×
26.08.2017
217.015.d7ea

Результат интеллектуальной деятельности: СИСТЕМА УПРАВЛЕНИЯ РАСХОДОМ КОМПОНЕНТА ТОПЛИВА ЖРД

Вид РИД

Изобретение

№ охранного документа
0002622677
Дата охранного документа
19.06.2017
Аннотация: Изобретение относится к автоматическим системам управления расходом топлива (СУРТ) в устройствах топливопитания жидкостных ракетных двигательных установок (ЖРДУ) ракет-носителей (РН). В предложенной системе управления расходом компонента топлива ЖРД, включающей установленный в магистрали подачи компонента топлива командный дроссель, соединенный звеньями кинематической цепи с управляющим валиком, датчик углового положения звена кинематической цепи, реверсивный электродвигатель, ротор которого кинематически соединен с управляющим валиком, линии передачи электрических сигналов к электродвигателю и от датчика углового положения, датчик углового положения звена кинематической цепи закреплен на управляющем валике дросселя. Изобретение обеспечивает повышение точности работы внутри двигательной подсистемы СУРТ (ЖРД); снижение стоимости гидравлической тарировки характеристик дросселя СОБ, регулятора РКС; оптимизацию значений конечных параметров РН - продольной скорости и гарантийных остатков топлива. 2 з.п. ф-лы, 1 ил.

Изобретение относится к автоматическим системам управления расходом топлива (СУРТ) в устройствах топливопитания жидкостных ракетных двигательных установок (ЖРДУ) ракет-носителей (РН).

Известны СУРТ, состоящие из автономных (внутридвигательных) гидромеханических устройств - регулятора расхода, стабилизатора соотношения компонентов. Устройства обладают высокой надежностью, минимальными весом и габаритами, обеспечивают автоматическое поддержание расхода компонента и соотношения компонентов топлива на заданном уровне.

Недостатком упомянутых систем является то, что они имеют «жесткую» программу управления основных параметров жидкостных ракетных двигателей (ЖРД). В результате этого применение указанных систем не обеспечивает компенсацию влияния внешних факторов на точность реализации программы полета РН, что ограничивает область их применения (Г.Г. Гахун и др. Конструкция и проектирование жидкостных ракетных двигателей. - М.: Машиностроение, 1989, стр. 49).

Известны более совершенные СУРТ РН, в которых упомянутый выше внутридвигательный контур управления ЖРД взаимодействует в качестве подсистемы с внешними контурами управления, образуя систему: регулирования кажущейся скорости (РКС), систему опорожнения баков (СОБ). В этом случае процессы управления параметрами полета РН оптимизируются (Козлов А.А. и др. Системы питания и управления жидкостных ракетных двигательных установок. - М.: Машиностроение, 1988, стр. 158 - прототип). Недостатком известных систем СОБ, РКС является конструктивное несовершенство той части систем, которая реализуется в составе подсистемы ЖРД в виде исполнительных органов управляющих расходами компонентов, поступающих в камеру сгорания, газогенератор.

Указанные недостатки заключаются в следующих особенностях этих систем.

Для настройки командного дросселя на заданный режим работы его управляющий валик снабжен цилиндрическим лимбом, на поверхности которого нанесены штрихи для визуального контроля (отсчета) углового положения управляющего валика командного дросселя относительно риски, нанесенной на корпусе. Указанный цилиндрический лимб применяется при всех настройках систем, а также в технологической операции процесса изготовления дросселя - его гидравлической тарировке в координатах гидравлической характеристики

где Δp - гидравлическое сопротивление командного дросселя, ϕ - угловая координата управляющего валика,- расход режима моделирования. Применение визуального контроля углового положения управляющего валика по цилиндрическому штриховому лимбу вызывает проблему повышения затрат на тарировку гидравлической характеристики дросселя. Тарировка производится на мощном гидростенде с высокой затратой электроэнергии. Использование штрихового лимба дросселя для визуального отсчета и контроля углового положения управляющего валика при тарировке сопровождается применением большого объема ручного труда. Это приводит к нерациональному увеличению времени работы мощного гидростенда, повышенным затратам электроэнергии, повышенному износу стендового оборудования и, следовательно, к увеличению стоимости производства серийных ЖРД. Результаты тарировки оформляются виде протокола испытаний на бумажном носителе, который затем прилагается к формуляру двигателя для последующего преобразования и оформления ручным способом на электронный носитель СУРТ. Возможность негативного влияния человеческого фактора на содержание переоформленной информации полностью не исключается.

К конструктивным недостаткам систем относится также размещение на реверсивном электродвигателе электрического датчика, предназначенного для оценки состояния командного дросселя в координатах его гидравлической характеристики (1). При таком размещении электрического датчика установка управляющего валика командного дросселя в заданное угловое положение (ϕком) сопровождается повышенным значением суммарной угловой погрешности (Σ∂ϕ), вызванной особенностью конструкции исполнительного органа. По результатам анализа функциональной структуры систем СОБ, РКС установлено, что погрешность реализации подсистемой ЖРД заданного гидравлического сопротивления командного дросселя (дросселей) складывается из ряда погрешностей. К ним относятся:

- погрешность датчика регистрации углового положения выходного вала ротора реверсивного электродвигателя;

- погрешность визуального отсчета по штриховому лимбу дросселя в процессе гидравлической тарировки;

- погрешность визуального отсчета по штриховому лимбу дросселя в процессе стыковки с выходным валом ротора реверсивного электродвигателя;

- люфт в узле стыковки управляющего валика дросселя с выходной валом ротора реверсивного электродвигателя;

- люфт в кинематической передаче управляющий валик - командный дроссель.

Высокое значение суммарной угловой погрешности (Σ∂ϕ) установки управляющего валика командного дросселя в заданное угловое положение (Σ∂ϕ>5°) ухудшает эксплуатационные свойства систем СОБ, РКС, так как появляются трудности достижения точной угловой (ϕном) установки заданного режима работы ЖРД. Для устранения этих трудностей реализуют «пологую линейность» характеристики дросселя, т.е.снижают величину градиента grad=dΔp/dϕ характеристики (1).

Для получения «пологой линейности» обеспечивают соответствующее профилирование проходных сечений (окон) дросселя, что также является проблемой. Упомянутое профилирование изначально не поддается строгой расчетной оценке из-за трудностей учета всех гидродинамических факторов, действующих в дросселирующем сечении окна.

Такие работы являются трудоемкими и продолжительными из-за необходимости проведения многократных доработок материальной части и экспериментальной оценки ее характеристик - гидроиспытаний, огневых испытаний и последующих доработок. Упомянутые работы не всегда заканчиваются успешно - появляется необходимость радикального увеличения габаритов агрегата с целью изменения размеров элементов конструкции для размещения профилированных окон или профилированных кулачков (для дросселя в виде поворотной решетки). Проблема профилирования дополнительно осложняется следующими обстоятельствами: ограниченным диапазоном угла поворота реверсивного электродвигателя (±150°); увеличением размерности ЖРД по тяге, т.е. увеличением расхода, которым необходимо управлять в составе ЖРД.

Описанная технология достижения градиента «пологой линейности» увеличивает сроки доводочных работ, повышает их трудоемкость и стоимость, исключает возможность применения реверсивного (повышенной надежности) гидроусилителя для перемещения дросселирующего органа.

Задачей изобретения является усовершенствование известных СУРТ РН: СОБ, РКС в части оптимизации конструкции подсистемы, повышением точности ее работы и снижением стоимости изготовления внутридвигательного контура управления ЖРД - исполнительного органа упомянутых систем (Козлов А.А. и др. Системы питания и управления жидкостных ракетных двигательных установок. - М.: Машиностроение, 1988, стр. 158).

Поставленная задача достигается тем, что в известной системе управления расходом компонента топлива ЖРД, включающей установленный в магистрали подачи компонента топлива командный дроссель, соединенный звеньями кинематической цепи с управляющим валиком, датчик углового положения звена кинематической цепи, реверсивный электродвигатель, ротор которого кинематически соединен с управляющим валиком, линии передачи электрических сигналов к электродвигателю и от датчика углового положения, согласно изобретению датчик углового положения звена кинематической цепи закреплен на управляющем валике дросселя. Кроме того, участок управляющего валика с закрепленным на нем датчиком углового положения помещен в полость корпуса командного дросселя, сообщенную каналом с окружающей средой и отделенную уплотнительным устройством от полости двигателя, залитой компонентом топлива, а звенья кинематической цепи, соединяющей командный дроссель и управляющий валик, установлены в корпусе с возможностью достижения однозначного расположения мест их контактного взаимодействия, которые образуются под действием гидродинамических сил, возникающих на командном дросселе при обтекании его потоком компонента.

Совокупность перечисленных выше существенных признаков при осуществлении предлагаемого изобретения позволяет получить следующие технические результаты:

- появляется возможность на порядок снизить стоимость гидравлической тарировки характеристик командного дросселя применением прецизионного датчика контроля углового положения управляющего валика и компьютерных технологий с целью сокращения продолжительности тарировки путем устранения необходимости применения визуальных отсчетов по штриховому лимбу управляющего валика;

- снижение трудоемкости доводочных работ и сокращение сроков их проведения в результате повышения точности работы внутридвигательной подсистемы (ЖРД) применением прецизионного датчика контроля углового положения управляющего валика, позволяющего устранить необходимость достижения «пологой линейности» гидравлических характеристик дросселя (регулятора) профилированием проходных сечений;

- оптимизируются условия диагностики технического состояния двигателя в процессе огневых испытаний по контролю точности воспроизведения мини-параметров контрольного теста СУРТ;

- появляется возможность оптимизации значений конечных параметров РН - продольной скорости и гарантийных остатков топлива в результате повышения точности работы внутридвигательной (ЖРД) подсистемы СОБ и РКС.

Сущность изобретения поясняется фиг. 1, где приведена функциональная схема СУРТ РН. Графические образы отдельных агрегатов, а также применяемая терминология заимствованы из работы Козлов А.А. и др. Системы питания и управления жидкостных ракетных двигательных установок. - М.: Машиностроение, 1988, стр. 94-100. Для упрощения схемы на фиг. 1 представлены только принципиально необходимые агрегаты. Система декомпозирована на подсистемы по их функциональным признакам, агрегаты системы обозначены позициями, см. фиг. 1.

Система опорожнения баков (СОБ)

а) баковая подсистема СОБ:

1, 2 - баки с компонентами топлива;

3, 4 - дискретные уровнемеры компонентов топлива;

5 - аппаратурный комплекс обеспечения функционирования системы (датчик рассогласования уровней компонентов топлива, ЭВМ, усилители сигналов, и др.);

6 - линии передачи электрических сигналов;

7, 8 - трубопроводы подачи компонентов из баков на вход в ТНА

ЖРД.

б) внутридвигательная подсистема (ЖРД) - исполнительный орган системы СОБ:

9 - камера сгорания (КС);

10 - газогенератор (ГГ);

11 - турбонасосный агрегат (ТНА);

12 - трубопроводы отбора компонентов для питания ГГ;

13 - трубопровод отбора компонента для питания КС;

14 - гидравлический командный дроссель;

15 - управляющий валик;

16 - вилка кинематической стыковки управляющего валика с валом ротора реверсивного электродвигателя;

17 - корпус;

18 - уплотнительное устройство;

19 - датчик углового положения управляющего валика;

20 – канал, сообщающий полость корпуса с окружающей средой;

21 - реверсивный электродвигатель;

22 - выходной вал ротора реверсивного электродвигателя.

Система регулирования кажущейся скорости (РКС)

а) ракетная подсистема РКС:

23 - датчик продольного ускорения РН;

24 - аппаратурный комплекс обеспечения функционирования системы РКС (датчик рассогласования расчетной и фактической скорости, ЭВМ, усилители сигналов, и др.);

25 - линии передачи электрических сигналов;

б) двигательная подсистема - ЖРД (агрегаты поз. 9-13 и гидромеханический плунжерный регулятор поз. 26 прямого действия - исполнительный орган системы РКС:

26 - корпус регулятора;

27 - командный дроссель;

28 - дроссель исполнительного органа регулятора;

29 - плунжер;

30 - пружина;

31 - управляющий валик;

32 - вилка кинематической стыковки управляющего валика с валом ротора реверсивного электродвигателя;

33 - датчик углового положения управляющего валика;

34 - корпус;

35 - уплотнительное устройство;

36 – канал сообщающий полость корпуса с окружающей средой;

38 - реверсивный электродвигатель;

39 - выходной вал ротора реверсивного электродвигателя.

С позиции сущности изобретения системы СОБ и РКС функционируют аналогичным образом, поэтому в тексте описания, изложенном ниже, упоминаются обе системы. Агрегаты систем, фиг. 1, обозначены по тексту описания позициями.

Устройство работает следующим образом. Сигналы от датчика (датчиков) 3, 4, 23 регулируемого параметра (параметров) РН поступают в бортовую вычислительную машину (ЭВМ) 5, 24, которая формирует командный сигнал управления. После усиления сигнал преобразуется валом 22, 39 ротора реверсивного электродвигателя 21, 38 в угловой поворот ϕком, управляющего валика 15, 31 командного дросселя 14, 27, соединенного свалом 22, 39 ротора реверсивного электродвигателя 21, 38 с элементами кинематики 16, 32, при этом проходное сечение (F) командного дросселя 14, 27 изменяется.

В системе СОБ командный дроссель 14 установлен в трубопроводе 13 отбора компонента для питания КС и изменение F приводит к изменению величины расхода компонента, поступающего в КС 9. Соотношение компонентов в КС 9 изменяется.

В системе РКС при изменении величины F командного дросселя 27 изменяется перепад давления, который через импульсные трубки 37 поступает на плунжер 29, изменяющий исполнительным органом 28 расход, поступающий в ГГ 10. Величина тяги ЖРД изменяется.

Циклы управления, непрерывно возобновляясь, обеспечивают в процессе полета РН поддержание значений полетных параметров в заданных пределах.

Согласно изобретению датчик углового положения 19, 33 как индикатор расположения рабочей точки гидравлического сопротивления командного дросселя на его гидравлической характеристике закреплен на управляющем валике 15, 31 командного дросселя 14, 27. Таким образом, в предлагаемом изобретении устранен конструктивный недостаток прототипа - повышенное значение суммарной угловой погрешности (Σ∂ϕ) установки управляющего валика командного дросселя в заданное угловое положение (ϕком). Обеспечивается это тем, что в кинематической цепи индикатора управления системы устранены составляющие цепь лишние звенья и кинематические зазоры в них.

Оставшийся зазор в кинематической цепи (детали зубчатого зацепления) устраняются под действием гидродинамических сил. При обтекании потоком компонента командного дросселя 14, 27 на него со стороны потока действуют гидродинамические силы, под действием которых звенья кинематической цепи, соединяющие командный дроссель, усилитель и управляющий валик, находятся в контактном взаимодействии. Детали установлены в корпусе на подшипниках, чем обеспечиваются при их перемещениях минимальные силы трения. В процессе работы ЖРД течение потока компонента не меняет направление, поэтому гидродинамические силы также не меняют направление своего действия. При минимальной силе трения в опорах реализуется возможность однозначного расположения мест контактного взаимодействия деталей кинематики при прямом и обратном вращении управляющего валика 15, 31. Этим достигается высокая точность функционирования кинематики командного дросселя 14, 27 и системы в целом.

Предлагаемым изобретением устранен конструктивный недостаток прототипа - цилиндрический штриховой лимб, который применяется в технологической операции процесса изготовления дросселя - его гидравлической тарировке в координатах гидравлической характеристики. Появляется возможность на порядок снизить стоимость затратной гидравлической тарировки характеристик командного дросселя с применением прецизионного датчика контроля углового положения управляющего валика и компьютерных технологий путем сокращения продолжительности тарировки, устранением необходимости применения визуальных отсчетов по штриховому лимбу управляющего валика.

Информация о результатах тарировки сохраняется и передается пользователям на носителях в электронной форме. В отличие от прототипа необходимость преобразования информации с участием человеческого фактора и возможностью его негативного воздействия на содержание информации в данном случае отсутствует.

Управляющий валик 15, 31 контактирует с компонентом, поэтому для защиты датчика углового положения 19, 33 от негативного воздействия компонента он помещен в полость корпуса 17, 34 командного дросселя, сообщенную каналом 20, 36 с окружающей средой и отделенную уплотнительным устройством 18, 35 от полости двигателя, залитой компонентом топлива.

Конструкции агрегатов, составляющих предлагаемое устройство, заимствованы из систем СОБ и РКС РН, которые применяются в настоящее время. Прецизионный датчик определения углового положения вала с погрешностью не более 5 под названием «абсолютный энкодер» является датчиком отечественного производства. В настоящее время этот датчик применяется в отечественном и зарубежном машиностроении.

Изложенное выше дает основание заключить, что дополнительных сведений, подтверждающих возможность осуществления изобретения, не требуется.


СИСТЕМА УПРАВЛЕНИЯ РАСХОДОМ КОМПОНЕНТА ТОПЛИВА ЖРД
СИСТЕМА УПРАВЛЕНИЯ РАСХОДОМ КОМПОНЕНТА ТОПЛИВА ЖРД
Источник поступления информации: Роспатент

Showing 61-70 of 90 items.
01.09.2018
№218.016.8256

Сопло камеры жидкостного ракетного двигателя

Изобретение относится к ракетной технике, а именно к способу изготовления сопла камеры жидкостного ракетного двигателя. Сопло камеры жидкостного ракетного двигателя, включающее внутреннюю и наружную оболочки, соединенные между собой ребрами, образующими каналы охлаждения, подколлекторное кольцо...
Тип: Изобретение
Номер охранного документа: 0002665601
Дата охранного документа: 31.08.2018
18.01.2019
№219.016.b0af

Способ испытания эрд и стенд для его реализации

Изобретение относится к области создания электроракетных двигателей (ЭРД) и стендов для их испытаний. В способе испытания ЭРД в вакуумной камере истекающее рабочее тело ЭРД затормаживают на защитной мишени и осаждают на криопанели, осажденное рабочее тело ЭРД газифицируют с криопанели путем...
Тип: Изобретение
Номер охранного документа: 0002677439
Дата охранного документа: 16.01.2019
13.03.2019
№219.016.dec6

Пироклапан

Изобретение относится к нормально закрытым пироклапанам. Новизной изобретения является то, что по оси штуцеров входа и выхода герметично с корпусом установлена втулка с глухим дном по центру втулки, пропущенная через отверстие штока с поршнем. На торце поршня со стороны пиропатрона выполнен...
Тип: Изобретение
Номер охранного документа: 0002681558
Дата охранного документа: 11.03.2019
14.03.2019
№219.016.df78

Камера жрд

Изобретение относится к жидкостным ракетным двигателям, работающим на первой и второй ступенях ракетоносителя. Камера ЖРД, содержащая корпус, состоящий из цилиндрической части, дозвуковой и сверхзвуковой частей сопла, смесительную головку с подводными магистралями компонентов топлива и...
Тип: Изобретение
Номер охранного документа: 0002681733
Дата охранного документа: 12.03.2019
21.03.2019
№219.016.eb2f

Камера сгорания двухрежимного жрд, работающего по безгенераторной схеме

Изобретение относится к ракетной технике, а именно к жидкостным ракетным двигателям (ЖРД). Камера сгорания двухрежимного ЖРД, работающего по безгенераторной схеме, содержащая кольцевую камеру сгорания с трактом охлаждения, магистрали подвода горючего и окислителя, блок камеры с двухсекционным...
Тип: Изобретение
Номер охранного документа: 0002682466
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ee51

Упругая самоуплотняющаяся металлическая прокладка

Изобретение относится к области уплотнительной техники для герметизации неподвижных фланцевых разъемных соединений прямоугольной или другой произвольной формы в широком диапазоне температур и давлений при многократных нагружениях и длительных сроках эксплуатации. Упругая самоуплотняющаяся...
Тип: Изобретение
Номер охранного документа: 0002682797
Дата охранного документа: 21.03.2019
27.04.2019
№219.017.3d66

Жидкостный ракетный двигатель с дефлектором внутри сопла

Изобретение относится к управлению вектором тяги ракетных двигателей. Жидкостный ракетный двигатель, содержащий магистраль горючего, камеру с охлаждаемой сверхзвуковой частью сопла, неохлаждаемый насадок из углерод-углеродного композиционного материала, соединенные между собой с помощью...
Тип: Изобретение
Номер охранного документа: 0002686367
Дата охранного документа: 25.04.2019
04.06.2019
№219.017.7317

Сильфон высокого давления

Изобретение относится к области машиностроения и может быть использовано в пневмо-гидросистемах других отраслей промышленности. В сильфоне, содержащем гофрированную трубу, концевую арматуру и цилиндрические пружины, с расположенными в них составными стержнями круглого сечения, причем последние...
Тип: Изобретение
Номер охранного документа: 0002690316
Дата охранного документа: 31.05.2019
04.06.2019
№219.017.733c

Компенсатор угловых перемещений трубопроводов

Изобретение относится к области машиностроения и может быть использовано в пневмо-гидросистемах. Задачей изобретения является обеспечение угловой компенсации перемещений в двух плоскостях нескольких трубопроводов. Компенсатор содержит сильфон, концевые фланцы, шарнирный узел. Шарнирный узел...
Тип: Изобретение
Номер охранного документа: 0002690313
Дата охранного документа: 31.05.2019
20.06.2019
№219.017.8d01

Способ воспламенения компонентов топлива в жидкостном ракетном двигателе

Изобретение относится к области энергетических установок, а именно к жидкостным ракетным двигателям (ЖРД), и может быть использовано при разработке и создании ЖРД на несамовоспламеняющихся компонентах топлива. В способе воспламенения компонентов топлива в жидкостном ракетном двигателе,...
Тип: Изобретение
Номер охранного документа: 0002691704
Дата охранного документа: 17.06.2019
Showing 61-70 of 73 items.
02.10.2019
№219.017.cfa9

Щелевая смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. Щелевая смесительная головка камеры жидкостного ракетного двигателя, содержащая наружное днище, корпус с установленными в нем кольцами с трактом охлаждения и отверстиями для подачи жидкого компонента, зазоры между которыми образуют...
Тип: Изобретение
Номер охранного документа: 0002700801
Дата охранного документа: 23.09.2019
18.10.2019
№219.017.d7bf

Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги

Изобретение относится к многокамерным жидкостным ракетным двигателям с дожиганием и управляемым вектором тяги. Многокамерный жидкостный ракетный двигатель с дожиганием и управляемым вектором тяги содержит раму, газогенератор, турбонасосный агрегат с насосами, входные магистрали окислителя и...
Тип: Изобретение
Номер охранного документа: 0002703076
Дата охранного документа: 16.10.2019
24.11.2019
№219.017.e5a6

Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги

Изобретение относится к жидкостным ракетным двигателям. Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги, содержащий установленные два двигательных блока, каждый с газогенератором, камерами, агрегатами автоматики и регулирования, рамой, размещенным в...
Тип: Изобретение
Номер охранного документа: 0002707015
Дата охранного документа: 21.11.2019
06.12.2019
№219.017.ea27

Способ комплектации жидкостного ракетного двигателя с дожиганием с управляемым вектором тяги

Изобретение относится к ракетной технике, а более конкретно к способам комплектации жидкостных ракетных двигателей с дожиганием с управляемым вектором тяги. Cпособ комплектации жидкостного ракетного двигателя с дожиганием с управляемым вектором тяги, включающий операции сборки корпуса камеры,...
Тип: Изобретение
Номер охранного документа: 0002708014
Дата охранного документа: 03.12.2019
20.12.2019
№219.017.ef9c

Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги

Изобретение относится к ракетной технике, а более конкретно к устройству многокамерного жидкостного ракетного двигателя с дожиганием с управляемым вектором тяги. Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги содержит газогенератор, турбонасосный агрегат,...
Тип: Изобретение
Номер охранного документа: 0002709243
Дата охранного документа: 17.12.2019
04.07.2020
№220.018.2f31

Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги

Изобретение относится к ракетной технике, а более конкретно, к устройству многокамерного жидкостного ракетного двигателя с дожиганием с управляемым вектором тяги. Многокамерный жидкостной ракетный двигатель с дожиганием генераторного газа с управляемым вектором тяги, содержащий газогенератор,...
Тип: Изобретение
Номер охранного документа: 0002725345
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2f67

Щелевая смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. В щелевой смесительной головке камеры жидкостного ракетного двигателя, содержащей наружное днище, корпус с установленными в нем кольцами с трактом охлаждения и отверстиями для подачи жидкого компонента, зазоры между которыми образуют...
Тип: Изобретение
Номер охранного документа: 0002725397
Дата охранного документа: 02.07.2020
02.08.2020
№220.018.3c03

Камера жидкостного ракетного двигателя, работающего по безгазогенераторной схеме (варианты)

Изобретение относится к жидкостным ракетным двигателям. Камера жидкостного ракетного двигателя, работающего по безгазогенераторной схеме, содержащая корпус камеры, смесительную головку, состоящую из периферийной и центральной частей, наружное днище, магистрали подвода горючего и окислителя и...
Тип: Изобретение
Номер охранного документа: 0002728657
Дата охранного документа: 31.07.2020
12.04.2023
№223.018.49fc

Смесительная головка газогенератора жрд

Изобретение относится к области ракетной техники и может быть использовано при создании регулируемых ракетных двигателей. Смесительная головка газогенератора ЖРД, содержащая патрубки подвода жидких компонентов топлива, корпус и огневое днище с закрепленными между ними с помощью пайки и гаек...
Тип: Изобретение
Номер охранного документа: 0002793876
Дата охранного документа: 07.04.2023
12.04.2023
№223.018.4a46

Камера жидкостного ракетного двигателя (жрд) с неохлаждаемым насадком

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Камера ЖРД с неохлаждаемым насадком из углерод-углеродного композитного материала (УУКМ), содержащая охлаждаемую часть с каналами охлаждения и неохлаждаемый насадок из УУКМ или углерод-керамического композитного материала (УККМ),...
Тип: Изобретение
Номер охранного документа: 0002793869
Дата охранного документа: 07.04.2023
+ добавить свой РИД