×
25.08.2017
217.015.c333

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИОБИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе ниобия, которые могут быть использованы для изготовления рабочих лопаток ГТД. Способ получения жаропрочного сплава на основе Nb-Si включает загрузку шихты в тигель, выплавку в вакуумной индукционной печи в вакууме или в среде инертного газа, разливку расплава в форму. В тигель загружают шихту, содержащую кремний, алюминий, титан, ниобий и по меньшей мере один элемент, выбранный из хрома, молибдена и вольфрама, выплавку проводят при температуре 1800-2100°С в инертном керамическом тигле, рабочий слой которого изготовлен по меньшей мере из одного из оксидов иттрия, гафния, скандия или циркония, по крайней мере за 10-15 минут перед разливкой в расплав вводят по меньшей мере один активный элемент, выбранный из циркония, гафния и иттрия, а разливку полученного расплава осуществляют в предварительно нагретую инертную форму. Получают слитки и отливки с равноосной структурой и однородным химическим составом по всему объему слитка из жаропрочных сплавов на основе ниобия (Nb-Si). 2 з.п. ф-лы, 8 табл., 4 пр.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе Nb-Si, которые могут быть использованы для изготовления рабочих лопаток ГТД (газотурбинного двигателя).

Современные никелевые жаропрочные сплавы для литья лопаток газотурбинных двигателей (ГТД) достигли предела рабочих температур 1100-1150°С, что составляет 80-85% от температуры их плавления. С каждым новым поколением рабочая температура никелевых жаропрочных сплавов примерно на 30°С превосходила предыдущее поколение, однако, при этом возрастала плотность сплавов и стоимость.

Создание жаропрочных естественно-композиционных конструкционных материалов на основе ниобиевой матрицы с интерметаллидным упрочнением (композитов на основе Nb-Si) позволит поднять рабочие температуры лопаток ГТД сразу на 200°С по сравнению с рабочими температурами лопаток из современных монокристаллических никелевых сплавов, что, безусловно, является революционным скачком.

Преимуществами сплавов на основе Nb-Si по сравнению с никелевыми жаропрочными сплавами (НЖС) является низкая плотность (на уровне 7,5 г/см3) и высокие рабочие температуры, что позволяет повысить мощность, экономичность и экологичность ГТД. Однако высокая рабочая температура этих сплавов связана с их высокой температурой плавления, что является серьезной проблемой при получении данных сплавов. При выплавке НЖС в вакуумной индукционной печи (ВИП) максимальная температура расплава не превышает 1700°С, это связано с материалом керамического тигля, который не работоспособен при более высоких температурах, кроме того, данный материал не подходит для выплавки сплавов на основе Nb-Si, поскольку они содержат в большом количестве активные компоненты. Для выплавки данных сплавов необходимо подобрать материал тигля, который имел бы рабочую температуру до 2000°С и был бы инертен по отношению к расплаву.

Учитывая высокие температуры плавления и высокую химическую активность расплавов с керамическими материалами, технология получения сплавов на основе Nb-Si сложнее используемой в современном промышленном производстве деталей горячего тракта ГТД.

Из уровня техники известен способ изготовления сплава на основе ниобия (Nb-Si), приготовленного из чистых компонентов в инертной атмосфере аргона или гелия в дуговой печи с нерасходуемым вольфрамовым электродом (патент US 3046109, МПК С22С 27/00, С22С 27/02, опубл. 24.07.1962). Компоненты сплава могут быть добавлены одновременно или последовательно. После затвердевания сплава слиток дробится на мелкие куски и повторно переплавляется в дуговой печи. После этого слиток подвергают обработке давлением. Недостатком известного способа является то, что двойной переплав в дуговой печи не может обеспечить равномерность распределения легирующих элементов по всему объему слитка, которая может быть достигнута за счет индукционного перемешивания при плавке в вакуумной индукционной печи.

Из уровня техники известен способ дуговой плавки, применяемый для получения жаропрочного композиционного материала на основе ниобия (Nb-Si) (патент WO 1989010982, МПК С22С 1/02, С22С 1/05, С22С 1/05; опубл. 16.11.1989). Способ включает формирование интерметаллидного композиционного материала из порошков легирующих элементов в чистом виде. Этот интерметаллидный материал смешивается с дополнительным количеством металла-основы и расплавляется в дуговой печи. Техническим результатом является итоговая металлическая матрица, которая может состоять из металла, металлического сплава, или интерметаллида, в которой располагаются частицы второй фазы, которые могут включить керамические материалы, такие как бориды, карбиды, нитриды, силициды, оксиды или сульфиды. Недостатком указанного способа является необходимость получения порошков компонентов сплава. Кроме того, компоненты в порошковом виде обладают высокой площадью поверхности, за счет чего могут иметь повышенные содержания примесей, в том числе кислорода.

Из уровня техники известен способ изготовления жаропрочного композиционного материала на основе ниобия (Nb-Si), включающий формирование смеси из порошков чистых компонентов - ниобия и кремния, прессование этой смеси для получения электрода, прикрепление полученного прессованного электрода к основе из ниобия, переплав электрода в условиях вакуумной дуговой плавки в слиток (патент US 7666243, МПК С22В 9/20, опубл. 23.02.2010). После вакуумной дуговой плавки (ВДП) проводят термомеханическую обработку и отжиг полученного слитка при 950-1150°С, что считается завершающей операцией. Техническим результатом является получение полностью рекристаллизованного, обработанного давлением ниобиевого полуфабриката с мелким однородным зерном. Недостатками способа-прототипа являются многоэтапность, увеличивающая трудоемкость и продолжительность процесса, неприменимость данного способа к производству многокомпонентных сплавов, содержащих активные компоненты (такие, как алюминий, цирконий, титан, РЗМ и др.), необходимость применения специального оборудования для получения однородной смеси порошков чистых компонентов и прессования полученной смеси в электрод.

Поскольку перечисленные аналоги, являющиеся способами получения жаропрочных сплавов на основе ниобия (Nb-Si), не связаны с выплавкой в вакуумной индукционной печи, авторами предложенного способа в качестве аналогов были выделены также способы получения НЖС в вакуумной индукционной печи.

Из уровня техники известен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе в вакуумной индукционной печи (патент РФ 2221067 С1, МПК С22С 1/02, С22С 1/01; опубл. 10.01.2004). Способ включает расплавление шихтовых материалов в вакууме, обезуглероживающее рафинирование с введением окислителя в атмосфере инертного газа и последующим введением в вакууме редкоземельных металлов, хрома и активных легирующих элементов. Недостатком известного способа является то, что данный способ не подходит для выплавки жаропрочных сплавов на основе Nb (Nb-Si), поскольку расплавы жаропрочных сплавов на основе Nb (Nb-Si) являются более активными, чем расплавы НЖС, и материалы тигля, применяемые при выплавке НЖС, не обладают достаточными рабочими температурами и инертностью по отношению к расплаву.

Из уровня техники известен способ получения жаропрочного сплава на никелевой основе (патент CN 103074525 В С1, МПК С22С 19/05; опубл. 01.05.2013).Способ включает выплавку в вакуумной индукционной печи с введением всех компонентов (углерода, хрома, кобальта, ниобия, молибдена, алюминия, титана, тантала, бора, никеля) в завалку. Недостатком данного способа является отсутствие порядка введения активных легирующих элементов в расплав. Это увеличивает время взаимодействия активных компонентов с материалом тигля и приводит к отклонению от заданного состава. Авторами данного изобретения не уточняется, из какого именно материала изготовлен тигель вакуумной индукционной печи, однако, следует предположить, что это традиционные материалы для выплавки сплавов на никелевой основе: оксид алюминия и оксид магния, которые имеют низкие рабочие температуры и низкую инертность по отношению к активному расплаву жаропрочных сплавов на основе ниобия (Nb-Si).

Из уровня техники известен способ получения никелевого жаропрочного сплава с низкой плотностью (патент CN 101538664 А С1, МПК С22С 19/05, C22F 1/10, С22С 1/03; опубл. 23.09.2009). Способ включает выплавку сплава в вакуумной индукционной печи в тигле на основе оксида кальция (СаО)или оксида магния (MgO), при этом углерод, хром, кобальт, вольфрам, молибден, ниобий и никель вводятся в завалку, расплавление шихты проводят в вакууме, после расплавления шихты проводят рафинирование расплава при температуре 1550-1600°С, после чего перестают подавать напряжение на витки индуктора для образования корки на поверхности расплава и на образовавшуюся корку водят алюминий, лигатуру алюминий-иттрий и лигатуру никель-бор. Недостатком данного способа является неприменимость указанных материалов тигля для выплавки жаропрочных сплавов на основе Nb-Si в связи с низкой инертностью традиционных материалов тигля по отношению к активному расплаву и низкими рабочими температурами.

Наиболее близким аналогом предложенного способа является способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе (патент РФ 2278902 С1, МПК С22С 1/02, опубл. 27.06.2006), включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в среде инертного газа, раскисление, последующее введение легирующих элементов: хрома, титана, алюминия, затем кальция и лантана.

Недостатками способа-прототипа являются:

- неприменимость данного способа к производству жаропрочных сплавов на основе Nb (Nb-Si) в связи с низкой инертностью традиционных материалов тигля по отношению к активному расплаву;

- неприменимость данного способа к производству жаропрочных сплавов на основе Nb (Nb-Si) в связи с недостаточной рабочей температурой традиционных материалов тигля;

- неприменимость данного способа к производству жаропрочных сплавов на основе Nb (Nb-Si) в связи с недостаточной рабочей температурой традиционных материалов для разливки расплава: чугунных изложниц и стальных труб;

- невозможность образования ванны жидкого расплава жаропрочных сплавов на основе Nb (Nb-Si) при соблюдении порядка введения легирующих элементов, предусмотренного способом-прототипом (введение хрома, титана, алюминия в жидкий расплав).

Технической задачей и техническим результатом заявленного способа является получение слитков и отливок, равноосной структурой и однородным химическим составом по всему объему слитка из жаропрочных сплавов на основе Nb-Si.

Технический результат достигается с помощью способа получения жаропрочного сплава на основе Nb-Si, включающем в себя загрузку шихты в тигель, выплавку в вакуумной индукционной печи в вакууме или в среде инертного газа, разливку расплава в форму. При этом в тигель загружают шихту, содержащую кремний, алюминий, титан, ниобий, а также по меньшей мере один элемент, выбранный из хрома, молибдена, вольфрама, выплавку проводят при температуре 1800-2100°С в инертном керамическом тигле, рабочий слой которого изготовлен по меньшей мере из одного из оксидов иттрия, гафния, скандия или циркония по крайней мере за 10-15 минут перед разливкой в расплав вводят по меньшей мере один активный элемент, выбранный из циркония, гафния и иттрия, а разливку полученного расплава осуществляют в предварительно нагретую инертную форму.

Предпочтительно, рабочий слой инертной формы, в которую осуществляют разливку расплава, состоит из, графита или инертной керамики в виде по меньшей мере одного из оксидов иттрия, гафния, скандия и циркония.

Предпочтительно, предварительный нагрев формы для разливки осуществляют до температуры от 250 до 1500°С.

Необходимость введения в завалку кремния, титана и алюминия вместе с ниобием обусловлена высокой температурой плавления основы сплава -ниобия (Тпл~2477°С) и других тугоплавких компонентов (например, W, Мо), которые могут входить в состав сплава. Мощность вакуумных индукционных установок не позволяет произвести нагрев этих тугоплавких компонентов до температур их плавления. Алюминий имеет низкую температуру плавления (Тпл~660°С), он переходит в жидкое состояние в первую очередь. Затем в образовавшемся расплаве начинает происходить расплавление и растворение остальных компонентов, в первую очередь менее тугоплавких: кремния и титана, температура плавления которых также может быть достигнута в вакуумной индукционной печи. Объема образовавшегося расплава достаточно для полного растворения ниобия, и менее активных элементов, входящих в состав сплава, наприме, хрома и наиболее тугоплавких (W, Мо) компонентов сплава. Полученный расплав будет иметь температуру ликвидуса, достаточную для поддержания расплава в жидком состоянии за счет индукционного нагрева.

Необходимость введения активных компонентов в расплав перед разливкой обусловлена возможным взаимодействием данных компонентов с материалом тигля по типовой реакции:

А + МеО → АО + Me,

где А - активный элемент, входящий в состав сплава, один или несколько металлов из группы: Hf, Zr, Y;

Me - один или несколько металлов из группы Zr, Hf, Y, Sc, входящий в состав оксидов, составляющих основу материала тигля.

Указанное взаимодействие может привести к загрязнению сплава кислородом и отклонению содержания легирующих элементов от расчетного состава. Введение активных компонентов в расплав перед разливкой сокращает время их нахождения в расплавленном состоянии, что уменьшает время их взаимодействия с керамикой тигля. Таким образом, сплав, полученный по предлагаемому способу, обладает узкими интервалами легирования и высокой чистотой по примеси кислорода. Рекомендуется вводить активные элементы в расплав не ранее чем за 10-15 минут перед разливкой.

Материалом формы, в которую осуществляют последующую разливку расплава, является инертная керамика, рабочий слой которой изготовлен из по крайней мере одного из оксидов иттрия, гафния, скандия, циркония (для предотвращения взаимодействия расплава с материалом формы) либо графита.

Остальные части тигля и формы для разливки расплава, которые не контактируют с расплавом, могут быть изготовлены из различных огнеупорных материалов, работоспособных в указанных температурных интервалах, например оксиды циркония, иттрия, алюминия, магния и др.

Равномерное распределение легирующих элементов в слитке достигается за счет интенсивного индукционного перемешивания расплава во время вакуумной индукционной плавки.

В качестве газа для создания инертной атмосферы при вакуумной индукционной плавке предпочтительно применять аргон. Инертный раз предпочтительно вводить в камеру печи после нагревания шихты, непосредственно перед началом расплавления, для того, чтобы с поверхности шихтовых материалов испарились влага и загрязнения. Во время проведения плавки давление инертного газа препятствует интенсивному испарению с поверхности расплава легирующих элементов, обладающих высоким значением давления упругости насыщенного пара (например, Si Al, Cr, Y).

Перед разливкой осуществляют предварительный нагрев форм для предотвращения преждевременного затвердевания расплава во время разливки и заполнения всего объема формы. Предварительный нагрев формы для разливки способствует получению более плотных слитков (отливок). Предпочтительно проводить нагрев от 250 до 1500°С, в зависимости от материала и конфигурации формы, который обеспечивает дополнительное преимущество, заключающееся в снижении пористости в отливке.

Установлено, что выплавка высокотемпературных жаропрочных сплавов на основе Nb-Si обеспечивает получение слитков и отливок с равноосной структурой и стабильным химическим составом по всему объему слитка (отливки).

Примеры осуществления изобретения

Пример 1

По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(14,0-16,0)Ti-(9,0-10,0)Hf-(5,0-6,0)Si-(3,0-4,0)Cr-(0,5-1,0)Al.

В тигель вакуумной индукционной печи, рабочий слой которого был изготовлен на основе оксида скандия, загрузили кремний, хром, титан, алюминий и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, расплавили завалку, выдержали расплав около 7 мин, ввели в расплав гафний в чистом виде. После растворения гафния расплав выдержали около 4 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в керамическую форму, предварительно нагретую до 800°С.

Результаты химического анализа из проб, взятых по высоте отливки представлены в таблице 1.

Из таблицы 1 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличаются между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.

Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:

- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti);

- интерметаллидная фаза на основе химического соединения Nb5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.

Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 2.

Пример 2

По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(5,5-6,0)Si-(7,5-9,8)Ti-(8,0-12,0)Hf-(2,1-3,3)Cr-(0,7-1,3)Al-(4,8-7,0)Zr-(9,9-14,8)Мо-(0,6-1,8)Y.

В тигель вакуумной индукционной печи, рабочий слой которого был изготовлен на основе оксида иттрия, загрузили кремний, хром, титан, алюминий, молибден и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, напустили в камеру аргон до давления ~23 кПа, расплавили завалку, выдержали расплав около 8 мин, ввели в расплав цирконий. После растворения циркония расплав выдержали около 3 минут и ввели в расплав иттрий. После растворения иттрия расплав выдержали около 4 минут и ввели в расплав гафний. После растворения гафния расплав выдержали около 3 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в графитовую изложницу, предварительно нагретую до 400°С.

Результаты химического анализа из проб, взятых по высоте отливки, представлены в таблице 3.

Из таблицы 3 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличаются между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.

Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:

- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti, Mo));

- интерметаллидная фаза на основе химического соединения Nb5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.

Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 4.

Пример 3

По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(14,0-16,0)Ti-(9,0-10,0)Hf-(5,0-6,0)Si-(3,0-4,0)Cr-(0,5-1,0)Al.

В тигель вакуумной индукционной печи, рабочий слой которого был изготовлен на основе оксида циркония, загрузили кремний, хром, титан, алюминий и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, напустили в камеру аргон до давления ~17 кПа, расплавили завалку, выдержали расплав около 6 мин, ввели в расплав гафний в чистом виде. После растворения гафния расплав выдержали около 3 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в керамическую форму, предварительно нагретую до 900°С.

Результаты химического анализа из проб, взятых по высоте отливки, представлены в таблице 5.

Из таблицы 5 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличается между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.

Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:

- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti);

- интерметаллидная фаза на основе химического соединения ND5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.

Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 6.

Пример 4

По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(14,0-16,0)Ti-(9,0-10,0)Hf-(5,0-6,0)Si-(3,0-4,0)Cr-(0,5-1,0)Al.

В тигель на основе оксида иттрия вакуумной индукционной печи загрузили кремний, хром, титан, алюминий, вольфрам и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, напустили в камеру гелий до давления ~23 кПа, расплавили завалку, выдержали расплав около 6 мин, ввели в расплав гафний в чистом виде. После растворения гафния расплав выдержали около 4 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в керамическую форму, предварительно нагретую до 1000°С.

Результаты химического анализа из проб, взятых по высоте отливки, представлены в таблице 7.

Из таблицы 7 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличаются между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.

Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:

- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti));

- интерметаллидная фаза на основе химического соединения Nb5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.

Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 8.

Предлагаемый способ позволяет получать высокотемпературные жаропрочные сплавы на основе Nb-Si с равномерным химическим составом.

Использование изобретения позволяет получать заготовки высокотемпературных жаропрочных сплавов на основе Nb-Si для последующего литья с направленной структурой, что позволит повысить тягу, ресурс и надежность работы перспективных авиационных газотурбинных двигателей.

Источник поступления информации: Роспатент

Showing 321-330 of 367 items.
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.5991

Способ определения остаточных напряжений в изделиях из монокристаллических материалов рентгеновским методом

Использование: для определения остаточных напряжений в изделиях из монокристаллических материалов рентгеновским методом. Сущность заключается в том, что на поверхности контролируемого изделия выбирают направление, в котором будут определять остаточные напряжения, и кристаллографические...
Тип: Изобретение
Номер охранного документа: 0002427826
Дата охранного документа: 27.08.2011
18.05.2019
№219.017.5aa5

Способ модифицирования наносиликатов

Изобретение относится к способам модифицирования слоистых наносиликатов, предназначенных для изготовления полимерных нанокомпозитов. Способ модифицирования включает диспергирование смектитовой глины в 1М водном растворе натриевой соли, отделение примесей, обработку полученного продукта...
Тип: Изобретение
Номер охранного документа: 0002433954
Дата охранного документа: 20.11.2011
20.05.2019
№219.017.5c7a

Препрег

Изобретение относится к области создания высокопрочных полимерных композиционных материалов конструкционного назначения на основе волокнистых арамидных наполнителей в виде нитей, жгутов, тканей и полимерных связующих, которые могут быть использованы в различных областях техники (машино-,...
Тип: Изобретение
Номер охранного документа: 0002687926
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c9e

Полимерный композиционный материал с интегрированным вибропоглощающим слоем

Изобретение относится к слоистым полимерным композиционным материалам (ПКМ) с повышенными вибропоглощающими свойствами и может быть использовано для снижения вибрации и структурного шума в малонагруженных элементах конструкции изделий авиационной техники. Полимерный композиционный материал с...
Тип: Изобретение
Номер охранного документа: 0002687938
Дата охранного документа: 16.05.2019
31.05.2019
№219.017.7045

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до...
Тип: Изобретение
Номер охранного документа: 0002689947
Дата охранного документа: 29.05.2019
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.76b2

Теплостойкий пеногерметик

Описывается теплостойкий пеногерметик, включающий полиорганосилоксановый каучук, оксид цинка, олигогидридсилоксан, аминосоединение и катализатор вулканизации, отличающийся тем, что в качестве полиорганосилоксанового каучука он содержит полидиметилметилфенилсилоксандиол, в качестве...
Тип: Изобретение
Номер охранного документа: 0002263130
Дата охранного документа: 27.10.2005
Showing 321-330 of 336 items.
02.10.2019
№219.017.cea0

Керамический композиционный материал и изделие, выполненное из него

Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002700428
Дата охранного документа: 17.09.2019
05.10.2019
№219.017.d2bc

3d-принтер для печати изделий, состоящих из различных по электрофизическим свойствам материалов

Изобретение относится к радиотехнике, в частности к конструкции 3D-принтеров на основе метода SLS. Цель изобретения - расширение диапазона печатаемых изделий за счет применения нескольких типов частиц порошкообразного материала с различными электрофизическими свойствами для поэтапного...
Тип: Изобретение
Номер охранного документа: 0002702019
Дата охранного документа: 03.10.2019
15.01.2020
№220.017.f4f5

Жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов, и может быть использовано при изготовлении лопаток газотурбинных двигателей, длительно работающих при температурах до 1200°С. Жаропрочный сплав на основе никеля содержит, мас. %: хром 1,3-3,3, кобальт...
Тип: Изобретение
Номер охранного документа: 0002710759
Дата охранного документа: 13.01.2020
17.04.2020
№220.018.1532

Способ нанесения антикоррозионного покрытия

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитных гальванических покрытий с последующей термообработкой. Способ включает обезжиривание детали, травление детали и последовательное нанесение слоев системы цинк-олово-цинк-олово с последующей...
Тип: Изобретение
Номер охранного документа: 0002718794
Дата охранного документа: 14.04.2020
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
+ добавить свой РИД