×
25.08.2017
217.015.cb41

Результат интеллектуальной деятельности: Способ лазерного разделения изотопов фтора

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу разделения изотопов фтора. Способ включает облучение фтористого водорода резонансным инфракрасным излучением, с длиной волны 2,419 мкм, последующее воздействие лазерным излучением оптического или инфракрасного диапазона и интенсивностью, превышающей 3×10 Вт/см, при этом время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния фтористого водорода, и экстракцию образованных положительных ионов. Изобретение обеспечивает повышение эффективности выделения изотопов фтора. 1 ил.

Изобретение относится к молекулярной физике, а именно к области разделения изотопов фтора, и может быть использовано для получения изотопически обогащенного фтора.

Методы лазерного разделения изотопов являются эффективными методами получения химических элементов определенного изотопического состава [Летохов B.C., Мур С.Б. Квантовая электроника т.3, вып.3, 4, 1976 г.], что связано с возможностью значительного изотопического обогащения за один цикл. Лазерные методы разделения изотопов основаны на селективном возбуждении лазерным излучением электронных или колебательных уровней атомов или молекул определенного изотопического состава. Метод избирательной стимуляции одного молекулярного компонента в смеси [WO 9712373; B01D 53/00; B01D 59/34; G01N21/63; от 1997-04-03] предполагает переход обоих компонентов в первое возбужденное состояние при первом импульсе лазерного излучения и выборочный переход одного компонента во второе возбужденное состояние при втором импульсе лазерного излучения длительностью 10-15 с. Время между двумя импульсами должно быть равно целому числу полупериодов резонансного периода выбранного компонента.

Способ разделения и обогащения стабильных изотопов в газовой фазе с использованием принципов спектрометрии ионной подвижности при атмосферном давлении (760 мм рт. ст.) и при комнатной температуре (298 К), согласно патенту US 6831271 [B01D 59/46; B01D 59/48; G01N 27/62; G01N 27/64; H01J 49/04; H01J 49/40; H01J 49/42 2004-12-14], может быть использован для разделения и обогащения изотопов фтора. Электроспрей-ионизация используется для создания газовой смеси ионов, и ионные пучки на выходе из сильного поля с асимметричной формы волны спектрометра подвижности ионов попадают в масс-спектрометр для идентификации изотопов.

Известен способ [патент RU 2530062 от 12.08.2014] лазерного разделения изотопов хлора, согласно которому облучение исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (НСl), длина волны резонансного инфракрасного излучения 3,782 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния НСl.

Известен способ [патент RU 2531178 от 21.08.2014] лазерного разделения изотопов водорода облучением исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (HCl), длина волны резонансного инфракрасного излучения 4,662 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния DCl.

Известен способ разделения различных изотопов по патенту GB 1529391 (B01D 59/34; G02B 27/00; H01S 3/08 1978-10-18), согласно которому пар, содержащий смесь изотопов, облучают для возбуждения изотопов одного типа до повышенного колебательного состояние и перехода возбужденных изотопов на более высокий электронный уровень, на котором электронные заряды разделяются. Пар обеспечивает сильно насыщенную атмосферу, которая не является растворителем для изотопов.

Известен способ [патент GB 1473330, МПК B01D 59/34; B01J 19/12; G02B 27/00; H01S 3/00; H01S 3/094; H01S 3/22; от 23.10.1973] лазерного разделения изотопов, взятый за прототип, основанный на изотопически-селективном возбуждении молекул газовой фазы в процессе инфракрасного поглощения фотонов, который включает в себя следующие стадии: облучение молекул ИК-излучением с помощью ИК-лазера при интенсивности, по крайней мере, 104 Вт/см2, от 10-10 до 5×10-5 с, причем молекулы, содержащие желаемый изотоп или изотопы, преимущественно возбуждены резонансным излучением и поглощают больше, чем один квант ИК-излучения; преобразование возбужденных молекул в процессе облучения лазером оптического или УФ диапазона для осуществления фотодиссоциации, в котором возбужденные молекулы могут быть отделены от невозбужденных.

Селективное колебательное возбуждение считается наиболее трудным методом [Летохов B.C., Мур С.Б., цит. соч., стр. 253]. Это связано с тем, что, несмотря на простоту селективного колебательного возбуждения, затруднено дальнейшее выделение колебательно возбужденных молекул.

Задачей изобретения является устранение недостатков, присущих прототипу.

Технический результат заключается в повышении эффективности выделения изотопов фтора лазерным разделением.

Технический результат достигается тем, что в способе лазерного разделения изотопов фтора, включающем облучение исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, согласно изобретению в качестве исходного газа используется фтористый водород (HF), длина волны резонансного инфракрасного излучения 2,419 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния HF.

Предлагается использовать эффект анти-стоксова усиления туннельной ионизации молекул. Этот эффект, предложенный в работе [Kornev A.S., Zon B.A. Phys. Rev. A 86, 043401 (2012)] и рассмотренный в работе [Kornev A.S., Zon В.А. Laser Phys. 24, 115302 (2014)] применительно к молекуле HF, состоит в значительном увеличении вероятности туннельного эффекта в лазерном поле для колебательно-возбужденных молекул. При туннельном эффекте в лазерном поле возможен неупругий процесс, когда часть энергии передается туннелирующему электрону от иных степеней свободы в атомах [Kornev A.S. et al., Phys. Rev. A 68, 065403 (2003); 69, 065401 (2004); 79, 063405 (2009); 84, 053424 (2011); 85, 035402 (2012)] или молекулах [Kornev A.S., ZonB.A., Phys. Rev. A 86, 043401 (2012); Kornev A.S., Zon B.A. Laser Phys. 24, 115302 (2014)]. Для молекул такими иными степенями свободы могут являться колебательные степени свободы ядер атомов, образующих молекулу. Предварительное возбуждение ядерных колебаний позволяет в результате туннельного эффекта образовывать ионы с преимущественным содержанием определенных изотопов, поскольку нейтральные молекулы разного изотопического состава имеют разные частоты колебательных переходов.

На Фиг. 1 показана зависимость отношения вероятности образования ионов HF+ из возбужденного колебательного состояния (υi=1) к вероятности образования ионов HF+ из основного колебательного состояния (υi=0), в зависимости от интенсивности лазерного излучения I.

В природе встречается единственный стабильный изотоп F19. Долгоживущий β+-радиоактивный изотоп F18 может быть получен из F19 бомбардировкой нейтронами либо дейтронами. В результате получается смесь, состоящая из F19 и F18. Достаточно длинный период полураспада F18 (109,771 мин) позволяет получить из этой смеси молекулы HF. Газообразный фтористый водород облучается инфракрасным излучением с длиной волны 2,419 мкм для заселения первого колебательного состояния молекулы HF18. После этого на объем газа, подвергшийся облучению с указанной выше длиной волны, воздействуют лазерным излучением оптического или ИК-диапазона, причем интенсивность излучения I должна быть достаточно высокой, чтобы ионизация проходила вследствие туннельного эффекта, то есть удовлетворять неравенству

Здесь Е0 - потенциал ионизации молекулы, λ - длина волны ионизирующего излучения, а=0,529 Å=0,529×10-10 м - атомная единица длины (боровский радиус), Еа=27,2 эВ=4,36×10-18 Дж - атомная единица энергии, Iа=3,51×1016 Вт см-2=3,51×1020 Вт м-2 - атомная единица интенсивности, ае=7,23×10-3 - постоянная тонкой структуры.

Для молекулы фтористого водорода HF эта интенсивность должна превышать 5×1013 Вт/см2 при длине волны ионизирующего излучения 1,3 мкм или 2×1013 Вт/см2 при длине волны ионизирующего излучения 2,0 мкм. Интервал времени между облучением резонансным инфракрасным излучением и мощным лазерным излучением не должен превышать времени жизни колебательного состояния, зависящего от давления и температуры газа. Вследствие туннельного эффекта преимущественно ионизуются колебательно-возбужденные молекулы, то есть молекулы HF18. Далее, путем экстракции положительных ионов, получают фтористый водород с повышенным по сравнению с исходным содержанием изотопа HF18.

Из зависимости на Фиг. 1 видно, что в оптимальных условиях, при интенсивности лазерного излучения ~1013 Вт/см2, вероятность образования HF18+ превышает вероятность образования ионов HF19+ более чем в 2 раза.

Способ лазерного разделения изотопов фтора, включающий облучение исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется фтористый водород (HF), длина волны резонансного инфракрасного излучения 2,419 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 3×10 Вт/см, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния HF.
Способ лазерного разделения изотопов фтора
Источник поступления информации: Роспатент

Showing 21-30 of 59 items.
10.01.2015
№216.013.1ab2

Способ получения полупроводниковых коллоидных квантовых точек сульфида серебра

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов. Сначала раздельно готовят растворы сульфида натрия и азотнокислого серебра. Для этого по 0,01-0,5 г...
Тип: Изобретение
Номер охранного документа: 0002538262
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1af4

Способ управления доступом к беспроводному каналу

Изобретение относится к сетям радиосвязи. Технический результат заключается в уменьшении времени передачи пользовательской информации в беспроводной сети. Способ управления доступом к беспроводному каналу включает: обеспечение уровнем MAC распределенного режима DCF и централизованного режима...
Тип: Изобретение
Номер охранного документа: 0002538328
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b4b

Способ прецизионного легирования тонких пленок на поверхности арсенида галлия

Изобретение относится к области синтеза тонких пленок на поверхности полупроводников AB и может быть применено в технологии создания твердотельных элементов газовых сенсоров. Технический результат изобретения заключается в создании на поверхности арсенида галлия тонкой оксидной пленки,...
Тип: Изобретение
Номер охранного документа: 0002538415
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ccf

Мембранопротекторное средство

Изобретение относится к фармацевтической промышленности, а именно к мембранопротекторному средству. Применение 5% водного раствора натриевых и калиевых солей гуминовых кислот, полученных из бурого угля леонардита, в дозе 10,0 мг/кг в качестве мембранопротекторного средства. Применение...
Тип: Изобретение
Номер охранного документа: 0002538803
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.22e4

Способ получения полупроводниковых коллоидных квантовых точек сульфида кадмия

Изобретение может быть использовано при изготовлении люминесцентных материалов для лазеров, светодиодов, солнечных батарей и биометок. В реактор загружают 2,5-5% раствор желатина в дистиллированной воде при температуре 20-30°C, нагревают его до 40-90°C и заливают 96%-этанол в количестве 2,5% от...
Тип: Изобретение
Номер охранного документа: 0002540385
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.24c6

Способ получения n-ацилпролинов, содержащих остатки жирных кислот

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения N-ацилпролинов, которые проявляют свойства пенообразователей и могут найти применение в косметических и моющих композициях. Способ получения N-ацилпролинов, содержащих остатки...
Тип: Изобретение
Номер охранного документа: 0002540867
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.24c7

Способ получения тетрагидрофурфуриламидов жирных кислот растительных масел

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения новых гетероциклических амидов, проявляющих свойства пеностабилизаторов, которые могут найти применение как составляющие моющих композиций. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002540868
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.40d9

Способ синтеза люминофора на основе ортованадата иттрия

Изобретение может быть использовано для изготовления люминесцентных источников света, люминесцентных панелей, экранов и индикаторов, оптических квантовых генераторов. Оксид ванадия (V) растворяют в 10% растворе NaOH. К полученному раствору приливают в стехиометрическом количестве раствор...
Тип: Изобретение
Номер охранного документа: 0002548089
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42d1

Органический светоизлучающий диод

Использование: для создания дисплеев, включая дисплеи объемного изображения, и в оптических приемно-передающих устройствах. Сущность изобретения заключается в том, что органический светоизлучающий диод включает несущую основу, выполненную в виде прозрачной подложки, внутри которой герметично...
Тип: Изобретение
Номер охранного документа: 0002548603
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4619

Способ профилактики повреждения биологических мембран

Изобретение относится к области медицины и может быть использовано для профилактики повреждения химическими гемолитическими агентами биологических мембран эритроцитов. Для этого в среду с клетками эритроцитов вводят водный раствор натриевых и калиевых солей гуминовых кислот, полученных из...
Тип: Изобретение
Номер охранного документа: 0002549449
Дата охранного документа: 27.04.2015
Showing 21-30 of 63 items.
20.12.2014
№216.013.1144

Способ формирования тонкой фольги твердого раствора pd-cu с кристаллической решеткой типа csci

Изобретение относится к технологии создания селективных газовых мембран, функционирующих за счет избирательной диффузии атомов газа (водорода) сквозь тонкую металлическую пленку (из палладия или сплавов на его основе), которые используются в устройствах глубокой очистки водорода от...
Тип: Изобретение
Номер охранного документа: 0002535843
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.15c9

Однослойный антикоррозионный лакокрасочный материал на основе эпоксидного связующего с углеродными нанотрубками

Изобретение относится к композиционным лакокрасочным материалам для антикоррозионной защиты металлоконструкций в агрессивных средах. Антикоррозионный лакокрасочный материал включает многослойные углеродные нанотрубки от 0,2 до 2 мас.%, эпоксидное связующее от 38,1 до 54,9 мас.%, отвердитель...
Тип: Изобретение
Номер охранного документа: 0002537001
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1ab2

Способ получения полупроводниковых коллоидных квантовых точек сульфида серебра

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов. Сначала раздельно готовят растворы сульфида натрия и азотнокислого серебра. Для этого по 0,01-0,5 г...
Тип: Изобретение
Номер охранного документа: 0002538262
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1af4

Способ управления доступом к беспроводному каналу

Изобретение относится к сетям радиосвязи. Технический результат заключается в уменьшении времени передачи пользовательской информации в беспроводной сети. Способ управления доступом к беспроводному каналу включает: обеспечение уровнем MAC распределенного режима DCF и централизованного режима...
Тип: Изобретение
Номер охранного документа: 0002538328
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b4b

Способ прецизионного легирования тонких пленок на поверхности арсенида галлия

Изобретение относится к области синтеза тонких пленок на поверхности полупроводников AB и может быть применено в технологии создания твердотельных элементов газовых сенсоров. Технический результат изобретения заключается в создании на поверхности арсенида галлия тонкой оксидной пленки,...
Тип: Изобретение
Номер охранного документа: 0002538415
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ccf

Мембранопротекторное средство

Изобретение относится к фармацевтической промышленности, а именно к мембранопротекторному средству. Применение 5% водного раствора натриевых и калиевых солей гуминовых кислот, полученных из бурого угля леонардита, в дозе 10,0 мг/кг в качестве мембранопротекторного средства. Применение...
Тип: Изобретение
Номер охранного документа: 0002538803
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.22e4

Способ получения полупроводниковых коллоидных квантовых точек сульфида кадмия

Изобретение может быть использовано при изготовлении люминесцентных материалов для лазеров, светодиодов, солнечных батарей и биометок. В реактор загружают 2,5-5% раствор желатина в дистиллированной воде при температуре 20-30°C, нагревают его до 40-90°C и заливают 96%-этанол в количестве 2,5% от...
Тип: Изобретение
Номер охранного документа: 0002540385
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.24c6

Способ получения n-ацилпролинов, содержащих остатки жирных кислот

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения N-ацилпролинов, которые проявляют свойства пенообразователей и могут найти применение в косметических и моющих композициях. Способ получения N-ацилпролинов, содержащих остатки...
Тип: Изобретение
Номер охранного документа: 0002540867
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.24c7

Способ получения тетрагидрофурфуриламидов жирных кислот растительных масел

Изобретение относится к области органической химии и химии поверхностно-активных веществ, а именно к способу получения новых гетероциклических амидов, проявляющих свойства пеностабилизаторов, которые могут найти применение как составляющие моющих композиций. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002540868
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.40d9

Способ синтеза люминофора на основе ортованадата иттрия

Изобретение может быть использовано для изготовления люминесцентных источников света, люминесцентных панелей, экранов и индикаторов, оптических квантовых генераторов. Оксид ванадия (V) растворяют в 10% растворе NaOH. К полученному раствору приливают в стехиометрическом количестве раствор...
Тип: Изобретение
Номер охранного документа: 0002548089
Дата охранного документа: 10.04.2015
+ добавить свой РИД