×
26.08.2017
217.015.e7cb

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению порошков жаропрочных никелевых сплавов. Способ включает плавление торца вращающейся цилиндрической литой заготовки потоком плазмы с обеспечением центробежного распыления расплава и образованием частиц затвердевающих в микрослитки при полете в атмосфере холодной плазмообразующей смеси газов, содержащей инертные газы и водород. В плазмообразующую смесь газов дополнительно вводят азот и поддерживают его концентрацию в смеси на уровне, обеспечивающем путем ионизации газов в потоке плазмы и взаимодействия ионов с расплавом насыщение расплава азотом до уровня, превышающего предельную растворимость его в твердом растворе, характерную для жаропрочных сплавов на никелевой основе. Охлаждают микрослитки в холодной плазмообразующей смеси газов со скоростью не менее 10 °C/с. Обеспечивается повышение прочностных характеристик жаропрочных никелевых сплавов. 1 табл., 1 ил.

Изобретение относится к металлургии, к области производства порошков в виде микрослитков, предназначенных для последующей переработки методом горячего изостатического прессования (ГИП).

Известен способ получения порошков в виде микрослитков методом вращающейся цилиндрической заготовки, торец которой оплавляют плазменной струей («Установка для получения порошков методом центробежного распыления вращающейся заготовки», авт. Кононов И.А. и др. в сб. «Металлургия гранул» под ред. Белова А.Ф., вып. 2, Москва, 1984 г., с. 242-250).

Метод позволяет получать химически однородные микрослитки, однако на их поверхности образуется окисная пленка, не позволяющая при ГИП обеспечить полную консолидацию микрослитков в компактную заготовку (изделие). Соответственно, изделия обладают пониженным комплексом механических свойств.

Известен способ получения микрослитков из расплава методом центробежного распыления, включающий плавление литой заготовки плазменной струей, формируемой из плазмообразующего газа, подаваемой на торец вращающейся заготовки с образованием частиц расплава, затвердевающих в атмосфере плазмообразующего газа в микрослитки. При плавлении литой заготовки в плазменную струю вводят водород, обеспечивают его ионизацию и взаимодействие ионов водорода с окислами на поверхности расплава, с выводом образующейся в результате взаимодействия влаги методом вымораживания (Патент РФ №2536122 от 29.04.2013 г.) (прототип).

Данный способ, выбранный за прототип, позволяет получать порошки в виде микрослитков из жаропрочных никелевых сплавов с пониженным содержанием кислорода. Материал заготовки, сформированный методом ГИП из этих микрослитков, обладает повышенными кратковременными прочностными характеристиками. Однако этот способ не обеспечивает достаточную длительную прочность жаропрочных никелевых сплавов.

Техническим результатом изобретения является повышение прочностных характеристик жаропрочных никелевых сплавов, в том числе длительной прочности.

Технический результат достигается в способе, который включает плавление вращающейся цилиндрической литой заготовки потоком плазмы, направленным на ее торец, и центробежное распыление расплава с образованием частиц, затвердевающих в микрослитки при полете в атмосфере холодной плазмообразующей смеси газов, содержащей инертные газы и водород.

При этом в плазмообразующую смесь газов дополнительно вводят азот и поддерживают его концентрацию в смеси на уровне, обеспечивающем, за счет ионизации газов в потоке плазмы и взаимодействия ионов с расплавом, насыщение расплава азотом до уровня, превышающего предельную растворимость его в твердом растворе, характерного для жаропрочных сплавов на никелевой основе, а охлаждение микрослитков в холодной плазмообразующей смеси газов обеспечивают со скоростью не менее 103 °C/с.

Предлагаемый способ отличается от прототипа тем, что в плазмообразующую смесь газов дополнительно вводят азот и поддерживают его концентрацию в смеси на уровне, обеспечивающем, за счет ионизации газов в потоке плазмы и взаимодействия ионов с расплавом, насыщение расплава азотом до уровня, превышающего предельную растворимость его в твердом растворе, характерную для жаропрочных сплавов на никелевой основе, а охлаждение микрослитков в холодной плазмообразующей смеси газов обеспечивают со скоростью не менее 103 °C/с.

Ионизация азота, отсутствие оксидных плен, удаляемых с поверхности расплава с помощью ионизированного водорода, снимает кинетические барьеры для перехода азота в пленку расплава на торце литой заготовки.

Насыщение расплава расплавляемой заготовки азотом до концентраций, превышающих его растворимость в твердом растворе жаропрочных никелевых сплавов и охлаждение частиц расплава с высокой скоростью, не менее 1×103 °C/с, приводит к пересыщению азотом твердого раствора в образующихся микрослитках.

Последующая переработка микрослитков в компактную заготовку методом ГИП приводит к распаду твердого раствора в металле с образованием наноразмерных нитридных частиц с кристаллической решеткой, когерентной решетке твердого раствора. Такие частицы эффективно упрочняют твердый раствор, что, в конечном счете, позволяет повысить прочностные характеристики жаропрочных никелевых сплавов, в том числе их длительную прочность.

Если скорость охлаждения уменьшить до значений, меньших 1×103 °C/с, то из расплава будут выделяться относительно крупные частицы нитридной или карбонитридной избыточной фазы. В этом случае нарушается когерентная связь кристаллических решеток частиц и твердого раствора и эти частицы не только не упрочняют жаропрочные никелевые сплавы, но и, являясь концентраторами напряжений, снижают прочностные характеристики этих сплавов.

Дозирование азота, вводимого в плазмообразующий газ и поддержание его концентрации на требуемом уровне, который устанавливают экспериментально, обеспечивают в процессе получения микрослитков системой управления.

Принципиальная схема реализации предлагаемого способа изображена на рис. 1.

Вращающаяся с угловой скоростью ω заготовка (2) поступает в камеру распыления (1) под струю плазмы от плазмотрона (3).

Расплав, образующийся на торце вращающейся заготовки (2), отбрасывается в виде отдельных капель с ее периферии центробежными силами. В процессе полета в камере распыления (1) капли расплава охлаждаются в газе, заполняющем камеру, кристаллизуются и в виде микрослитков поступают в приемный бункер (8).

Плазмообразующий газ поступает в камеру (1) перед началом процесса из ресивера газовой станции (7) через клапан (9). При работе плазмообразующий газ рециркулирует через камеру (1), холодильник (12) и плазмотрон (3) с помощью компрессора (6). Охлаждение газа и вымораживание влаги из него обеспечивает холодильник (12).

Состав рециркулирующего плазмообразующего газа контролирует и корректирует блок регулирования (5), который по сигналу его датчиков посредством автоматических клапанов (9) управляет подачей компонентов газовой смеси - порции водорода и азота от источника (10) или порции свежего газа от ресивера газовой станции (7) в смеситель (4). Смеситель (4) обеспечивает подмешивание требуемой порции газовой компоненты в поток рециркулирующего газа и доведение до требуемого уровня его состава. Рост давления в камере (1) от ввода в нее дополнительных порций газа контролирует автоматический клапан (9), действующий по сигналу от манометра (11), выпуская соответствующую порцию плазмообразующего газа в атмосферу.

Предлагаемый способ получения микрослитков был опробован экспериментально на установке центробежного распыления типа УЦР. При этом на ней была распылена партия заготовок ∅ 80 мм, длиной L=700 мм в количестве 60 шт. из никелевого сплава ЭП-741НП на частицы крупностью 140 мкм, при окружной скорости вращения периферии заготовки ~ 50 м/сек и при скорости плавления ~ 100 кг/час.

В процессе распыления в плазмообразующий газ состава 10% Ar + 90% Не вводили водород (H2) в количестве 0,3÷0,5 л/мин и азот 1,0÷1,5 л/мин.

Удаление оксидных плен с поверхности расплава в процессе оплавления заготовки плазменным потоком вследствие взаимодействия их с ионами водорода обеспечило интенсивное взаимодействие расплава с ионами азота и насыщение металла азотом вплоть до уровня, превышающего растворимость его в твердом растворе сплава ЭП-741НП, а высокая скорость охлаждения частиц расплава в полете в холодном плазмообразующем газе сформировала микрослитки с зафиксированной в них равномерно распределенной карбидной упрочняющей фазой в виде наноразмерных частиц. В итоге было обеспечено повышение прочностных свойств сплава, в том числе его длительная прочность.

Результаты сравнительного анализа механических свойств материалов, полученных по способу-прототипу и предлагаемому способу на сплаве ЭП-741НП, после компактирования из микрослитков заготовок методом ГИП, представлены в табл. №1.

Как следует из данных, приведенных в таблице 1, кратковременные прочностные характеристики повысились, при этом длительная прочность возросла на 50 МПа.

Способ получения порошков из жаропрочных никелевых сплавов, включающий плавление вращающейся цилиндрической литой заготовки потоком плазмы, направленным на ее торец, с обеспечением центробежного распыления расплава и образованием частиц, затвердевающих в микрослитки при полете в атмосфере холодной плазмообразующей смеси газов, содержащей инертные газы и водород, отличающийся тем, что в плазмообразующую смесь газов дополнительно вводят азот и поддерживают его концентрацию в смеси на уровне, обеспечивающем путем ионизации газов в потоке плазмы и взаимодействия ионов с расплавом насыщение расплава азотом до уровня, превышающего предельную растворимость его в твердом растворе, характерную для жаропрочных сплавов на никелевой основе, при этом обеспечивают охлаждение микрослитков в холодной плазмообразующей смеси газов со скоростью не менее 10 °C/с.
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Showing 61-70 of 73 items.
19.04.2019
№219.017.2f1e

Плазмотрон

Заявленное изобретение относится к области плазмотронной техники и может быть использовано во всех областях промышленности, где применяются плазмотроны постоянного тока. Заявленный плазмоторн содержит корпус, вольфрамовый катод и соединенное с корпусом сопло-анод с выходным каналом, причем...
Тип: Изобретение
Номер охранного документа: 0002350052
Дата охранного документа: 20.03.2009
09.05.2019
№219.017.49d6

Устройство для удержания проволоки в печи термообработки

Изобретение относится к устройствам для удержания проволоки в печи для термообработки. Устройство содержит вертикальную несущую стойку, жестко закрепленную в центре основания, и надетые на нее в один или несколько ярусов катушки. Каждая катушка снабжена равномерно распределенными по наружной...
Тип: Изобретение
Номер охранного документа: 0002686993
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.561e

Способ определения наличия и размера инородных включений в массе металлических гранул

Использование: для определения наличия и размера инородных включений в массе металлических гранул. Сущность: заключается в том, что определяют наличие и размер инородных включений в массе металлических гранул, размещая на подложке монослой гранул, после чего осуществляют освещение подложки...
Тип: Изобретение
Номер охранного документа: 0002347209
Дата охранного документа: 20.02.2009
18.05.2019
№219.017.562d

Сплав на основе алюминия

Изобретение относится к металлургии легких сплавов на основе алюминия для изготовления деформируемых полуфабрикатов, используемых в качестве конструкционного материала в летательных аппаратах. Сплав содержит следующие компоненты, мас.%: цинк 4,6-5,4, магний 1,6-2,1, медь 0,31-0,50, скандий...
Тип: Изобретение
Номер охранного документа: 0002343219
Дата охранного документа: 10.01.2009
26.05.2019
№219.017.61a9

Способ получения лигатурного материала для комплексного модифицирования структуры слитков из легких сплавов

Изобретение относится к области металлургии и может быть использовано для получения слитков и отливок из алюминиевых и магниевых сплавов, содержащих в своем составе добавки переходных металлов, например цирконий, титан, скандий. Осуществляют приготовление сплава алюминия с переходными металлами...
Тип: Изобретение
Номер охранного документа: 0002455380
Дата охранного документа: 10.07.2012
19.06.2019
№219.017.86dc

Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым алюминиевым сплавам, предназначенным для использования в виде деформированных полуфабрикатов в качестве конструкционного материала преимущественно для паяных конструкций теплообменников космических...
Тип: Изобретение
Номер охранного документа: 0002384637
Дата охранного документа: 20.03.2010
19.06.2019
№219.017.8993

Матрица для многоканального прессования труб и полых профилей

Изобретение предназначено для повышения качества изделий и увеличения производительности процесса получения труб и полых профилей из алюминиевых, магниевых и титановых сплавов, используемых в авиакосмической и других отраслях техники. Матрица включает четное количество консолей, корпус, съемные...
Тип: Изобретение
Номер охранного документа: 0002470730
Дата охранного документа: 27.12.2012
29.06.2019
№219.017.9fe8

Способ получения переменной структуры по сечению порошковой заготовки

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в производстве тяжелонагруженных деталей, работающих в условиях градиента температуры и имеющих переменную по сечению структуру и механические свойства. Заготовку получают путем горячего...
Тип: Изобретение
Номер охранного документа: 0002455115
Дата охранного документа: 10.07.2012
29.06.2019
№219.017.a0f9

Сверхпрочный сплав на основе алюминия

Предлагается сплав на основе алюминия, предназначенный для изготовления деформированных полуфабрикатов в виде листов, штамповок, прутков, труб или в другом виде для использования в газовых центрифугах, в компрессорах низкого давления, вакуумных молекулярных насосах и в других сильно нагруженных...
Тип: Изобретение
Номер охранного документа: 0002449037
Дата охранного документа: 27.04.2012
06.07.2019
№219.017.a6d7

Высокопрочный деформируемый сплав на основе алюминия системы al-zn-mg-cu и изделие, выполненное из него

Изобретение относится к области металлургии алюминиевых сплавов, в частности к деформируемым сплавам на основе алюминия, используемым в качестве высокопрочного конструкционного материала в изделиях разового применения. Высокопрочный деформируемый сплав на основе алюминия системы Al-Zn-Mg-Cu...
Тип: Изобретение
Номер охранного документа: 0002693710
Дата охранного документа: 04.07.2019
Showing 61-61 of 61 items.
20.04.2023
№223.018.4e9e

Теплоизолирующий колпак печи газостата

Предлагаемое изобретение относится к области порошковой металлургии, в частности к оборудованию для изостатического прессования порошковых материалов, заключенных газостат. Теплоизолирующий колпак печи газостата содержит корпус, выполненный в виде муфеля и внешней оболочки с боковыми и верхними...
Тип: Изобретение
Номер охранного документа: 0002793353
Дата охранного документа: 31.03.2023
+ добавить свой РИД