного документа: 19.12.2018
19.01.2019
№219.016.b223

Способ получения твердого двойного кобальтцианидного катализатора полимеризации пропиленоксида

Изобретение относится к двойным металлоцианидным (ДМЦ) комплексным катализаторам, пригодным для полимеризации эпоксисоединений в простые полиэфиры. Изобретение заключается в том, что при получении твердых ДМЦ катализаторов в специально подобранных условиях на всех стадиях его приготовления на...
Тип: Изобретение
Номер охранного документа: 0002677659
Дата охранного документа: 18.01.2019
14.02.2019
№219.016.b9e9

Способ получения циклогексана

Изобретение относится к способу получения циклогексана из бензола, включающему последовательное трехстадийное гидрирование бензола в реакторах гидрирования при повышенных температуре и давлении в присутствии катализатора гидрирования и водородсодержащего газа, последующее отделение от газа...
Тип: Изобретение
Номер охранного документа: 0002679626
Дата охранного документа: 12.02.2019
14.02.2019
№219.016.ba0c

Способ снижения коксообразования в реакторах пиролиза углеводородов

Изобретение относится к способу снижения коксообразования в трубчатых реакторах печей при проведении процесса пиролиза углеводородов в присутствии водяного пара путем подачи сульфидирующего агента в водяной пар или в углеводородное сырье. Способ характеризуется тем, что в технологическую воду,...
Тип: Изобретение
Номер охранного документа: 0002679610
Дата охранного документа: 12.02.2019
Showing 41-50 of 65 items.
19.01.2019
№219.016.b223

Способ получения твердого двойного кобальтцианидного катализатора полимеризации пропиленоксида

Изобретение относится к двойным металлоцианидным (ДМЦ) комплексным катализаторам, пригодным для полимеризации эпоксисоединений в простые полиэфиры. Изобретение заключается в том, что при получении твердых ДМЦ катализаторов в специально подобранных условиях на всех стадиях его приготовления на...
Тип: Изобретение
Номер охранного документа: 0002677659
Дата охранного документа: 18.01.2019
14.02.2019
№219.016.b9e9

Способ получения циклогексана

Изобретение относится к способу получения циклогексана из бензола, включающему последовательное трехстадийное гидрирование бензола в реакторах гидрирования при повышенных температуре и давлении в присутствии катализатора гидрирования и водородсодержащего газа, последующее отделение от газа...
Тип: Изобретение
Номер охранного документа: 0002679626
Дата охранного документа: 12.02.2019
14.02.2019
№219.016.ba0c

Способ снижения коксообразования в реакторах пиролиза углеводородов

Изобретение относится к способу снижения коксообразования в трубчатых реакторах печей при проведении процесса пиролиза углеводородов в присутствии водяного пара путем подачи сульфидирующего агента в водяной пар или в углеводородное сырье. Способ характеризуется тем, что в технологическую воду,...
Тип: Изобретение
Номер охранного документа: 0002679610
Дата охранного документа: 12.02.2019
08.03.2019
№219.016.d544

Катализатор селективного гидрирования ацетиленовых и диеновых углеводородов в c-c углеводородных фракциях

Изобретение относится к катализатору селективного гидрирования ацетиленовых и диеновых углеводородов в С-С углеводородных фракциях. Катализатор представляет собой алюмооксидный носитель, на котором размещены активный компонент палладий и промотор, промотор на носителе закреплен в оксидной...
Тип: Изобретение
Номер охранного документа: 0002453365
Дата охранного документа: 20.06.2012
11.03.2019
№219.016.d6f2

Способ получения бензола

Использование: нефтепереработка и нефтехимия. Проводят ректификацию в сочетании с двухступенчатым каталитическим гидрированием с получением фракции углеводородов С-C, гидродеалкилирование этой фракции, разделение продуктов гидродеалкилирования на газообразную и жидкую фракции, в которой по...
Тип: Изобретение
Номер охранного документа: 0002291892
Дата охранного документа: 20.01.2007
11.03.2019
№219.016.d6f3

Способ выделения бензола

Использование: нефтехимия. Сущность: проводят экстрактивную ректификацию в присутствии экстрагента, содержащего в основном алифатический N-алкиламид, при этом в точку колонны экстрактивной ректификации, расположенную между местом ввода экстрагента и верхом колонны подают толуол. Технический...
Тип: Изобретение
Номер охранного документа: 0002291849
Дата охранного документа: 20.01.2007
09.05.2019
№219.017.4981

Способ получения простого полиэфира с высокой молекулярной массой на основе пропиленоксида на двойном кобальтцианидном катализаторе

Настоящее изобретение относится к способу получения простых полиэфиров с высокой молекулярной массой. Описан способ получения простого полиэфира с высокой молекулярной массой на основе пропиленоксида полимеризацией пропиленоксида на твердом двойном кобальтцианидном (ДМЦ) катализаторе, получение...
Тип: Изобретение
Номер охранного документа: 0002687105
Дата охранного документа: 07.05.2019
18.05.2019
№219.017.585e

Состав для глубокого обезвоживания и обессоливания водонефтяных эмульсий

Изобретение относится к области подготовки и переработки нефти и может быть использовано для разделения водонефтяной эмульсии. Изобретение касается состава для глубокого обезвоживания и обессоливания водонефтяной эмульсии, включающего блоксополимер этилен- и пропиленоксидов, растворитель, в...
Тип: Изобретение
Номер охранного документа: 0002367682
Дата охранного документа: 20.09.2009
18.05.2019
№219.017.5a6c

Способ пиролиза углеводородов в присутствии водяного пара

Изобретение относится к процессам пиролиза углеводородов в присутствии водяного пара под действием электромагнитного излучения сверхвысокочастотного диапазона, при этом водяной пар перед подачей на смешение в проточном режиме предварительно обрабатывают электромагнитным излучением...
Тип: Изобретение
Номер охранного документа: 0002400522
Дата охранного документа: 27.09.2010
09.06.2019
№219.017.7f7e

Навигационный комплекс

Изобретение относится к области навигационных систем, а именно к интегрированным навигационным системам. Технический результат - повышение точности. Для достижения данного результата навигационный комплекс содержит инерциальную навигационную систему (ИНС) с гироплатформой (ГП), навигационный...
Тип: Изобретение
Номер охранного документа: 0002463560
Дата охранного документа: 10.10.2012
+ добавить свой РИД