×
26.08.2017
217.015.de10

Результат интеллектуальной деятельности: СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002624889
Дата охранного документа
07.07.2017
Аннотация: Изобретение относится к области космической техники и может использоваться для определения ускорения поступательного движения космического аппарата (КА). В способе коррекции орбитального движения КА в процессе приложения тестовых и корректирующих воздействий фиксируют начало стационарного режима нагревания стенки камеры сгорания двигателя, фиксируют число срабатываний электроклапанов на входе в блок стабилизации давления, определяют средние частоты срабатывания электроклапанов и ускорения от работы двигателя коррекции. По результатам отработки планов коррекций имеют набор достоверных значений ускорений для дальнейшей работы с КА. Техническим результатом изобретения является обеспечение надежной и оперативной коррекции орбитального движения с повышением ее точности. 1 ил.

Предлагаемое изобретение относится к области космической техники и может быть использовано для более точной коррекции параметров движения космического аппарата (КА) за счет уточнения тяги двигателей коррекции (ДК).

1. Известен способ удержания геостационарного КА на заданной орбитальной позиции (RU 2481249 C2, МПК B64G 1/24). В части уточнения тяги ДК в данном аналоге прикладывают проверочное воздействие к корпусу КА путем включения двигателя; измеряют значения анодного тока и напряжения на электродах плазменного двигателя в процессе приложения проверочного и корректирующего воздействий; осредняют полученные значения на всем интервале измерения; рассчитывают тягу при приложении корректирующего воздействия по зависимости:

,

где Fi - тяга двигателя с i-м условным номером, H;

- коэффициент трансформации, ;

индекс относится к проверочным определениям тяги двигателей коррекции по данным траекторных измерений;

Ii - среднее значение анодного тока, a;

Ui - среднее значение напряжения на электродах, .

В аналоге 1 изложен принципиальный подход к уточнению тяги ДК, только ДК здесь однозначно электроплазменный, т.е. способ в полном объеме нельзя использовать при наличии в составе системы коррекции на борту КА иных типов двигателей.

2. Предприятию известен способ планирования коррекций, изложенный в рабочей документации предприятия, как часть общей технологической циклограммы решения баллистических задач (циклограмма приведена в описании), могущий включать в себя, кроме определения ускорения от работы двигателей коррекции (ДК) по данным траекторных измерений параметров движения КА до и после предыдущих [циклов] коррекций, в принципе, любой другой приемлемый способ получения ускорения, который и взят за прототип.

В способе-прототипе выполняется следующая последовательность операций (несущественные детали опускаются):

1. Отрабатывается план коррекций бортовой системой навигации и управления движением.

2. Проводят траекторные измерения.

Траекторные измерения представляют собой штатный цикл измерений текущих навигационных параметров (ИТНП), количество сеансов измерений и количество интервалов между сеансами составляет для суточного интервала и наличии двух пунктов наземных измерений от 4 до 6.

3. Выполняют программу определения параметров движения центра масс КА.

4. Уточняют управляющие ускорения по изменению орбитальных параметров. Уточнение не позволяет определять управляющие ускорения точнее диапазона значений ускорений, оговоренных заводом-изготовителем. Оно гарантирует отслеживание аномальной работы ДК и в случае затяжной и, возможно, постоянной ситуации, когда (пока) отказ ДК не зафиксирован на борту КА, все-таки рассчитывать план коррекций. При уточнении применяется эвристический метод: есть начальные условия (НУ) движения по предыдущему ИТНП, есть текущие НУ согласно пп. 1-3, есть предыдущий план коррекций, включающий в себя до трех условных номеров ДК, решается задача прихода в текущие НУ без больших погрешностей по контролируемым параметрам движения.

5. Выполняют программу расчета (составления) плана коррекций удержания КА в окрестности орбитальной позиции на интервале от даты расчета до начала следующего штатного цикла ИТНП.

6. Выполняют программы генерации массивов командно-программной информации (КПИ), содержащих НУ (вектор кинематических параметров движения), план коррекций, проекции ускорений от ДК на оси связанной с КА системы координат.

7. Засылка обобщенной формы КПИ на борт КА.

Далее пп. 1-7 повторяются в течение всего времени работы КА по целевому назначению.

Недостатком прототипа является относительно низкая точность определения ускорений от работы ДК, которая держится на уровне 10-11%, гарантированном заводом-изготовителем двигательной установки.

Есть способы коррекции орбиты КА, суть которых - в основном отличительном признаке - использование датчиков (и соответствующей им информации), не предназначавшихся ранее для уточнения ускорений от работы ДК, именно для уточнения ускорений от работы ДК. Такой информации на борту КА не так много, но она есть, и ей могут соответствовать способы коррекции, например аналог 1. И суть предлагаемого изобретения сводится к тому же - к использованию информации по работе микропереключателей в БСД, отображенной в телеметрии по результатам работы одной из бортовых программ, обслуживающих двигательную установку.

Целью предлагаемого изобретения является создание надежного и оперативного способа коррекции орбитального движения, повышение, по отношению к прототипу, точности коррекций параметров движения центра масс КА за счет уточнения ускорений от работы ДК.

Использование информации по работе микропереключателей в стабилизаторе давления (СД), входящем в состав БСД, отображенной в телеметрии по результатам работы одной из бортовых программ, обслуживающих двигательную установку, в состав которой входят термокаталитические ДК, является в заданных конструкторских условиях единственным подходом к количественному определению ускорений от работы ДК на каждом шаге плана коррекций и по результатам отработки этого плана. Дело в том, что определение ускорений от нескольких ДК на интервале плана (от 1 суток до 3 месяцев) и определение ускорения от одного ДК при единичном включении малой (как обычно) длительности по результатам траекторных измерений представляет не решаемую удовлетворительно задачу.

Поставленная цель достигается тем, что в способе коррекции орбитального движения КА, включающем приложение корректирующего воздействия путем включения ДК, проведение траекторных измерений, определение параметров движения центра масс КА, уточнение управляющих ускорений по изменению орбитальных параметров, расчет коррекций, формирование массивов командно-программной информации, содержащих начальные условия движения, план коррекций и управляющие ускорения, и засылку этих массивов на борт КА, введены новые операции, заключающиеся в том, что в процессе приложения тестовых и корректирующих воздействий к корпусу КА путем включения ДК, фиксируют время ti стац стационарного режима нагревания стенки камеры сгорания (СКС), фиксируют число срабатываний электроклапанов на входе в блок стабилизации давления и определяют средние частоты и срабатывания электроклапанов соответственно при тестовом и корректирующем воздействиях в привязке ко времени ti стац, строят графики зависимости , ai тест от рабочих значений ti стац, из графиков зависимости , ai тест от ti стац по текущему значению ti стац при корректирующем воздействии определяют текущие значения , ai тест, определяют ускорение при корректирующем воздействии от работы ДК по следующей зависимости:

,

где ai, ai тест - ускорения от i-го ДК соответственно при корректирующем и тестовом воздействии, м/с2,

и по результатам отработки планов коррекций имеют набор достоверных усредненных значений ускорений для дальнейшей работы с КА

,

где n - количество определений ai на интервале между этапами тестирования ДК.

Реализация предлагаемого способа предполагает выполнение следующей последовательности операций:

1. Проводят траекторные измерения.

Эта операция аналогична п.2 прототипа. При наличии автономной (бортовой) радионавигации траекторные измерения ведутся в непрерывном режиме.

2. Прикладывают тестовое воздействие.

Для этого в запланированное время производят включение ДК и отрабатывают импульс, обеспечивающий изменение параметра движения, например периода обращения, достаточное для надежного определения по нему величины ускорения от работы ДК. В этом суть тестирования. Длительность тестового воздействия порядка 1-2 час.

3. Фиксируют начало стационарного режима нагревания СКС ДК.

Во время работы ДК следят за телеметрической информацией с борта КА, и по показаниям датчиков температуры фиксируют конечную температуру СКС, соответствующую стационарному режиму нагревания - когда температура СКС с течением времени не меняется. К примеру, стационарный режим для гидразиновых ДК малой тяги наступает менее чем через 1 мин.

4. Выключают ДК в заданное время.

Становится известным значение времени стационарного режима нагревания СКС ДК (ti стац) - от его начала до выключения ДК.

5. Фиксируют число срабатываний электроклапанов на входе в БСД в процессе приложения тестового воздействия.

Принципиальная схема БСД приведена на фиг. 1.

Введены следующие обозначения:

1 - из блока хранения и подачи топлива;

2 - БСД;

3 - термодатчики;

4 - датчики давления; 5-КУ1, КУ2;

6 - КУ3, КУ4;

7 - нагреватели;

8 - основной СД (СД1);

9 - резервный СД (СД2);

10 - штуцер проверочный;

11 - КУ5, КУ6;

12 - на двигатель.

Управление заполнением рабочей дозы топлива, поступающей в расходную полость БСД - 2 осуществляется блоком управления бортового комплекса управления (БУ БКУ) по состоянию сочетаний (замкнуто\разомкнуто) концевых микропереключателей соответствующим включением электроклапанов КУ1, КУ2 - 5 при работе на стабилизаторе давления (СД)1 - 8 или КУ3, КУ4 - 6 при работе на резервном стабилизаторе СД2 - 9. При открытии клапанов КУ1, КУ2 полости СД1 и СД2 заполняются топливом и сжимают подпружиненные сильфоны СД1 и СД2 до срабатывания пары концевых микропереключателей СД1 (размыкание). По этому сочетанию контактов клапаны КУ1, КУ2 закрываются. По израсходованию рабочей дозы топлива (замыкание) производится включение КУ1, КУ2, начинается заполнение рабочей дозы топлива, при размыкании концевых микропереключателей питание с клапанов снимается, клапаны КУ1, КУ2 закрываются. В исходном состоянии БУ БКУ осуществляет управление СД1. Кроме того, БУ БКУ осуществляет автоматический перевод управления на резервный СД2 при достижении давления топлива на выходе до уровней менее 1,2 кгс/см2 или более 2,2 кгс/см2.

Бортовая программа (условно БП), входящая в программное обеспечение (ПО) системы коррекции заявляется в очередь готовых задач по команде «Заявка БП», выдаваемой из ПО бортового комплекса управления по факту изменения значений ТМ-параметров «Включение\выключение электроклапанов». Предусматривается постоянная работа БП в течение всего срока существования изделия. После заявки БП увеличивает свой «счетчик заявок» на 1 и снимается с очередей задач. Любое изменение телеметрического параметра фиксируется во времени. Программа БП представляет в каждом случае своей работы в поле программы «Непосредственная передача» ПО БКУ значение своего счетчика. Значение счетчика указывает, сколько раз наполнялся и опорожнялся блок стабилизации давления, то же - сколько раз происходило срабатывание микропереключателей в стабилизаторе, то же - сколько раз сработали электроклапаны.

Итак, имеем число срабатываний Ni тест.

6. Определяют среднюю частоту срабатываний электроклапанов.

Операции по пп. 5, 6 относятся ко времени ti стац.

Любое изменение телеметрического параметра фиксируется во времени, потому обработка телеметрии дает и соответствующую Ni тест среднюю частоту в привязке ко времени ti стац.

7. Проводят траекторные измерения.

8. Выполняют программу определения параметров движения центра масс КА.

Операция аналогична п.3 прототипа.

9. Рассчитывают ускорение от работы i-го ДК по результатам траекторных измерений пп. 1, 7.

Ускорение по результатам траекторных измерений рассчитывают по известным методикам, исходя из фактического значения изменения корректируемого параметра движения КА. Имеем ai тест.

Пп. 1-9 повторяют для каждого ДК не менее 3-4 раз - по разу на каждый вероятный (рабочий) интервал времени ti стац. Этап тестирования планируется проводить примерно раз в год из-за старения конструкции БСД, главным образом - пружинных устройств в СД, и «ухода» систематической составляющей ускорения (тяги) вследствие старения конструкции ДК.

Вообще, любое тестовое воздействие всегда является воздействием, выполняющим целевую функцию - проведение коррекции параметров орбиты КА, т.е. корректирующим воздействием. Поэтому лимитировать процесс тестирования двигателей коррекции не следует - нужна высокая степень достоверности результатов проводимых работ.

10. Строят график зависимости , ai тест от ti стац.

Такой график, в отличие от , исключает вероятность грубых ошибок определения .

11. Рассчитывают план коррекций. Операция аналогична п. 5 прототипа.

12. Выполняют программы генерации массивов командно-программной информации (КПИ), содержащих НУ (вектор кинематических параметров движения), план коррекций, проекции ускорений от ДК на оси связанной с КА системы координат.

Операция аналогична п.6 прототипа.

13. Засылают обобщенную форму КПИ на борт КА. Операция аналогична п. 7 прототипа.

14. Прикладывают корректирующее воздействие.

Т.е. отрабатывается шаг плана коррекций бортовой системой навигации и управления движением.

Эта операция аналогична п. 1 прототипа.

15. Фиксируют начало стационарного режима нагревания СКС ДК.

Операция аналогична п. 3.

16. Выключают ДК в заданное время.

Становится известным значение ti стац.

17. Фиксируют число срабатываний электроклапанов на входе в БСД в процессе приложения корректирующего воздействия.

18. Определяют среднюю частоту срабатываний электроклапанов

Операция аналогична п. 6.

19. Из графиков зависимости , ai тест от ti стац определяют текущие значения , ai тест.

20. В привязке ко времени ti стац определяют ускорение от работы ДК из соотношения:

,

где ai ai тест - ускорения от i-го ДК соответственно при корректирующем и тестовом воздействии, м/с2;

, - средние частоты срабатываний электроклапанов на входе в БСД соответственно при корректирующем и тестовом воздействиях i-м ДК.

В рабочих условиях эксплуатации двигательной установки только секундный расход топлива определяет тягу и соответствующее ей ускорение (удельная тяга для определенного класса ДК (признанных работоспособными) постоянна). Частота срабатываний концевых микропереключателей соответствует показаниям счетчика заявок БП и зависит от секундного расхода топлива, значит, - от ускорения.

21. Информацию по ускорениям от каждого ДК в процессе эксплуатации КА усредняют и тем самым уточняют после отработки плана коррекций.

После каждого определения ах уточняется ai тест:

,

где n - количество определений ai на интервале между этапами тестовых включений ДК.

Таким образом, этап тестирования подразделяется на два подэтапа: первый подэтап - тестирование ДК путем уточнения ускорений через изменения орбитальных параметров по данным траекторных измерений; второй подэтап - регламентное тестирование ДК путем усреднения ускорений на длительном интервале активного существования КА, согласно п. 9 - 1 год.

Если очередное значение ai сильно отличается от уточненного ai тест и подтверждается последующим ai+1, то по данному ДК начинают новый, внеочередной этап тестирования, заканчивающийся началом очередного регламентного тестирования всех ДК.

Далее пп. 1-21 повторяются в течение заданного времени этапа тестирования.

22. Начинают новый этап тестирования.

Все данные по предыдущему тестированию обнуляются.

Далее пп. 1-22 повторяются в течение всего времени активного существования КА.

Следует отметить:

1. Поскольку геометрическая ось ДК, как правило, не проходит через центр масс КА, работе ДК сопутствует работа двигателей ориентации КА. Эта работа (независимо от того, конструктивно разделены или нет системы коррекции и ориентации) вносит определенную погрешность в определении управляющих ускорений от работы ДК. В данном варианте конструкции двигательной установки БСД может обслуживать одновременно до трех двигателей одного технического класса: один ДК и до двух двигателей ориентации из соответствующих двигательных блоков. Двигатели ориентации работают в 4-секундных циклах в импульсном режиме - 0,25 с≤τвкл≤4 с, частота включений не более одного раза в 4 с. Суммарная порция топлива из двух СД составляет порядка 5 см3, время расхода составляет порядка 2 мин, полости СД заполняются топливом практически мгновенно (менее чем за 1 с), суммарное число срабатываний электроклапанов на интервале коррекции орбиты КА порядка 1 часа порядка 30. Суммарная длительность работы двигателей ориентации не превышает 1-3% от длительности работы ДК, по идеологии управления КА, что укладывается в точность исполнения коррекции орбитального движения.

2. Удельная тяга с течением времени падает - вследствие все более неполного преобразования исходного тела двигательной установки (газ) в рабочий продукт, в данном случае - в продукты распада под действием высокой температуры в камере разложения. Поскольку ДК работает, в отличие от двигателей ориентации, в непрерывном режиме, и используется только в рабочем состоянии, которое оценивается в жестких пределах по выходной характеристике - тяге, то можно распространять на все ДК один коэффициент трансформации

некой скорости срабатывания электроклапанов на входе в БСД некоему ускорению от одного из ДК при тестирующем воздействии, т.е. тестировать только БСД. Однако наиболее строгим и точным будет проводить тестирование БСД и каждого ДК в отдельности.

3. Наличие тела наддува и сильфона в топливных баках (блоках хранения и подачи) сглаживает, но не устраняет монотонность снижения давления по мере выработки топлива. Минимально допустимое давление в баке всегда превышает диапазон рабочих давлений в БСД. Количество срабатываний электроклапанов на входе в БСД при работах ДК уменьшается. Однако время наполнения БСД топливом хотя и зависит от давления в топливном баке, пренебрежимо мало и составляет менее секунды на всем диапазоне рабочих давлений в топливных баках против 2 мин его расхода из БСД. Значит, эффективная тяга (отношение требуемого импульса к фактической длительности коррекции) будет отличаться от приборной менее чем на 1%. Тестирование двигательной установки автоматически учитывает и этот фактор.

Предлагаемый способ коррекции орбитального движения КА позволяет:

1) определять управляющие ускорения без лишних затрат и с высокой точностью, последовательно - по мере необходимости, для каждого ДК;

2) считать приведенный способ коррекции орбитального движения КА способом баллистического обеспечения полета КА в автономном режиме.


СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОРРЕКЦИИ ОРБИТАЛЬНОГО ДВИЖЕНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 141-150 of 226 items.
25.06.2018
№218.016.665c

Болтовое соединение деталей

Изобретение относится к машиностроению, в частности к болтовым соединениям деталей, воспринимающих поперечные нагрузки. Болтовое соединение деталей содержит болты, которые гладкими участками установлены в отверстия первой детали с зазором, охватываемые отверстиями второй детали. Под головку...
Тип: Изобретение
Номер охранного документа: 0002658553
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.66dd

Способ измерения дальности до космического аппарата

Изобретение относится к способу измерения дальности до космического аппарата (КА). Для измерения дальности до КА генерируют сигнал, модулируют на его основе цифровой или аналоговый сигнал, переносят на несущую частоту и передают его с наземного комплекса управления КА, принимают сигнал бортовой...
Тип: Изобретение
Номер охранного документа: 0002658396
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.6785

Способ сборки космического аппарата

Изобретение относится к технологии сборки космических аппаратов (КА), главным образом телекоммуникационных спутников. Способ применим к КА, состоящему из модуля полезной нагрузки (МПН) и модуля служебных систем (МСС), изготавливаемых по отдельности и объединяемых по электрическим, механическим...
Тип: Изобретение
Номер охранного документа: 0002658262
Дата охранного документа: 19.06.2018
01.07.2018
№218.016.6984

Способ изготовления модуля полезной нагрузки космического аппарата блочно-модульного исполнения

Изобретение относится к космическим аппаратам (КА). Изготовление модуля полезной нагрузки (МПН) КА блочно-модульного исполнения заключается в сборке МПН на технологической оснастке раздельно от модуля служебных систем (МСС). Сборку силового каркаса МПН, состоящего из сотопанелей и крепежных...
Тип: Изобретение
Номер охранного документа: 0002659343
Дата охранного документа: 29.06.2018
12.07.2018
№218.016.7059

Способ изготовления изделий из композиционных материалов с отражающим покрытием

Изобретение относится к области производства радиотехнических устройств космической и авиационной техники и касается способа изготовления изделий из композиционных материалов с отражающим покрытием. Способ включает сборку пакета путем укладки слоев, содержащих термореактивное связующее,...
Тип: Изобретение
Номер охранного документа: 0002660863
Дата охранного документа: 10.07.2018
14.07.2018
№218.016.7170

Узел резьбового соединения

Предлагаемый узел резьбового соединения относится к ответственным узлам, используемым в машиностроении, приборостроении и при изготовлении летательных аппаратов. Узел резьбового соединения содержит две соединяемые детали, в отверстии первой детали размещаются две установленные друг в друга...
Тип: Изобретение
Номер охранного документа: 0002661326
Дата охранного документа: 13.07.2018
19.07.2018
№218.016.7281

Устройство разделения элементов конструкции

Изобретение относится к области машиностроения. Устройство разделения элементов конструкции содержит упругое кольцо с попарно и диаметрально расположенными выступами. Выступы смещены по углу. Отверстия предусмотрены в выступах и обеспечивают крепление устройства по наружному диаметру в...
Тип: Изобретение
Номер охранного документа: 0002661672
Дата охранного документа: 18.07.2018
19.07.2018
№218.016.72a4

Траверса

Изобретение относится к конструкциям, предназначенным для проведения операций по переносу, обезвешиванию и монтажно-стыковочным работам с изделиями различного назначения. Траверса выполнена с возможностью смещения точки подвеса в поперечном и продольном направлениях, и содержит устройство...
Тип: Изобретение
Номер охранного документа: 0002661671
Дата охранного документа: 18.07.2018
26.07.2018
№218.016.7519

Способ проведения модальных испытаний многосегментных нежестких конструкций

Изобретение относится к способам проведения модальных испытаний многосегментных нежестких раскрываемых конструкций космического назначения, рассчитанных на работу в невесомости (например, крупногабаритных рефлекторов и панелей солнечных батарей). Сущность: возбуждают в конструкции стационарные...
Тип: Изобретение
Номер охранного документа: 0002662255
Дата охранного документа: 25.07.2018
17.08.2018
№218.016.7c83

Способ изготовления тонкостенных волноводов прямоугольного сечения

Изобретение относится к области обработки металлов давлением и может быть использовано для гибки тонкостенных прямоугольных волноводов космических аппаратов. У волновода в месте гибки обрабатывают сквозное отверстие в плоскости гибки на длину будущего изгиба и удаляют часть двух противоположных...
Тип: Изобретение
Номер охранного документа: 0002663921
Дата охранного документа: 13.08.2018
Showing 131-140 of 140 items.
10.12.2019
№219.017.ebaa

Способ ликвидации космических аппаратов, уведенных с рабочих орбит в плотные слои атмосферы, и устройство для фрагментации космических аппаратов в плотных слоях атмосферы

Изобретение относится к области космической техники, а именно к способам и устройствам очистки околоземного космического пространства от космического мусора, и может быть использовано для уничтожения космических аппаратов (КА) в плотных слоях атмосферы. При ликвидации модульный КА прекращает...
Тип: Изобретение
Номер охранного документа: 0002708407
Дата охранного документа: 06.12.2019
10.12.2019
№219.017.ebc3

Способ увода прекративших активное существование космических аппаратов с рабочих наклонных и экваториальных орбит в плотные слои атмосферы

Изобретение относится к области космической техники, а именно к способам и устройствам очистки околоземного космического пространства от космического мусора. Способ увода прекративших активное существование космических аппаратов (КА) включает возбуждение силы Ампера непосредственно на борту...
Тип: Изобретение
Номер охранного документа: 0002708406
Дата охранного документа: 06.12.2019
12.12.2019
№219.017.ec7a

Способ удержания геостационарного космического аппарата

Изобретение относится к космической технике. В способе удержания космического аппарата (КА) в заданном диапазоне долгот и широт рабочей позиции на орбите рассчитывают коррекции наклонения на двух номинально противоположных активных участках (АУ), рассчитывают текущие векторы эксцентриситета на...
Тип: Изобретение
Номер охранного документа: 0002708468
Дата охранного документа: 09.12.2019
13.03.2020
№220.018.0b8e

Способ автономной коллокации на околостационарной орбите

Изобретение относится к управлению движением космических аппаратов (КА) вблизи точек стояния на стационарной орбите. КА с самоколлокацией (КАСК) постоянно удерживают в заданной области удержания (ОУ) по долготе. Внутри этой ОУ находятся смежные КА, для которых определяют, по траекторным...
Тип: Изобретение
Номер охранного документа: 0002716394
Дата охранного документа: 11.03.2020
14.05.2020
№220.018.1c34

Способ ориентации космического аппарата

Изобретение относится к космической технике. В способе ориентации космического аппарата (КА) ориентируют КА относительно направления на Солнце и Землю. После обеспечения ориентации КА относительно направления на Солнце в заданном диапазоне углов с использованием автономного контура управления...
Тип: Изобретение
Номер охранного документа: 0002720577
Дата охранного документа: 12.05.2020
22.05.2020
№220.018.1fd5

Акселерометр космический

Изобретение относится к области космической техники. Акселерометр содержит корпус, физический маятник в виде осесимметричного стержня, измеритель периода колебаний, включающий электрическую схему со встроенным в маятник вдоль его оси светодиодом, в месте, смещенном от середины рабочего цикла...
Тип: Изобретение
Номер охранного документа: 0002721589
Дата охранного документа: 20.05.2020
23.05.2020
№220.018.20a5

Способ автономной коллокации на геостационарной орбите

Изобретение относится к управлению движением космического аппарата (КА) с самоколлокацией (КАСК) вблизи заданной рабочей позиции на геостационарной орбите в процессе его коллокации со смежными КА (СКА), находящимися с КАСК в единой области удержания. Способ включает коррекцию удержания КАСК в...
Тип: Изобретение
Номер охранного документа: 0002721813
Дата охранного документа: 22.05.2020
23.05.2020
№220.018.20b6

Способ мониторинговой коллокации на геостационарной орбите

Изобретение относится к удержанию геостационарного космического аппарата (КА) в рабочей позиции при мониторинге смежного с ним КА (СКА). Способ осуществляют с помощью двух радиальных двигателей коррекции (РДК) мониторингового КА (МКА), ориентированных в надир так, чтобы векторы малой тяги РДК...
Тип: Изобретение
Номер охранного документа: 0002721812
Дата охранного документа: 22.05.2020
12.06.2020
№220.018.2690

Способ определения и уточнения ускорений от работы двигателей коррекции космического аппарата

Способ относится к области космической техники и может быть использован для повышения точности коррекции орбитального движения космического аппарата (КА), оборудованного автономной аппаратурой радионавигации и работающего на прием радиосигналов от глобальных навигационных систем в режиме...
Тип: Изобретение
Номер охранного документа: 0002723349
Дата охранного документа: 10.06.2020
05.06.2023
№223.018.772d

Способ коррекции орбитального движения космического аппарата

Изобретение относится к управлению движением космического аппарата (КА). В предлагаемом способе определяют корректирующие ускорения () от работы двигателей коррекции (ДК), используя телеметрическую информацию (ТМИ) от системы ориентации и стабилизации КА. До включения ДК из ТМИ (с астроприборов...
Тип: Изобретение
Номер охранного документа: 0002767794
Дата охранного документа: 22.03.2022
+ добавить свой РИД