×
25.08.2017
217.015.d257

Результат интеллектуальной деятельности: Центробежный шелушитель

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для шелушения зерна под действием центробежных сил и может использоваться на предприятиях пищевой промышленности. Центробежный шелушитель содержит корпус, размещенную в нем кольцевую деку, закрепленный на полом валу ротор, выполненный из двух дисков, скрепленных между собой, с находящимися между ними лопастями. Дека со стороны торцевой части дисков имеет круглую вогнутую фаску с радиусом, не меньшим, чем расстояние зазора, образованного между дисками ротора. Лопасти выполнены в виде кривой, полученной аппроксимацией ломаной линии, описываемой определенным уравнением. Использование изобретения позволит повысить качество обработки зерна. 10 ил., 1 табл.

Изобретение относится к устройствам для шелушения зерна под действием центробежных сил и может использоваться на предприятиях пищевой промышленности.

Наиболее близким по технической сущности и достигаемому эффекту к решаемой задаче является шелушитель зерна [Патент на полезную модель РФ №138907, МПК7 B02B3/00 Шелушитель зерна / Марьин В.А., Хабазин И.С., Блазнов А.Н., Нечаев И.В., заявитель и патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) – №2013142532/13. заявл. 17.09.2013, опубл. : 27.03.2014, Бюл. №9. – 3 с.], содержащий корпус с загрузочным и разгрузочным патрубками, аспирационный патрубок, размещенную в корпусе кольцевую деку, в которой установлен универсальный вкладыш из упругого материала, а также закрепленный на полом валу ротор с лопастями.

Недостатком данного шелушителя является то, что при движении частицы вдоль лопасти ротора шелушение продукта не осуществляется, а продукт при ударе о кольцеобразную деку прямолинейной формы дробится.

Технической задачей изобретения является: повышение коэффициента шелушения, снижение потерь зерна, интенсификация процесса шелушения, увеличение скорости частицы на выходе из ротора и обеспечении начала процесса шелушения уже при движении частицы вдоль лопасти ротора.

Техническая задача изобретения достигается тем, что в центробежном шелушителе, содержащем корпус, размещенную в нем кольцевую деку, закрепленный на полом валу ротор, выполненный из двух дисков, скрепленных между собой, с находящимися между ними лопастями, новым является то, что дека со стороны торцевой части дисков имеет круглую вогнутую фаску с радиусом не меньшим, чем расстояние зазора, образованного между дисками ротора, при этом лопасти выполнены в виде кривой, полученной аппроксимацией ломаной линии, описываемой уравнением:

где - угловая скорость вращения ротора, рад/с; x, y - координаты частицы продукта, - соответственно коэффициенты трения продукта о внутреннюю поверхность лопасти и диска,  - ускорение свободного падения м/с2 ( м/с2), β0 – угол наклона лопасти ротора относительно радиального направления, с учетом условия,

где - радиус вращения частиц, м.

Технический результат изобретения заключается в повышении коэффициента эффективности процесса шелушения, уменьшении потерь зерна, интенсификации процесса шелушения, увеличении скорости частицы на выходе из ротора и обеспечении начала процесса шелушения уже при движении частицы вдоль лопасти ротора.

На фиг. 1 трехмерное изображение общего вида центробежного шелушителя; на фиг. 2 – общий вид центробежного шелушителя; на фиг. 3 - ротор; на фиг. 4 представлено сечение деки 6 шелушителя; на фиг. 5 представлена модель процесса движения частицы зерна вдоль лопасти ротора центробежного шелушителя; на фиг. 6 - зависимость скорости частицы от конструктивных и режимных параметров ротора центробежного шелушителя; на фиг. 7 кинематические и динамические характеристики движения продукта; на фиг. 8 математическая модель движения частицы по деке; на фиг. 9 кинематические параметры частицы; на фиг. 10 зависимость нормального давления от угла установки лопасти.

Центробежный шелушитель (фиг. 1, 2) содержит: корпус 1 с находящимся в нем полым валом 2; ротор состоящий из нижнего и верхнего дисков 3 и 4, с размещенными между ними лопастями 5; деку 6; опоры 7; разгрузочный патрубок 8. Лопасти 5 выполненные в виде кривой, полученной аппроксимацией ломаной линии, описываемой уравнением:

где - угловая скорость вращения ротора, рад/с; x, y - координаты частицы продукта, - соответственно коэффициенты трения продукта о внутреннюю поверхность лопасти и диска,  -ускорение свободного падения м/с2 ( м/с2), β0 – угол наклона лопасти ротора относительно радиального направления, с учетом условия:

где r0 - радиус вращения частиц, м.

В корпусе 1 размещена кольцевая дека 6, которая со стороны торцевой части дисков 3,4 имеет круглую вогнутую фаску с радиусом не меньшим, чем расстояние зазора, образованного между дисками 3 и 4 ротора.

Благодаря изменению геометрии поверхности деки появляется радиальная составляющая нормальной реакции деки, которая в несколько раз превышает величину тангенциальной составляющей, и как результат, согласно гипотезе Амонтона-Кулона, в несколько раз возрастает сила сухого трения между поверхностью частицы и деки, что обеспечивает эффективное шелушение продукта.

Для обоснования вида лопасти рассмотрим модель (фиг. 5) движения частицы продукта по ее грани, являющейся направляющей в роторе центробежного шелушителя(фиг. 3).

Рассмотрим движение частицы продукта в роторе центробежного шелушителя. Движение продукта в роторе центробежного шелушителя является сложным движением. В качестве относительного движения принимаем движение продукта по лопасти ротора, а переносное движение – вращение частицы продукта вместе с ротором центробежного шелушителя .

В относительном движении на частицу действуют сила тяжести , нормальная реакция со стороны диска , нормальная реакция со стороны лопасти , соответствующие силы трения и , а также переносная сила инерции и кориолисова сила инерции .

В этом случае векторное уравнение относительного движения имеет вид

. (1)

Проектируя уравнение (1) на декартовы оси координат, получим дифференциальное уравнение относительного движения системы в проекциях на эти оси

. (2)

Так как движение частицы относительно оси ограничено диском ротора, то равнодействующая сил равна нулю

, (3)

следовательно, из уравнения (2)

(4)

где - масса частицы продукта, кг; - ускорение свободного падения ( м/с2).

Движение продукта относительно оси также ограничено лопаткой ротора и равнодействующая проекций сил действующих на частицу продукта в относительном движении, на ось равна нулю, то есть

. (5)

Из уравнения (5) найдем величину силы нормального давления лопатки на частицу продукта

. (6)

Как известно, переносная сила инерции равна

(7)

где - угловая скорость вращения ротора, рад/с; - радиус вращения частиц, м.

А кориолисова сила инерции

, (8)

где - относительная скорость частицы, м/с.

Тогда уравнение (6) после преобразований примет вид

(9)

Так как угол между векторами относительной скорости частицы и угловой скорости вращения равен 90°, то уравнение (9) перепишется в виде

. (10)

Согласно гипотезе Амонтона-Кулона сила сухого трения прямопропорциональна величине силы нормального давления и направлена в сторону, противоположную движению

, (11)

, (12)

где = - соответственно коэффициенты трения продукта о диск и лопасть ротора (для материалов зерно-сталь ).

Тогда дифференциальное уравнение относительного движения частицы запишется следующим образом

. (13)

Рассмотрим ΔОАВ, в котором ∠ОАВ=β. Тогда по теореме о перекрещивающихся углах имеем

. (14)

Подставляя систему (14) в уравнение (13) и сокращая все выражение на получим

. (15)

Рассмотрим ΔОСВ, в котором ∠ОСВ=β0 – угол наклона лопасти ротора относительно радиального направления, тогда

. (16)

Подставляя (16) в уравнение (15) получим окончательный вид дифференциального уравнения относительного движения частицы продукта в роторе центробежного шелушителя

. (17)

Полученное дифференциальное уравнение (17) второго порядка является нелинейным и аналитического решения не имеет. Поэтому для его решения воспользуемся численным методом Рунге-Кутта четвертого порядка. Для этого приведем данное дифференциальное уравнение второго порядка к системе нелинейных дифференциальных уравнений первого порядка

(18)

Результат решения системы нелинейных дифференциальных уравнений представлен на фиг. 7, где 1 – ускорение частицы; 2 – нормальное давление; 3 – скорость частицы.

Величина ускорения, как видно из графика (кривая 1), уже в начальный момент времени достигает значения 1500 м/с2. Это означает, что обрабатываемый продукт испытывает действие центробежного поля высокой напряженности. В начале движения частицы по лопасти ротора наблюдается некоторое снижение величины ускорения, но по мере движения и возрастания центробежной силы инерции наблюдается резкий рост значений ускорения.

Из фиг. 7 видно, что скорость частицы (кривая 3) вследствие большого ускорения непрерывно возрастает и достигает за короткий промежуток времени больших значений: от 1 м/с в начальный промежуток времени до 29 м/с на вылете из ротора, что обеспечивает высокую производительность центробежного шелушителя. Такой рост величины скорости движения частиц продукта объясняется еще более резким возрастанием ускорения частиц за тот же промежуток времени.

Из анализа кривой 2 видно, что по мере движения продукта по лопасти ротора, сила нормального давления постоянно возрастает. Большие значения нормального давления и, как следствие, большие значения силы трения приводят к разрушению (истиранию) оболочек частиц уже в роторе центробежного шелушителя. Поэтому перспективным направлением совершенствования процесса шелушения является создание такой конструкции ротора, в котором шелушение осуществляется при движении частицы по лопасти.

Решение полученной системы нелинейных дифференциальных уравнений производилась на компьютере. Получена зависимость скорости частицы от конструктивных и режимных параметров ротора, которая представлена на Фиг. 6, где 1 – скорость частицы при n=2500 об/мин, 2 – скорость частицы при n=2000 об/мин, 3 – скорость частицы при n=1500 об/мин. Из анализа зависимости следует, что при увеличении угла наклона лопатки β0 в отрицательном направлении (против направления вращения ротора), величина скорости частицы продукта на вылете из ротора будет увеличиваться. Поэтому для получения максимальной скорости выхода частицы из ротора шелушителя целесообразно увеличивать угол установки лопасти к радиальному направлению. Но при определенном значении угла β0 в начальный момент времени может произойти отрыв частицы продукта от лопасти, что недопустимо по условию ведения процесса. Из математической модели движения материальной точки в роторе центробежного шелушителя условие безотрывного движения частицы будет выглядеть следующим образом

. (19)

После преобразований получим

. (20)

Решая уравнение (17) с учетом условия (20), получим форму лопасти в виде ломаной кривой, угол наклона отдельных прямолинейных участков которой β0, будет увеличиваться в отрицательном направлении. Аппроксимируя полученную ломаную линию, получаем следующий результат – оптимальной формой лопасти будет являться плавная кривая, близкая по форме к логарифмической кривой. При таких конструктивных параметрах ротора будет наблюдаться максимальная скорость движения частицы на вылете из ротора.

Из анализа предыдущих конструкций центробежных шелушителей видно, что кольцевая дека имеет прямолинейную рабочую поверхность. При такой конструкции деки величина лобового удара частицы весьма велика, что служит причиной дробления ядра зерновых культур при шелушении, ухудшая качество готовой продукции.

Предлагается внутреннюю кольцевую поверхность деки выполнить криволинейной в двух плоскостях. Её внутренняя поверхность со стороны торцевой части дисков имеет круглую вогнутую фаску с радиусом не меньшим, чем расстояние зазора, образованного между дисками ротора. Дека устанавливается таким образом, что частица продукта, вылетая из ротора, попадает на крайнюю верхнюю точку криволинейной поверхности деки.

При таком изменении конструкции деки важно найти оптимальные конструктивные параметры установки лопасти ротора, при которых частица продукта, попадая на деку, испытывала бы максимальное трение.

Дифференциальное уравнение движения частицы продукта по неподвижной деке имеет вид

, (21)

где - сила тяжести, Н; - сила нормального давления, Н.

Так как предлагаемая конструкция неподвижной деки имеет кривизну в двух плоскостях: в радиальном и тангенциальном направлении (Фиг. 8.), то целесообразно силу нормальной реакции со стороны деки разложить на две составляющие

, (22)

где , - соответственно тангенциальная и радиальная составляющие силы нормального давления, Н.

, (23)

, (24)

где , - соответственно радиальная и тангенциальная составляющие абсолютной скорости частицы на вылете из ротора, м/с; r, R – соответственно радиус усеченного тора и кольцевой деки, м, r=0,03 м и R=0,29 м.

Величину и направление скоростей и найдем из рисунка 4. Абсолютная скорость частицы на вылете из ротора

. (25)

В свою очередь

, (26)

где и - соответственно векторы относительной и переносной скорости частицы, м/с.

Разложим вектор относительной скорости частицы на две составляющие: радиальную и тангенциальную

. (27)

Величины и найдем из выражений

, (28)

. (29)

Тогда

, (30)

. (31)

Найдем зависимость значения угла β от угла установки лопасти ротора β0.

Из ∆ОАВ и ∆ОВС (Фиг. 9)

, (32)

. (33)

Решая совместно уравнения (32) и (33) получим зависимость угла β от угла установки лопасти β0

. (34)

Переносная скорость частицы продукта постоянна при любом угле наклона лопасти ротора и находится по формуле

, (35)

м/с,

где ω=157 рад/с – угловая скорость вращения ротора шелушителя.

Величиной в уравнении (23) можно пренебречь, так как величина ускорения частицы как минимум на три порядка больше, чем величина ускорения свободного падения 9,81 м/с2. Зависимость величины и от угла установки лопасти представлена в таблице 1. Как видно из таблицы 1 выполнение кольцевой деки предлагаемой конструкции дает ощутимый результат – появляется радиальная составляющая нормальной реакции деки, которая в несколько раз превышает величину тангенциальной составляющей, и как результат, согласно гипотезе Амонтона-Кулона, в несколько раз возрастает сила сухого трения между поверхностью частицы и деки, что должно обеспечить эффективное шелушение продукта.

Зависимость нормального давления от угла установки лопасти ротора показана на фиг. 10, где 1 – радиальная составляющая нормального давления, 2 – тангенциальная составляющая нормального давления.

Таблица 1

Центробежный шелушитель работает следующим образом: из пневмотранспортной системы предприятия продукт подается в полый вал 2, а затем в ротор, состоящий из нижнего и верхнего дисков 3,4 и лопастей 5 , подхватывается лопастями 5 и отбрасывается на деку 6. Затем прошелушенный продукт попадает на коническую часть корпуса 1 , скатывается по нему к разгрузочному патрубку 8, выводится из центробежного шелушителя и направляется на дальнейшую переработку.

Предлагаемый центробежный шелушитель позволяет:

- уменьшить количество дробленых зерен при помощи наличия у деки со стороны торцевой части дисков круглой вогнутой фаски, с радиусом не меньшим, чем расстояние зазора образованного между дисками ротора;

- повысить коэффициент шелушения;

-увеличить скорость частицы на выходе из ротора;

-обеспечить начало процесса шелушения уже при движении частицы вдоль лопасти ротора.


Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Центробежный шелушитель
Источник поступления информации: Роспатент

Showing 61-70 of 115 items.
25.08.2017
№217.015.b50a

Способ получения коллагенового продукта

Изобретение относится к перерабатывающей и косметической промышленности, а именно к способу получения коллагенового продукта, характеризующемуся тем, что принимают шкуры пресноводных рыб, таких как толстолобик, карп, белый амур, сазан, очищают их ручным или машинным способом от чешуи, прирезей...
Тип: Изобретение
Номер охранного документа: 0002614273
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5aa

Способ производства зефира

Изобретение относится к области пищевой промышленности, в частности к кондитерской отрасли. Способ производства зефира предусматривает приготовление агаро-изомальто-паточного сиропа, для чего сухой порошкообразный агар смешивают в технологической емкости с водой температурой 15 °С гидромодуль...
Тип: Изобретение
Номер охранного документа: 0002614373
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5e9

Устройство для экстрагирования масла из маслосодержащего растительного сырья

Изобретение относится к масложировой промышленности. Устройство для экстрагирования масла из маслосодержащего растительного сырья, включающее корпус с бункерами для загрузки исходного сырья и выгрузки шрота, горизонтально установленный в корпусе конвейер с сетчатой бесконечной лентой,...
Тип: Изобретение
Номер охранного документа: 0002614809
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b70a

Способ утилизации и рекуперации теплоты в мукомольном производстве с использованием парокомпрессионного теплового насоса

Изобретение относится к утилизации и рекуперации теплоты и может быть использовано в мукомольном производстве. Способ заключается в том, что предварительно подогревают влажное зерно, сушат его, охлаждают, подают на хранение с дальнейшей подачей в подготовительное отделение мукомольного завода...
Тип: Изобретение
Номер охранного документа: 0002614805
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b71e

Центробежная форсунка

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. Центробежная форсунка содержит штуцер, прокладку, в корпусе, имеющем конусообразную часть, установлено, с возможностью возвратно-поступательного...
Тип: Изобретение
Номер охранного документа: 0002614546
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b72a

Способ получения кондитерской колбаски на основе жмыха зародышей пшеницы

Изобретение относится к пищевой промышленности и может быть использовано в кондитерском производстве и общественном питании. Способ получения кондитерской колбаски на основе жмыха зародышей пшеницы включает смешивание рецептурных компонентов, вымешивание полученной массы, формование с...
Тип: Изобретение
Номер охранного документа: 0002614802
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b72e

Способ экспрессной оценки качества сухих пекарных дрожжей

Изобретение относится к пищевой промышленности хлебобулочных и кондитерских изделий. Способ предусматривает использование детектирующего устройства «электронный нос» на основе массива из 8 пьезосенсоров с базовой частотой колебаний 10-15 МГц, электроды которых модифицируют покрытиями,...
Тип: Изобретение
Номер охранного документа: 0002614667
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b756

Аппарат для удаления влаги из жидких высоковлажных термолабильных эмульсий

Изобретение относится к аппаратам для проведения процесса удаления влаги из жидких высоковлажных термолабильных растительных эмульсий и может быть использовано в пищевой, масложировой, лакокрасочной промышленности и других отраслях, применяющих выпаривание влаги из термолабильных высоковязких...
Тип: Изобретение
Номер охранного документа: 0002614867
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b8b9

Способ горячего копчения рыбной продукции

Способ предусматривает использование пароэжекторной холодильной машины, включающей эжектор, испаритель, холодоприемник, теплообменник-рекуператор, конденсатор, терморегулирующий вентиль, сборник конденсата и парогенератор. Охлажденный и осушенный воздух подают на предварительный подогрев в...
Тип: Изобретение
Номер охранного документа: 0002615365
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b936

Способ производства сырников из творога

Изобретение относится к пищевой промышленности. Готовят смесь, содержащую творог обезжиренный в количестве 76-81,2%, пшеничную муку в количестве 3,0-5,0%, стабилизатор, в качестве которого используют БАД “Витазар” в количестве 3,0-4,0%, соль в количестве 0,6%, предварительно замоченные в теплой...
Тип: Изобретение
Номер охранного документа: 0002615452
Дата охранного документа: 04.04.2017
Showing 61-70 of 133 items.
25.08.2017
№217.015.b71e

Центробежная форсунка

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. Центробежная форсунка содержит штуцер, прокладку, в корпусе, имеющем конусообразную часть, установлено, с возможностью возвратно-поступательного...
Тип: Изобретение
Номер охранного документа: 0002614546
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b72a

Способ получения кондитерской колбаски на основе жмыха зародышей пшеницы

Изобретение относится к пищевой промышленности и может быть использовано в кондитерском производстве и общественном питании. Способ получения кондитерской колбаски на основе жмыха зародышей пшеницы включает смешивание рецептурных компонентов, вымешивание полученной массы, формование с...
Тип: Изобретение
Номер охранного документа: 0002614802
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b72e

Способ экспрессной оценки качества сухих пекарных дрожжей

Изобретение относится к пищевой промышленности хлебобулочных и кондитерских изделий. Способ предусматривает использование детектирующего устройства «электронный нос» на основе массива из 8 пьезосенсоров с базовой частотой колебаний 10-15 МГц, электроды которых модифицируют покрытиями,...
Тип: Изобретение
Номер охранного документа: 0002614667
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b756

Аппарат для удаления влаги из жидких высоковлажных термолабильных эмульсий

Изобретение относится к аппаратам для проведения процесса удаления влаги из жидких высоковлажных термолабильных растительных эмульсий и может быть использовано в пищевой, масложировой, лакокрасочной промышленности и других отраслях, применяющих выпаривание влаги из термолабильных высоковязких...
Тип: Изобретение
Номер охранного документа: 0002614867
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b8b9

Способ горячего копчения рыбной продукции

Способ предусматривает использование пароэжекторной холодильной машины, включающей эжектор, испаритель, холодоприемник, теплообменник-рекуператор, конденсатор, терморегулирующий вентиль, сборник конденсата и парогенератор. Охлажденный и осушенный воздух подают на предварительный подогрев в...
Тип: Изобретение
Номер охранного документа: 0002615365
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.b936

Способ производства сырников из творога

Изобретение относится к пищевой промышленности. Готовят смесь, содержащую творог обезжиренный в количестве 76-81,2%, пшеничную муку в количестве 3,0-5,0%, стабилизатор, в качестве которого используют БАД “Витазар” в количестве 3,0-4,0%, соль в количестве 0,6%, предварительно замоченные в теплой...
Тип: Изобретение
Номер охранного документа: 0002615452
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c3a6

Способ производства желейно-фруктового мармелада

Изобретение относится к области пищевой промышленности, к кондитерской отрасли и может быть использовано в производстве мармелада на основе агара и фруктозы с добавлением солодового экстракта ячменя и пюре из аронии. Предложен способ производства желейно-фруктового мармелада, в котором готовят...
Тип: Изобретение
Номер охранного документа: 0002617363
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c433

Способ производства кексов

Изобретение относится к пищевой промышленности и может быть использовано на предприятиях хлебопекарной, кондитерской промышленности, общественного питания. Предложен способ производства кексов, в котором готовят тесто для кексов из муки цельносмолотых семян нута и пшеничной хлебопекарной муки...
Тип: Изобретение
Номер охранного документа: 0002617358
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c5d5

Устройство для мокрого пылеулавливания

Изобретение относится к химической и пищевой отраслям промышленности и может быть использовано для очистки газов от пыли в поле действия центробежных сил с использованием мокрой очистки. Устройство для мокрого пылеулавливания содержит цилиндроконический корпус с крышкой и подводящим...
Тип: Изобретение
Номер охранного документа: 0002618566
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.c5ef

Установка для распылительной сушки и агломерации пищевых сред

Изобретение относится к сушке дисперсных материалов и может быть использовано для сушки сыпучих материалов в пищевой, химической, металлургической и других отраслях промышленности. Установка для распылительной сушки и агломерации пищевых сред содержит сушильную камеру, систему подачи исходного...
Тип: Изобретение
Номер охранного документа: 0002618637
Дата охранного документа: 05.05.2017
+ добавить свой РИД