×
25.08.2017
217.015.d057

Результат интеллектуальной деятельности: ПРИЕМНИК ВАКУУМНОГО КАМЕРНОГО РЕАКТОРА СИНТЕЗА ГЛИКОЛИДА И ЛАКТИДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройству промышленного синтеза мономеров гликолида и лактида, применяемых в качестве сырья для получения биоразлагаемых полимеров различного состава. Приемник вакуумного камерного реактора синтеза гликолида и лактида представляет собой емкость с тремя контурами теплообмена, 220-260°С в месте ввода парогазовой смеси, 90-130°С в наружной периферийной кольцевой полости аппарата, содержащей систему стальных трубок, заполненных теплоносителем, 70-110°С в верхней части приемника для повторного улавливания паров мономеров, и сборником продукта в нижней части аппарата, поддерживающей мономер в состоянии расплава при остаточном давлении 1-5 мм рт.ст. Устройство обеспечивает полноту конденсации мономера-сырца. 1 ил.

Изобретение относится к устройству промышленного синтеза мономеров гликолида и лактида, применяемых в качестве сырья для получения биоразлагаемых полимеров различного состава. Полигликолидные биоразлагаемые полимеры находят широкое применение в медицине в качестве шовного материала, биоимплантов, для создания медицинских препаратов пролонгированного действия, а также упаковочного материала. Приемник вакуумного камерного реактора (далее приемник ВКР) является составной частью вакуумного камерного реактора синтеза мономеров гликолида и лактида. Получение мономеров основано на протекании реакции деполимеризации гликолида или лактида из олигомера соответствующей кислоты в камерном модуле реактора синтеза гликолида и лактида и поступлении газообразного мономера-сырца в приемник ВКР, где происходит его конденсация.

Известны конденсаторы-холодильники различных конструкций, которые служат для конденсации паров и охлаждения продуктов до температуры, обеспечивающей незначительные потери их от испарения. Конденсаторы-холодильники выполняют две функции – конденсируют пары и затем охлаждают конденсат. Конденсаторы-холодильники применяются трех конструкций: а) трубчатые, б) змеевиковые, в) комбинированные.

Известны погружные конденсаторы-холодильники (Фарамазов С.А. Эксплуатация оборудования нефтеперерабатывающих заводов), которые представляют собой трубные змеевики, погруженные в металлический прямоугольный ящик, в который непрерывно поступает охлаждающая вода. В змеевики подается конденсируемая или охлаждаемая среда. Для конденсаторов змеевики подключают несколькими параллельными потоками посредством коллектора. Указанные аппараты работают при условном давлении от 1,6 до 6,4 МН/м2 в трубном или межтрубном пространстве и в пределах рабочих температур от минус 30°С до плюс 450°С.

Основным недостатком теплообменников такой конструкции является плохая восприимчивость к температурным напряжениям. Конденсируемая фаза протекает по внутреннему змеевику, что не подходит под описываемый процесс конденсации мономера-сырца и приводит к забивке трубного пространства.

В комбинированном конденсаторе-холодильнике (Закгейм И.Г. Производство этилового эфира) в верхней части корпуса помещена трубчатка для конденсации паров, а в нижней - змеевик для охлаждения конденсата. Подлежащий конденсации пар поступает в межтрубное пространство, где конденсируется. Теплый конденсат с нижней трубной решетки трубчатки перетекает через штуцер и соединительное колено в змеевик, где дополнительно охлаждается. Вода движется противотоком, снизу вверх. Указанная конструкция также не подходит для процесса сбора продукта реакции деполимеризации олигомеров молочной или гликолевой кислоты, т.к. требуется поддерживать сконденсированный продукт в нагретом состоянии и при этом снизить процент потерь за счет улетучивания.

Известен способ получения новолачных олигомеров (Воробьев В.А., Андрианов Р.А., Технология полимеров, 1990 г.), в котором описывается, как парогазовая смесь из варочного аппарата, снабженного якорной и рамочной мешалкой и паровой рубашкой, поступает в холодильник, представляющий собой поверхностный трубчатый конденсатор, охлаждаемый водой. Трубчатый конденсатор представляет собой систему стальных или медных трубок в стальных трубчатых решетках, вставленную в стальной кожух и закрытую с обоих концов стальными обечайками. Поверхность охлаждения должна составлять 10-15 м2 на 1 м3 объема котла. Допустимое давление в трубках – 0,4 МПа, а предельная температура нагрева 180°С.

Недостатками такой конструкции являются одна температурная зона конденсации, работа под давлением, а не в вакууме, потери при уносе несконденсированного вещества, неконтролируемое охлаждение конденсата, приводящее к затвердеванию в аппарате.

Задачей настоящего изобретения является разработка конструкции приемника ВКР, обеспечивающая полноту конденсации продукта (мономера-сырца лактида или гликолида), которая достигается за счет наличия трех контуров теплообмена парогазовой смеси, выходящей из камерного модуля вакуумного камерного реактора.

Поставленная задача решается тем, что конструкция приемника ВКР получения гликолида и лактида представляет собой емкость с тремя контурами теплообмена, 220-260°С (1) в месте ввода парогазовой смеси (4), 90-130°С в наружной периферийной кольцевой полости аппарата (2), содержащей систему стальных трубок (5), 70-110°С в верхней части приемника (3) для повторного улавливания паров мономеров, и сборником продукта в нижней части аппарата (6), поддерживающей мономер в состоянии расплава при остаточном давлении 1-5 мм рт.ст.

Конструкция приемника ВКР получения гликолида и лактида иллюстрируется чертежом, где цифрами обозначено:

1 – контур теплообмена №1 220 -260°С,

2 – контур теплообмена №2 90-130°С,

3 – контур теплообмена №3 70-110°С,

4 – ввод парогазовой смеси,

5 – система стальных трубок для дополнительной конденсации продукта,

6 – нижняя часть аппарата, где происходит сбор продукта.

Особенностью данного аппарата является то, что в приемнике ВКР происходит трехступенчатое охлаждение выходящей из камерного модуля вакуумного камерного реактора парогазовой смеси, имеющей температуру 270-280°С, с выделением и накоплением в нижней зоне аппарата концентрата сконденсированных паров в виде расплава.

Парогазовая смесь ПГС (температура смеси 270-280°С) тангенциально вводится в верхнюю зону периферийной кольцевой полости аппарата через штуцер. Парогазовая смесь, охлаждаемая с двух сторон кольцевого зазора нисходящим закрученным потоком, поступает в нижнюю зону приемника ВКР. Сконденсировавшиеся продукты в виде нисходящей пленки накапливаются в нижней части в виде расплава. Одновременно осуществляется сепарация капель за счет расширенного объема камеры накопления и изменения на 180° направления движения охлаждаемой ПГС.

Сепарированный поток парогазовой смеси поднимается вверх и поступает в вертикально установленные трубки приемника ВКР, где происходит вторая ступень охлаждения и конденсации в режиме противотока. Сконденсированные остатки в виде пленки стекают вниз и дополнительно накапливаются в нижней накопительной части приемника ВКР.

Поток ПГС, выходящий из приемника ВКР, поступает в расширительную камеру, расположенную в верхней части, где происходит сепарация уносимых потоком инертного газа каплеообразных продуктов и возврат их в накопительную зону приемника ВКР в виде стекающей вниз пленки целевых продуктов.

Приемник вакуумного камерного реактора синтеза гликолида и лактида, представляющий собой емкость с тремя контурами теплообмена, 220 -260°С в месте ввода парогазовой смеси, 90-130°С в наружной периферийной кольцевой полости аппарата, содержащей систему стальных трубок, заполненных теплоносителем, 70-110°С в верхней части приемника для повторного улавливания паров мономеров, и сборником продукта в нижней части аппарата, поддерживающей мономер в состоянии расплава при остаточном давлении 1-5 мм рт.ст.
ПРИЕМНИК ВАКУУМНОГО КАМЕРНОГО РЕАКТОРА СИНТЕЗА ГЛИКОЛИДА И ЛАКТИДА
ПРИЕМНИК ВАКУУМНОГО КАМЕРНОГО РЕАКТОРА СИНТЕЗА ГЛИКОЛИДА И ЛАКТИДА
Источник поступления информации: Роспатент

Showing 171-175 of 175 items.
23.04.2020
№220.018.180c

Способ получения тонкопленочных материалов на основе оксидов кремния, фосфора, кальция и магния

Изобретение относится к технологии получения тонкопленочных покрытий, применяемых в различных областях техники, в том числе в качестве биоактивного материала. Способ получения тонкопленочных материалов на основе сложных оксидных систем включает приготовление пленкообразующего раствора на основе...
Тип: Изобретение
Номер охранного документа: 0002719580
Дата охранного документа: 21.04.2020
26.04.2020
№220.018.19e7

Радиопоглощающий материал и способ его получения

Изобретение относится к радиотехнике, а именно к поглотителям высокочастотного электромагнитного излучения в диапазоне сверхвысоких частот, и может быть использовано для снижения возможности обнаружения различных целей средствами радиообнаружения, для обеспечения электромагнитной совместимости...
Тип: Изобретение
Номер охранного документа: 0002720152
Дата охранного документа: 24.04.2020
21.05.2020
№220.018.1f09

Робот для диагностики и ремонта трубопроводного транспорта

Изобретение относится к гибридным роботам для определения, разметки и ремонта участков трубопроводного транспорта с химическими или радиоактивными утечками. Предложенное устройство выполнено в виде решетки с колесами, на универсальной аэродинамической платформе размещен мультикоптер....
Тип: Изобретение
Номер охранного документа: 0002721473
Дата охранного документа: 19.05.2020
22.05.2020
№220.018.1fd1

Многоволновый фотовозбуждаемый тонкопленочный органический лазер

Изобретение относится к лазерной технике. Многоволновый фотовозбуждаемый тонкопленочный органический лазер содержит источник оптической накачки, лазерно-активный элемент в виде подложки, на которую нанесен дополнительный слой, обеспечивающий условия полного внутреннего отражения для длины волны...
Тип: Изобретение
Номер охранного документа: 0002721584
Дата охранного документа: 20.05.2020
24.07.2020
№220.018.36de

Высокопористый материал на основе диатомита и способ его получения

Изобретение относится к способам получения из диатомита высокопористого сорбента на основе диоксида кремния с величиной удельной поверхности свыше 350 м/г и иерархической пористой структурой. Полученный продукт имеет исходную макропористую структуру диатомита и вторичную структуру узких мезопор...
Тип: Изобретение
Номер охранного документа: 0002727393
Дата охранного документа: 21.07.2020
Showing 101-101 of 101 items.
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
+ добавить свой РИД