×
26.08.2017
217.015.e8d6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов. Заявлен способ определения термоокислительной стойкости смазочных материалов, включающий нагревание пробы испытуемого смазочного материала постоянной массы в присутствии воздуха, перемешивание, фотометрирование, определение массы испарившейся пробы при испытании, построение графических зависимостей, по которым определяют параметры процесса окисления. Согласно изобретению испытания проводят в двух циклах изменения температуры. Одну пробу испытывают при ступенчатом увеличении температуры на 10°C от минимального до максимального значения, зависимого от назначения смазочного материала, а другую пробу испытывают при ступенчатом уменьшении температуры на 10°C от принятой максимальной величины до минимальной. Причем через равные промежутки времени испытания для каждой температуры окисленную пробу взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости как отношение массы испарившегося смазочного материала к массе пробы до испытания. Отбирают часть окисленной пробы для определения оптической плотности и по полученным данным определяют показатель термоокислительной стойкости как сумму оптической плотности и коэффициента испаряемости. Строят графические зависимости показателя термоокислительной стойкости, оптической плотности и испаряемости от циклов повышения и понижения температуры испытания, определяют регрессионные уравнения данных зависимостей, которые используют для определения параметров термоокислительной стойкости. По уравнениям зависимостей показателя термоокислительной стойкости определяют температуру начала процессов преобразования в испытуемом смазочном материале в цикле повышения температуры испытания и критическую температуру в цикле понижения температуры испытания, а по координате абсциссы пересечения данных зависимостей определяют предельную температуру работоспособности. При этом значения этих параметров используют в качестве параметров термоокислительной стойкости. Технический результат - повышение информативности контроля качества смазочных материалов за счет определения предельно допустимой температуры работоспособности. 1 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, определение параметров процесса окисления. При этом испытанию подвергают пробу путем нагревания через определенные интервалы времени до определенной температуры с увеличением температуры в начале интервала с выдержкой ее в течение интервала, определяют оптическую плотность в конце каждого интервала времени, строят графическую зависимость оптической плотности от температуры окисления, по точке перегиба которой определяют температуру окисления (Патент РФ №2057326, дата приоритета 04.06.1992, дата публикации 27.03.1996, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату к заявленному является способ определения термоокислительной стабильности смазочных материалов, заключающийся в том, что смазочный материал постоянной массы нагревают в термостойком стеклянном стакане, как минимум при трех температурах, превышающих температуру начала окисления, и перемешивают стеклянной мешалкой с постоянной скоростью вращения в течение не более 12 часов, причем через равные промежутки времени отбирают пробы для фотометрирования, определяют коэффициент поглощения светового потока окисленным маслом и испаряемость взвешиванием пробы до и после испытания, строят графические зависимости этих параметров от температуры испытания, а термоокислительную стабильность смазочного материала определяют по критической температуре работоспособности, температуре начала окисления и температуре начала испарения (Патент РФ №2274850, дата приоритета 30.08.2004, дата публикации 20.04.2006, авторы: Ковальский Б.И. и др., RU, прототип).

Недостатком известного аналога и прототипа является недостаточная их информативность, так как известные способы не позволяют определить предельно допустимую температуру работоспособности смазочных материалов, позволяющую классифицировать их по группам эксплуатационных свойств.

Задачей изобретения является повышение информативности контроля качества смазочных материалов за счет определения предельно допустимой температуры работоспособности.

Для решения поставленной задачи в способе определения термоокислительной стойкости смазочных материалов, включающем нагревание пробы испытуемого смазочного материала постоянной массы в присутствии воздуха, перемешивание, фотометрирование, определение массы испарившейся пробы при испытании, построение графических зависимостей, по которым определяют параметры процесса окисления, согласно изобретению, испытания проводят в двух циклах изменения температуры, одну пробу испытывают при ступенчатом увеличении температуры на 10°C от минимального до максимального значения, зависимого от назначения смазочного материала, а другую пробу испытывают при ступенчатом уменьшении температуры на 10°C от принятой максимальной величины до минимальной, причем через равные промежутки времени испытания для каждой температуры окисленную пробу взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости, как отношение массы испарившегося смазочного материала к массе пробы до испытания, отбирают часть окисленной пробы для определения оптической плотности, по полученным данным определяют показатель термоокислительной стойкости как сумму оптической плотности и коэффициента испаряемости, строят графические зависимости показателя термоокислительной стойкости, оптической плотности и испаряемости от циклов повышения и понижения температуры испытания, определяют регрессионные уравнения данных зависимостей, которые используют для определения параметров термоокислительной стойкости, причем по уравнениям зависимостей показателя термоокислительной стойкости определяют температуру начала процессов преобразования в испытуемом смазочном материале, в цикле повышения температуры испытания, и критическую температуру, в цикле понижения температуры испытания, а по координате абсциссы пересечения данных зависимостей определяют предельную температуру работоспособности, при этом значения этих параметров используют в качестве параметров термоокислительной стойкости.

Согласно изобретению, по уравнениям зависимостей оптической плотности и испаряемости в циклах повышения температуры испытания смазочного материала определяют температуры начала процессов окисления и испарения, а в циклах понижения температуры испытания определяют критическую температуру окисления и испарения, а по координате абсцисс пересечения этих зависимостей определяют предельно допустимые температуры окисления и испарения испытуемого смазочного материала, которые дополнительно используют в качестве параметров термоокислительной стойкости.

Сущность способа поясняется графически.

На фиг. 1 (а, б, в) представлены зависимости оптической плотности (D), испаряемости (G) и показателя термоокислительной стойкости (Птос) в циклах повышения и понижения температуры испытания частично синтетического моторного масла Castrol Magnatec 10W-40 Sl/CF в температурном интервале от 150 до 180°C (кривая 1) и от 180 доя 150°C (кривая 2); на фиг. 2 (а, б, в) - зависимости оптической плотности, испаряемости и показателя термоокислительной стойкости в циклах повышения и понижения температуры испытания частично синтетического моторного масла Лукойл Люкс 5W-40 SL/CF соответственно в температурном интервале от 150 до 180°C (кривая 1) и от 180 до 150°C (кривая 2); фиг. 3 (а, б, в) - зависимости оптической плотности, испаряемости и показателя термоокислительной стойкости в циклах повышения и понижения температуры испытания минерального моторного масла Zic HIFLO 10W-40 SL в температурном интервале от 150 до 180°C (кривая 1) и от 180 до 150°C (кривая 2).

Способ определения термоокислительной стойкости смазочных материалов осуществляется следующим образом. Пробу исследуемого смазочного материала постоянной массы (100±0,1 г) помещают в прибор для термостатирования и термостатируют последовательно при температурах, например для моторных масел 150, 160, 170, 180°C в течение постоянного времени, например, 8 часов для каждой температуры. При термостатировании проба смазочного материала перемешивается с помощью мешалки с постоянной частотой вращения, температура испытания поддерживается автоматически с точностью ±1°C. После каждой температуры проба взвешивается, определяется масса испарившегося смазочного материала и коэффициент испаряемости KG:

KG=m/М,

где m - масса испарившегося смазочного материала, г; М - масса пробы до испытания, г.

Отбирается часть пробы окисленного масла для фотометрирования и определения оптической плотности D:

где Ф - световой поток, падающий на слой смазочного материала; Ф0 - световой поток, прошедший через слой окисленного смазочного материала.

Определяется показатель термоокислительной стойкости (Птос), как сумма оптической плотности и коэффициента испаряемости:

Птос=D+KG

Аналогичная технология термостатирования применяется для других температур. Испытания смазочного материала при увеличении температуры осуществляются в цикле повышения температуры.

Новая проба исследуемого смазочного материала постоянной массы (100±0,1 г) испытывается в цикле понижения температуры испытания от 180 до 150°C с понижением на 10°C по той же технологии. По полученным экспериментальным данным строятся графические зависимости показателя термоокислительной стойкости Птос, оптической плотности D и испаряемости G в циклах повышения и понижения температуры испытания, определяются регрессионные уравнения этих зависимостей от температуры испытания в циклах повышения и понижения температуры, которые описываются полиномом второго порядка:

Птос=аТ2+bT+с;

D=аТ2+bT+с;

G=аТ2+bT+с.

Приравнивая параметры Птос, D, G к нулю и решая эти уравнения для циклов повышения температуры испытания, определяют температуры начала процессов окисления, испарения и температурных преобразований, учитывающих совместно температуры окисления и испарения, а решая уравнения зависимостей показателей в цикле понижения температуры испытания, определяют критические температуры окисления, испарения и температурных преобразований. Предельную температуру работоспособности исследуемого смазочного материала определяют по координате абсциссы пересечения графических зависимостей Птос=ƒ(T), D=ƒ(T) и G=ƒ(T) в циклах повышения и понижения температуры испытания. Более точное определение предельной температуры работоспособности исследуемого смазочного материала производят путем приравнивания уравнений Птос=ƒ(T), D=ƒ(T) и G=ƒ(Т) в циклах повышения и понижения температуры испытания к нулю и определения корней уравнений.

Результаты испытания частично синтетических моторных масел Castrol Magnatec 10W-40 Sl/CF, Лукойл Люкс 5W-40 SL/CF и минерального Zic HIFLO 10W-40 SL сведены в таблицу 1.

Сводные данные температурных показателей исследованных масел сведены в таблицу 2.

Исследованные масла относятся к одной группе эксплуатационных свойств SL для бензиновых двигателей, что подтверждено результатами исследования по предельным температурам работоспособности, по оптической плотности D, испаряемости G и показателю термоокислительной стойкости Птос.

Для сравнения смазочных масел одного назначения необходимо их исследовать в одинаковых температурных диапазонах, например, для моторных масел использовать температурный диапазон от 150 до 180°C в цикле повышения температуры на 10°C, кроме того, время испытания должно быть постоянным. Для трансмиссионных масел этот диапазон температур должен составлять от 120 до 150°C.

Предлагаемое техническое решение позволяет получить расширенную информацию по термоокислительной стойкости смазочных масел по таким показателям, как температуры начала процессов окисления, испарения и их совместного проявления; критические температуры процессов окисления, испарения и их совместного проявления и предельные температуры работоспособности, определяемые по оптической плотности, испаряемости и показателю термоокислительной стойкости, а также промышленно применимо при назначении и контроле группы эксплуатационных свойств.


СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 211-220 of 335 items.
04.07.2019
№219.017.a4c0

Способ галечного отвалообразования при дражной разработке россыпей

Настоящее изобретение относится к горному делу и может быть использовано для подводной разработки горных пород с помощью многочерпаковых драг. Технический результат: повышение производительности и снижение энергозатрат при отсыпке галечного отвала. Способ галечного отвалообразования при дражной...
Тип: Изобретение
Номер охранного документа: 0002693377
Дата охранного документа: 02.07.2019
05.07.2019
№219.017.a5f2

Устройство для непрерывного литья и прессования цветных металлов и сплавов

Изобретение относится к области металлургии и может быть использовано для непрерывной разливки цветных металлов и сплавов. Устройство содержит дозатор (1), колесо-кристаллизатор (2) с кольцевой канавкой (3) и коллектором для хладагента, неподвижный дугообразный сегмент (4) с матрицей (5) и с...
Тип: Изобретение
Номер охранного документа: 0002693407
Дата охранного документа: 02.07.2019
11.07.2019
№219.017.b2ac

Сильфонный гидроаккумулятор

Изобретение относится к области машиностроения, а именно к газогидравлическим аккумуляторам, и может быть использовано для аккумулирования энергии в гидро- пневмосистемах и демпфирования колебаний рабочей среды. Гидроаккумулятор включает корпус (1), содержащий в противоположных торцах...
Тип: Изобретение
Номер охранного документа: 0002694102
Дата охранного документа: 09.07.2019
19.07.2019
№219.017.b5fa

Способ отделения платины (ii, iv) и палладия (ii) от серебра (i), железа (iii) и меди (ii) в солянокислых растворах

Изобретение относится к разделению и концентрированию и может быть использовано для отделения платиновых металлов от серебра, железа и меди в солянокислых растворах сорбционным методом. Pt(II, IV) и Pd(II) отделяют от Ag(I), Fe(III) и Cu(II) сорбцией из свежеприготовленных солянокислых...
Тип: Изобретение
Номер охранного документа: 0002694855
Дата охранного документа: 17.07.2019
27.07.2019
№219.017.b9c4

Способ прогнозирования показателей термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Технический результат заключается в снижении трудоемкости за счет сокращения времени испытания при выбранной температуре в связи с возможностью использования результатов, полученных...
Тип: Изобретение
Номер охранного документа: 0002695704
Дата охранного документа: 25.07.2019
27.07.2019
№219.017.ba1f

Завихритель и способ закрутки потока текучей среды, скважинный электрогенератор, содержащий завихритель потока текучей среды, и способ генерирования электроэнергии в скважине

Группа изобретений относится к завихрителю потока текучей среды, способу закрутки потока текучей среды с помощью указанного завихрителя, скважинному электрогенератору с указанным завихрителем и способу генерирования электроэнергии в скважине с помощью указанного электрогенератора. Технический...
Тип: Изобретение
Номер охранного документа: 0002695735
Дата охранного документа: 25.07.2019
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
14.08.2019
№219.017.bf34

Устройство для определения направления движения электролита в алюминиевом электролизере

Изобретение относится к устройству для определения направления движения электролита в алюминиевом электролизере. Устройство содержит лопасть, поворачивающуюся под воздействием сил движущего электролита, закрепленную на изогнутом стержне, на верхнем горизонтальном торце которого размещен конус с...
Тип: Изобретение
Номер охранного документа: 0002697137
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf4e

Устройство для дожигания анодных газов алюминиевого электролизера

Изобретение относится к устройству для дожигания анодных газов алюминиевого электролизера с самообжигающимся анодом. Устройство содержит газосборный колокол, камеру сгорания и патрубки, взаимодействующие с газоотводящими трубами, вертикальные участки которых входят телескопически в угловые...
Тип: Изобретение
Номер охранного документа: 0002697148
Дата охранного документа: 12.08.2019
14.08.2019
№219.017.bf69

Установка для непрерывного литья плоских слитков

Изобретение относится к области литейного производства и может быть использовано для изготовления плоских слитков. Установка содержит устройство (1) для подачи расплавленного металла (2) в кристаллизатор (3), вертикально перемещаемый поддон (4), управляющую ЭМВ (6), взаимосвязанную с датчиками:...
Тип: Изобретение
Номер охранного документа: 0002697143
Дата охранного документа: 12.08.2019
Showing 131-135 of 135 items.
03.08.2019
№219.017.bc3f

Способ определения влияния температуры испытания на свойства продуктов окисления смазочных материалов

Изобретение относится к технологии испытания смазочных материалов и может использоваться для определения изменения состава продуктов окисления. Сущность: пробу смазочного материала постоянной массы термостатируют минимум при трех температурах, при атмосферном давлении с перемешиванием. Через...
Тип: Изобретение
Номер охранного документа: 0002696357
Дата охранного документа: 01.08.2019
15.11.2019
№219.017.e246

Способ определения предельно допустимых показателей работоспособности смазочных материалов

Изобретение относится к технологии определения качества нефтепродуктов и может применяться для контроля термоокислительной стабильности и температурной области работоспособности смазочных материалов. Предложен способ определения предельно допустимых показателей работоспособности смазочных...
Тип: Изобретение
Номер охранного документа: 0002705942
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.015f

Способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания

Изобретение относится к технологии оценки качества работающих моторных масел и технического состояния двигателей внутреннего сгорания. Предложен способ определения состояния работающих моторных масел и технического состояния двигателей внутреннего сгорания путем фотометрирования проб работающих...
Тип: Изобретение
Номер охранного документа: 0002713810
Дата охранного документа: 07.02.2020
13.02.2020
№220.018.0229

Способ определения работоспособности смазочных масел

Изобретение относится к технологии оценки качества работающих моторных масел, технического состояния двигателей внутреннего сгорания и системы фильтрации. Предложен способ определения работоспособности смазочного масла, заключающийся в том, что отбирают пробы работающего масла из двигателя...
Тип: Изобретение
Номер охранного документа: 0002713920
Дата охранного документа: 11.02.2020
29.05.2020
№220.018.21ad

Способ определения температуры начала изменения показателей термоокислительной стабильности и предельной температуры работоспособности смазочных материалов

Изобретение относится к технологии определения показателей термоокислительной стабильности смазочных материалов. Предложен способ, при котором пробы смазочного материала термостатируют минимум при трех выбранных температурах в присутствии воздуха с перемешиванием постоянной массы в течение...
Тип: Изобретение
Номер охранного документа: 0002722119
Дата охранного документа: 26.05.2020
+ добавить свой РИД