×
25.08.2017
217.015.cbf5

Результат интеллектуальной деятельности: Способ получения покрытия на имплантатах из титана и его сплавов

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению микропористых структур на поверхности изделий из титана или его сплава и может быть использовано в области медицинской техники при изготовлении из титана и его сплавов поверхностно-пористых эндопротезов и имплантатов для травматологии, ортопедии, различных видов пластической хирургии, для подготовки поверхности титановых имплантатов под нанесение биоактивных покрытий. Способ включает лазерную обработку поверхности в среде аргона при мощности излучения 400-500 Вт и заданной скорости перемещения лазерного луча с одновременной подачей в зону облучения порошка карбида титана, последующее травление в концентрированной азотной кислоте в течение 3-7 суток, отмывание от кислоты и сушку при температуре 50-100°С. Технический результат изобретения - снижение трудоемкости способа, повышение его производственной и экологической безопасности, увеличение удельной площади поверхности формируемого микропористого покрытия, а также повышение однородности размера и равномерности распределения пор. 2 з.п. ф-лы, 4 пр., 4 ил.

Изобретение относится к получению микропористых структур на поверхности изделий из титана или его сплавов и может быть использовано при изготовлении носителей катализаторов и композитных материалов, находящих применение в различных областях, преимущественно в области медицинской техники при изготовлении поверхностно-пористых эндопротезов и имплантатов для травматологии, ортопедии, различных видов пластической хирургии, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий.

Известен способ формирования многоступенчатой структуры на поверхности титанового имплантата (CN 102912037, опубл. 2013.02.13), включающий полирование поверхности, обезжиривание и очистку путем погружения в раствор, содержащий азотную кислоту, фтористоводородную кислоту и перекись водорода, пескоструйную обработку подготовленной поверхности, очистку и химическое травление обработанной поверхности, промывание и термическую обработку с последующим охлаждением. Необходимость использования технологически сложной, затратной и требующей принятия специальных мер защиты для предотвращения нежелательных воздействий на организм человека и окружающую среду операции пескоструйной обработки и целого ряда подготовительных операций усложняет и удорожает известный способ.

Известен способ обработки титанового имплантата (TW 201420137, опубл. 2014.06.01) путем травления в кислотном растворе с последующим анодным оксидированием и углублением пор, образовавшихся при травлении. При анодном оксидировании на поверхности формируется пористый оксидный слой. Однако состав и адгезионная прочность сцепления с металлической основой указанного слоя сильно зависят от режима оксидирования и состава электролита и для обеспечения эффективной эксплуатации требуют специального подбора.

Известен описанный в заявке US 2011244266, опубл. 2011.10.06 способ обработки поверхности титана либо его сплава, который включает формирование на поверхности титанового материала слоя, содержащего карбид и/или нитрид титана, с применением отжига в атмосфере инертного газа (светлый отжиг) и последующее электрохимическое травление в водном растворе, содержащем кислоту, преимущественно азотную с концентрацией 1-10 масс. %, либо в нейтральном растворе, содержащем окисляющий реагент, с частичным растворением слоя, содержащего карбид и/или нитрид титана, и одновременным формированием внешнего слоя из оксида титана и образованием многослойной структуры толщиной не более 100 нм с внутренним слоем из карбида и/или нитрида титана, обладающей твердостью от 5 до 20 ГПа, высокой коррозионной стойкостью и высокими антифрикционными свойствами. Обработка известным способом не обеспечивает получения материала с поверхностным слоем, обладающим достаточной толщиной и наличием пор с размерами и структурой, необходимыми для эффективной биологической фиксации костной ткани, пригодного для имплантации, а также в качестве основы для нанесения веществ, обладающих биологически активными, каталитическими и другими свойствами.

Известен способ получения пористого титана с высокой степенью однородности размеров пор (RU 2407817, опубл. 2010.12.27), включающий уплотнение исходного порошка заданной фракции в разрушаемой кварцевой трубке в специальном вибрационном устройстве и спекание в вакууме при температуре 630-680°С в течение 2 часов с последующим медленным охлаждением до 100°С в течение 1,5 часов. При этом достигается весьма узкий диапазон размеров пор 2-8 мкм. Однако необходимость предварительного получения порошка карбонильным способом, использование технологически сложных энергоемких операций, глубокого вакуума и сложное аппаратурное оформление в значительной мере препятствуют широкому использованию известного способа.

Наиболее близким к заявляемому является способ получения материала для костных штифтов в ортопедии и зубных имплантатов в стоматологии путем формирования на поверхности титана пористой наноструктуры с высокой биологической активностью (CN 104027839, опубл. 2014.09.10), включающий пескоструйную обработку поверхности для формирования микрорельефа, последующее кислотное травление для углубления образовавшихся кратеров, пропитку в консервирующем растворе и ультрафиолетовое облучение.

Известный способ не обеспечивает возможности формирования пористого слоя заданной толщины с однородными по размеру и равномерно распределенными порами. Кроме того, он является трудоемким и многостадийным, включает технологически сложную операцию пескоструйной обработки, которая является ресурсо- и энергозатратной и запрещена в ряде стран, в том числе в РФ, как представляющая опасность для здоровья людей и экологической обстановки.

Задачей изобретения является создание безопасного для здоровья людей и окружающей среды способа получения на имплантатах из титана и его сплавов поверхностного слоя заданной толщины с пористой микроструктурой, обеспечивающей высокую удельную площадь поверхности, и равномерным распределением пор заданного размера.

Технический результат способа заключается в снижении его трудоемкости, повышении производственной и экологической безопасности, а также в увеличении удельной площади поверхности формируемого микропористого покрытия и повышении однородности размера и равномерности распределения пор.

Указанный технический результат достигают способом получения пористого покрытия на титане и его сплавах, включающим формирование микрорельефа на поверхности титана с ее последующим кислотным травлением, в котором, в отличие от известного, формирование микрорельефа осуществляют в среде аргона с помощью перемещаемого по поверхности изделия лазерного луча с одновременной подачей в облучаемую зону порошка карбида титана, а травление проводят путем погружения в азотную кислоту в течение 3-7 суток.

В преимущественном варианте осуществления способа при лазерной обработке используют мощность излучения 400-500 Вт.

Также в преимущественном варианте осуществления способа лазерный луч перемещают по поверхности имплантата со скоростью 10-20 мм/с.

Способ осуществляют следующим образом.

После стандартной подготовки поверхность изделия из титана или титанового сплава обрабатывают лазерным лучом, поступательно перемещая его со скоростью 10-20 мм/с в атмосфере аргона с непрерывной обдувкой аргоном обрабатываемой поверхности и одновременной подачей порошка карбида титана определенной фракции в облучаемую зону, которая является зоной плавления титановой подложки. Титановая подложка заключена в специальный корпус, удерживающий аргон. Режим обработки (мощность лазерного облучения, скорость перемещения лазерного луча, т.е. время лазерной обработки локального участка поверхности) выбирают таким образом, чтобы обеспечить плавление только поверхностного слоя титановой матрицы заданной толщины (температура плавления титана 1660°С) без плавления карбидного порошка, у которого температура плавления значительно выше (3100°С).

В результате на изделии из титана формируется композитный поверхностный слой, толщину которого можно регулировать в определенных пределах (от 30 до 600 мкм), изменяя мощность лазерного излучения и скорость перемещения лазерного луча.

В оптимальном варианте осуществления способа используют лазерное излучение мощностью 400-500 Вт при скорости перемещения луча 10-20 мм/с.

Увеличение мощности лазерного излучения и/или снижение скорости перемещения луча при прочих неизменных параметрах (давление защитного газа, количество и состав подаваемого порошка, фокусировка луча) приводит к увеличению глубины проплавленного объема титановой подложки, позволяя таким образом регулировать толщину формируемого покрытия.

Сформированный слой имеет композитную микроструктуру, образованную зернами карбида титана, равномерно распределенными в титановой матрице. Кроме того, лазерная обработка поверхности позволяет создать специфический, регулярно «гребенчатый», рельеф за счет многократных параллельных прохождений лазерного луча при частичном наложении упомянутых траекторий.

Затем проводят травление обработанной поверхности концентрированной азотной кислотой путем погружения на 3-7 суток, в результате чего зерна карбида титана полностью растворяются, а титан благодаря способности пассивироваться остается в неизменном виде. Таким образом, на титановом изделии формируется поверхностный слой пористого титана с микроструктурой, образованной сложным рельефом поверхности и системой пор. Размеры пор регулируют путем использования соответствующей фракции порошка карбида титана, от размера частиц которого зависит размер «кратера», образующегося на месте каждой вытравленной частицы. Преимущественно используют порошок карбида титана, обеспечивающий размер пор 1-5 мкм.

Изделие отмывают от кислоты и сушат на воздухе при повышенной температуре 50-100°С.

На приведенных снимках, сделанных с помощью сканирующего электронного микроскопа, показана при различном увеличении микроструктура поверхности титановых образцов, обработанных при различной мощности лазерного излучения и различной скорости перемещения лазерного луча.

На фиг. 1 показана поверхность титанового образца, обработанная лазерным излучением мощностью 400 Вт при скорости перемещения лазерного луча по поверхности 20 мм/с, на фиг. 2 - поверхность после обработки излучением той же мощности при скорости перемещения лазерного луча 10 мм/с, на фиг. 3 - поверхность после обработки излучением мощностью 500 Вт при скорости перемещения лазерного луча 20 мм/с, на фиг. 4 - поверхность облучения той же мощности при скорости перемещения лазерного луча 10 мм/с.

Снимки на фиг. 1, 2 и 4 сделаны при трех различных увеличениях: а) ×40, б) 1500, в) ×4000; снимок на фиг.3 сделан при увеличениях а) ×40, б) ×400, в) ×4000.

Таким образом, предлагаемый способ обеспечивает получение пористого поверхностного слоя на титане и его сплавах с заданной толщиной, обладающего высокой удельной площадью поверхности и равномерно распределенными порами заданного размера.

Примеры конкретного осуществления способа

Для обработки поверхности образцов использован иттербиевый волоконный лазер ЛС-1-К (максимальная мощность 1 кВт) с ЧПУ, позволяющий задавать различную мощность лазерного излучения и скорость перемещения луча, а также регулировать давление защитного газа (аргона) и количество подаваемого порошка. Обработку по созданию рельефа осуществляли на титановых образцах, горизонтально закрепленных в специальной емкости для удержания аргона.

Снимки поверхности после обработки были выполнены с помощью сканирующего электронного микроскопа высокого разрешения Hitachi S5500 с приставкой для энергодисперсионного анализа ThermoScientific.

Порошок карбида титана - размер частиц 1-5 мкм.

Толщину покрытия и размеры пор определяли по СЭМ-изображениям при помощи программного пакета CARL ZEISSS mart TIFFV1.0.0.9.

Пример 1

Пластины размером40×20×2 мм из сплава титана ВТ1-0 (%, Ti 98,6-99,7, Fe до 0,18, С до 0,07, Si до 0,1) обрабатывали в атмосфере аргона с продувкой при мощности лазерного излучения 400 Вт, перемещая луч со скоростью 20 мм/с. Травление осуществляли путем погружения в концентрированную (36,5%) азотную кислоту в течение 3 суток. Образцы отмывали от кислоты в дистиллированной воде и сушили на воздухе при 50°С.

Толщина полученного пористого покрытия 200-300 мкм. Заметный перепад толщины объясняется сложным «гребенчатым» рельефом поверхности. Размер пор в соответствии с размером частиц используемого порошка карбида титана 1-5 мкм.

Пример 2

Пластины размером 40×20×2 мм из титанового сплава ПТ-3В (%, Ti 91,4-95,0; Al 3,3-5,0; V 1,2-2,5; F до 0,2; Zr до 0,3;Si до 0,12; С до 0,1) обрабатывали в условиях примера 1, перемещая лазерный луч со скоростью 10 мм/с. Травление, промывание и сушку осуществляли аналогично примеру 1.

Толщина полученного пористого покрытия - 250-390 мкм. Размер пор 1-5 мкм.

Пример 3

Пластины из сплава титана ВТ 1-0 обрабатывали в атмосфере аргона при мощности лазерного излучения 500 Вт, перемещая луч со скоростью 20 мм/с. Травление в концентрированной азотной кислоте осуществляли в течение 7 суток. После промывания пластины сушили на воздухе при 100°С.

Толщина полученного пористого покрытия 290-375 мкм. Размер пор 1-5 мкм.

Пример 4

Пластины из титанового сплава ПТ-3В (%, Ti 91,4-95,0; Al 3,3-5,0; V 1,2-2,5; F до 0,2; Zr до 0,3; Si до 0,12; С до 0,1) обрабатывали по примеру 3, перемещая луч со скоростью 10 мм/с. Травление, промывание и сушку проводили по примеру 3.

Толщина полученного покрытия 350-500 мкм. Размер пор 1-5 мкм.


Способ получения покрытия на имплантатах из титана и его сплавов
Источник поступления информации: Роспатент

Showing 31-40 of 134 items.
10.09.2015
№216.013.78ab

Аддукты додекагидро-клозо-додекабората хитозана с солями-окислителями переходных металлов и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей переходных металлов, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами переходных металлов, в частности Cu(II), или Со(II), или Ni(II), или Zn(II), или Мn(II), и...
Тип: Изобретение
Номер охранного документа: 0002562480
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8d49

Способ получения защитных супергидрофобных покрытий на сплавах алюминия

Изобретение относится к способам получения супергидрофобных покрытий с высокими защитными свойствами, обеспечивающими эффективное снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия в атмосфере с высокой влажностью и в агрессивной среде. Способ...
Тип: Изобретение
Номер охранного документа: 0002567776
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9309

Способ получения защитных полимерсодержащих покрытий на металлах и сплавах

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в...
Тип: Изобретение
Номер охранного документа: 0002569259
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97c7

Способ оценки стойкости к образованию горячих трещин тонколистовых жаропрочных материалов

Изобретение относится к сварочному производству и может быть использовано для определения стойкости жаропрочных материалов к образованию горячих трещин при выборе сплава для сварных конструкций из тонколистовых материалов с толщиной менее 1,5 мм. Изготавливают образцы из исследуемых материалов...
Тип: Изобретение
Номер охранного документа: 0002570475
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9a32

Способ получения каталитически активных композитных слоев на сплаве алюминия

Изобретение относится к способам изготовления оксидных композитных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях конверсии СО в СO, при очистке технологических и выхлопных газов, в частности, в двигателях внутреннего сгорания. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002571099
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f4a

Способ переработки вольфрамовых концентратов

Изобретение относится к пирогидрометаллургии вольфрама, в частности к извлечению вольфрама из шеелитовых CaWO и вольфрамитовых (Fe, Mn) WOконцентратов в виде соединений, являющихся товарной продукцией. Способ предусматривает обработку вольфрамового концентрата бифторидом аммония при нагревании...
Тип: Изобретение
Номер охранного документа: 0002572415
Дата охранного документа: 10.01.2016
10.03.2016
№216.014.bf29

Способ получения прекурсора на основе гидратированного диоксида титана с наноразмерными металлическими частицами палладия для каталитически активного покрытия на инертном носителе

Изобретение относится к получению прекурсора на основе гидратированного диоксида титана для каталитически активного покрытия на инертном носителе, содержащего наноразмерные металлические частицы палладия. К коллоидному раствору силоксан-акрилатной эмульсии при перемешивании добавляют раствор...
Тип: Изобретение
Номер охранного документа: 0002576568
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c540

Способ получения нанодисперсных танталатов редкоземельных элементов

Изобретение относится к синтезу гептатанталатов европия EuTaO или тербия TbTaO, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002574773
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8a3

Способ получения композиционного магнитного материала на основе оксидов кремния и железа

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной...
Тип: Изобретение
Номер охранного документа: 0002575458
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e3e

Способ изготовления композиционных силовых панелей

Способ предназначен для изготовления композиционных силовых панелей. Способ включает формирование системы ребер силового набора каркаса намоткой гибкого волокнистого материала, пропитанного связующим, на матрицу, размещенную на оправке, последующее формирование обшивочного слоя панели намоткой...
Тип: Изобретение
Номер охранного документа: 0002579779
Дата охранного документа: 10.04.2016
Showing 31-40 of 78 items.
10.09.2015
№216.013.78ab

Аддукты додекагидро-клозо-додекабората хитозана с солями-окислителями переходных металлов и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей переходных металлов, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами переходных металлов, в частности Cu(II), или Со(II), или Ni(II), или Zn(II), или Мn(II), и...
Тип: Изобретение
Номер охранного документа: 0002562480
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8d49

Способ получения защитных супергидрофобных покрытий на сплавах алюминия

Изобретение относится к способам получения супергидрофобных покрытий с высокими защитными свойствами, обеспечивающими эффективное снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия в атмосфере с высокой влажностью и в агрессивной среде. Способ...
Тип: Изобретение
Номер охранного документа: 0002567776
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9309

Способ получения защитных полимерсодержащих покрытий на металлах и сплавах

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в...
Тип: Изобретение
Номер охранного документа: 0002569259
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97c7

Способ оценки стойкости к образованию горячих трещин тонколистовых жаропрочных материалов

Изобретение относится к сварочному производству и может быть использовано для определения стойкости жаропрочных материалов к образованию горячих трещин при выборе сплава для сварных конструкций из тонколистовых материалов с толщиной менее 1,5 мм. Изготавливают образцы из исследуемых материалов...
Тип: Изобретение
Номер охранного документа: 0002570475
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9a32

Способ получения каталитически активных композитных слоев на сплаве алюминия

Изобретение относится к способам изготовления оксидных композитных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях конверсии СО в СO, при очистке технологических и выхлопных газов, в частности, в двигателях внутреннего сгорания. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002571099
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f4a

Способ переработки вольфрамовых концентратов

Изобретение относится к пирогидрометаллургии вольфрама, в частности к извлечению вольфрама из шеелитовых CaWO и вольфрамитовых (Fe, Mn) WOконцентратов в виде соединений, являющихся товарной продукцией. Способ предусматривает обработку вольфрамового концентрата бифторидом аммония при нагревании...
Тип: Изобретение
Номер охранного документа: 0002572415
Дата охранного документа: 10.01.2016
10.03.2016
№216.014.bf29

Способ получения прекурсора на основе гидратированного диоксида титана с наноразмерными металлическими частицами палладия для каталитически активного покрытия на инертном носителе

Изобретение относится к получению прекурсора на основе гидратированного диоксида титана для каталитически активного покрытия на инертном носителе, содержащего наноразмерные металлические частицы палладия. К коллоидному раствору силоксан-акрилатной эмульсии при перемешивании добавляют раствор...
Тип: Изобретение
Номер охранного документа: 0002576568
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c540

Способ получения нанодисперсных танталатов редкоземельных элементов

Изобретение относится к синтезу гептатанталатов европия EuTaO или тербия TbTaO, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002574773
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8a3

Способ получения композиционного магнитного материала на основе оксидов кремния и железа

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной...
Тип: Изобретение
Номер охранного документа: 0002575458
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e3e

Способ изготовления композиционных силовых панелей

Способ предназначен для изготовления композиционных силовых панелей. Способ включает формирование системы ребер силового набора каркаса намоткой гибкого волокнистого материала, пропитанного связующим, на матрицу, размещенную на оправке, последующее формирование обшивочного слоя панели намоткой...
Тип: Изобретение
Номер охранного документа: 0002579779
Дата охранного документа: 10.04.2016
+ добавить свой РИД