×
25.08.2017
217.015.c1d9

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к методам определения состава и количества компонентов, входящих как в природные минералы, так и соединения, полученные в различных химических реакциях, при действии температуры и давления. Способ определения концентрации манганита лантана в смеси синтезированного порошка системы LaSrMnO, полученного смешиванием исходных составляющих в виде порошков LaO, MnCO и SrCO и их последующим синтезом, включает определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм. Значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы LaSrMnO по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм. Техническим результатом является определение концентрации манганита лантана для порошков, полученных в различных условиях. 4 ил., 1 табл., 7 пр.

При высокотемпературном синтезе твердых растворов из смесей нескольких порошков их концентрация - концентрация основной фазы (ОФ) - будет определяться технологическими условиями: температурой и временем прогрева, типом и концентрацией составляющих смесей. Для определения концентрации ОФ, образованных новых соединений и не прореагировавших исходных составляющих смесей существует несколько способов, основанных на различных физических процессах. Наиболее распространенным является рентгенофазовый анализ (РФА), осуществляемый с помощью рентгеновских дифрактометров. При таком способе концентрацию соединений, находящихся в синтезируемом порошке, определяют по интенсивности рентгеновских лучей, отраженных от различных узлов кристаллических решеток ОФ и составляющих [1, 2].

Известен и широко применяется спектрофотометрический способ определения концентрации соединений в твердой фазе. Он заключается в помещении в жидкость данного соединения, измерении спектров пропускания как самой жидкости, так и раствора с этим соединением. По полученным значениям коэффициента пропускания на определенных длинах волн рассчитывается оптическая плотность, строится графическая зависимость оптической плотности от концентрации соединения. Затем по этой зависимости для конкретного вещества определяется значение концентрации по результатам измерения оптической плотности [1, 2].

Если синтезированное или природное соединение содержит несколько составляющих - смесь компонентов, то для определения концентрации каждой составляющей данным способом градуировку необходимо проводить по каждой составляющей на определенном спектральном участке или при определенной длине волны излучения. И затем, сопоставляя градуировки для каждой составляющей, определить их концентрацию.

В спектрах диффузного отражения манганитов редкоземельных элементов (МРЭ) в солнечном диапазоне (02-2,5 мкм) в области 0,5-0,6 мкм регистрируется "провал" в значениях коэффициента отражения. Величина провала зависит от типа замещающего элемента и его концентрации. Например, в соединениях La(1-x)CaxMnO3 (фиг. 1) провал зарегистрирован в области 0,2-1,2 мкм, минимальное значение коэффициента отражения соответствует 0,65 мкм. При увеличении концентрации ионов кальция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения как во всей области провала 0,2-1,2 мкм, так и в точке минимального значения увеличивается от 0,18 до 0,22 и 0,24 соответственно [3].

По величине провала в спектрах диффузного отражения можно определять концентрацию дефектов в порошках, характеризующих технологию их получения или последующей обработки. Например, в спектрах диффузного отражения порошков диоксида циркония регистрировали "провал" в ультрафиолетовой области вблизи края основного поглощения. Было установлено [4, 5], что он определяется ионами Zr3+, концентрация которых изменяется в зависимости от условий получения порошков ZrO2, от режимов их прессования (фиг. 2) или при облучении.

В соединениях La(1-x)SrxMnO3 (фиг. 3) провал зарегистрирован в области 0,35-0,85 мкм, минимальное значение коэффициента отражения соответствует области спектра 0,52-0,6 мкм. При увеличении концентрации ионов стронция от значений x=0,1 до x=0,175 и далее до x=0,3 коэффициент отражения во всей области "провала" уменьшается. В области минимального значения он уменьшается от 0,18 до 0,17 и 0,15, соответственно. Значение длины волны с наименьшей величиной коэффициента отражения не определено [6].

Регистрируемый "провал" в значениях коэффициента отражения характеризует свойства образованных соединений при синтезе и может служить мерой определения концентрации ОФ. Данный способ выбран в качестве прототипа.

В отличие от прототипа, в предлагаемом способе производится сопоставление минимального значения коэффициента отражения в области провала соединений La(1-x)SrxMnO3, соответствующего длине волны 546 нм, для каждого порошка, синтезированного в различных режимах. Для определения концентрации МРЭ используются данные рентгенофазового анализа (РФА) и спектров диффузного отражения. Изменением условий синтеза соединений в виде порошков достигаются различные значения концентрации La(1-x)SrxMnO3, которые определяются методом РФА. Для каждого типа синтезированного порошка определяется коэффициент отражения на длине волны 546 нм. Затем производится сопоставление полученных значений концентрации La(1-x)SrxMnO3 со значениями коэффициента отражения на длине волны 546 нм для порошков, синтезированных в различных условиях. Полученная графическая зависимость является градуировочной для определения концентрации основной фазы - соединений La(1-)SrxMnO3.

Для получения зависимости концентрации La(1-x)SrxMnO3 от коэффициента отражения и построения градуировочной зависимости проводили экспериментальные исследования, в которых в различных режимах синтеза получали различную концентрацию ОФ и определяли коэффициент отражения на длине волны 546 нм.

Пример 1. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы. Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 800°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 19,6 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,8%.

Пример 2. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 900°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 35,1 мас. %, в остальной состав входят новое соединение Mn3O4 и часть не прореагировавших исходных соединений La2O3 и SrCO3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 22,5%.

Пример 3. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1000°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 59,6 мас. %, в остальной состав входят новое соединение Mn3O4, и часть не прореагировавшего исходного соединения La2O3. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 18,8%.

Пример 4. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1100°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 79,8 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,9%.

Пример 5. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 84,4 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 16,3%.

Пример 6. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 2 часа при 1250°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 88,5 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,9%.

Пример 7. Порошки La2O3, MnCO3 и SrCO3 смешивали в весовых количествах, соответствующих получению соединения La0,825Sr0,175MnO3 при 100% выходе основной фазы (ОФ). Добавляли дистиллированную воду, смесь диспергировали в магнитной мешалке в течение 2 часов, затем выпаривали 6 часов в сушильном шкафу при температуре 150°C. Последующий прогрев смеси осуществляли в муфельной печи 6 часов при 1200°C. Рентгенофазовый анализ осуществляли на рентгеновском дифрактометре Shimadzu XRD 6000. Анализ показал образование ОФ - твердого раствора La0,825Sr0,175MnO3 в количестве 92,1 мас. %, в остальной состав входят новое соединение Mn3O4. Коэффициент диффузного отражения такого состава синтезированного порошка, измеренный спектрофотометром Perkin Elmer Lambda на длине волны 546 нм, равен 15,5%.

Полученные значения концентрации ОФ и коэффициента отражения на длине волны 546 нм для указанных режимов прогрева смесей порошков сведены в таблицу.

Построенный по данным таблицы график (фиг. 4) показывает, что экспериментальные результаты удовлетворительно укладываются на одну прямую, которая и является градуировочной зависимостью. По ней, зная коэффициент отражения на длине волны 546 нм, можно определить концентрацию манганитов лантана.

Список использованных источников

1. Физические методы исследования неорганических веществ. / Под ред. А.Б. Никольского. М.: Академия, 2006, 444 с.

2. Михайлов М.М. Радиационное и космическое материаловедение. Изд-во Томского университета, Томск, 2008, 440 с.

3. G. Tang, Y. Yu, Y. Cao, W. Chen, The thermochromic properties of La1-xSrxMnO3 compounds, Solar Energy Materials & Solar Cells, vol. 92, pp. 1298-1301, 2008.

4. Михайлов M.M., Рябчикова Л.Е., Кузнецов Н.Я. Способ отборочных испытаний порошков двуокиси циркония. // АС №1152358 от 22 декабря 1984 г.

5. Михайлов М.М., Кузнецов Н.Я. Образование центров окраски в порошках ZrO2 при прессовании и последующем облучении. // Неорганические материалы, 1988, т. 24, №5, с. 785-789.

6. K. Takenaka, K. Iida, Y. Sawaki, S. Sugai, Y. Moritomo, A. Nakamura. Optical Reflectivity Spectra Measured on Cleaved Surfaces of La1-xSrxMnO3: Evidence against Extremely Small Drude Weight, Journal of the Physical Society of Japan, vol. 68, pp. 1828-1831, 1999.

Способ определения концентрации манганита лантана в смеси синтезированного порошка системы LaSrMnO, полученного смешиванием исходных составляющих в виде порошков LaO, MnCO и SrCO с последующим их синтезом, включающий определение коэффициента отражения порошка манганита лантана в видимой области спектра на длине волны 546 нм, отличающийся тем, что значение концентрации манганита лантана, соответствующее определенной величине коэффициента отражения в видимой области спектра на длине волны 546 нм, определяют по градуировочной зависимости, предварительно построенной для различных синтезированных порошков манганита лантана системы LaSrMnO по данным рентгенофазового анализа, определяющим концентрацию манганита лантана, и значениям коэффициента отражения в видимой области спектра на длине волны 546 нм.
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ МАНГАНИТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ
Источник поступления информации: Роспатент

Showing 61-64 of 64 items.
13.02.2018
№218.016.23ae

Нулевой радиометр

Изобретение относится к микроволновой радиометрии и может использоваться для измерения электромагнитных сигналов собственного теплового излучения материальных сред в системах дистанционного зондирования Земли, различных природных объектов, промышленности. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002642475
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.3ad9

Способ формирования диаграммы направленности приемной линейной антенной решетки

Изобретение относится к антенной технике. Способ включает вычисление сигнала F по формуле: . Дополнительно вычисляют два сигнала F и F по формулам: , и определяют параметр а: . Выходной сигнал V приемной антенной решетки формируют в зависимости от параметра а, в соответствии с выражением:...
Тип: Изобретение
Номер охранного документа: 0002647518
Дата охранного документа: 16.03.2018
05.10.2018
№218.016.8f79

Способ получения состава композиционного полимерного материала с заданными свойствами

Изобретение относится к способу получения состава композиционного полимерного материала - степени наполнения и среднего радиуса частиц наполнителя с эффективными теплофизическими и электрофизическими характеристиками в заданных интервалах. Способ характеризуется тем, что по...
Тип: Изобретение
Номер охранного документа: 0002668915
Дата охранного документа: 04.10.2018
14.05.2020
№220.018.1cb7

Система дистанционного взаимодействия между лечащим врачом и пользователем

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении эффективности системы. Система содержит: модуль обращения пользователем, соединенный с модулем коммуникации, модуль электронной медицинской карты пользователя, соединенный с модулем обработки...
Тип: Изобретение
Номер охранного документа: 0002720733
Дата охранного документа: 13.05.2020
Showing 61-70 of 71 items.
13.02.2018
№218.016.23ae

Нулевой радиометр

Изобретение относится к микроволновой радиометрии и может использоваться для измерения электромагнитных сигналов собственного теплового излучения материальных сред в системах дистанционного зондирования Земли, различных природных объектов, промышленности. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002642475
Дата охранного документа: 25.01.2018
09.06.2018
№218.016.5e8a

Термостабилизирующее радиационностойкое покрытие batizro

Изобретение относится к получению терморегулирующих покрытий и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов. Терморегулирующее покрытие класса «солнечные...
Тип: Изобретение
Номер охранного документа: 0002656660
Дата охранного документа: 06.06.2018
16.01.2019
№219.016.b050

Пигмент на основе порошка baso, модифицированного наночастицами sio

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой отраслях промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели»...
Тип: Изобретение
Номер охранного документа: 0002677173
Дата охранного документа: 15.01.2019
26.01.2019
№219.016.b45b

Пигмент для терморегулирующих покрытий космических аппаратов на основе порошка baso, модифицированного наночастицами zro

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели» приготовлен из...
Тип: Изобретение
Номер охранного документа: 0002678272
Дата охранного документа: 24.01.2019
30.03.2019
№219.016.f9ff

Беспилотный летательный аппарат с тремя узлами крепления

Изобретение относится к области ракетной техники и, в частности, к области устройств беспилотных летательных аппаратов - БПЛА, крепящихся на носителях различного типа, в том числе к семейству управляемых БПЛА, крепящихся к пусковым установкам нестационарных носителей с помощью трех узлов...
Тип: Изобретение
Номер охранного документа: 0002683350
Дата охранного документа: 29.03.2019
24.05.2019
№219.017.5f77

Способ отборочных испытаний на радиационную стойкость пигментов baso4

Изобретение относится к пигментам для терморегулирующих покрытий класса «солнечные оптические отражатели». Описывается способ отборочных испытаний на радиационную стойкость пигментов - порошков сульфата бария для терморегулирующих покрытий класса «солнечные оптические отражатели». Способ...
Тип: Изобретение
Номер охранного документа: 0002688766
Дата охранного документа: 22.05.2019
14.06.2019
№219.017.8309

Пигмент для терморегулирующих покрытий космических аппаратов

Изобретение относится к терморегулирующим покрытиям, в том числе к терморегулирующим покрытиям космических аппаратов, и может быть использовано в космической технике, а также в строительной индустрии и в широких отраслях промышленности для термостатирования устройств или технологических...
Тип: Изобретение
Номер охранного документа: 0002691328
Дата охранного документа: 11.06.2019
02.10.2019
№219.017.cf84

Способ получения пигмента для термостабилизирующих покрытий

Изобретение относится к светоотражающим пигментам для применения в составе покрытий класса «солнечные отражатели», которые могут быть использованы для пассивной тепловой защиты космических аппаратов. Пигмент получают путем синтеза в автоклаве при температуре 220°С, давлении 22-23 атм в течение...
Тип: Изобретение
Номер охранного документа: 0002700607
Дата охранного документа: 18.09.2019
12.10.2019
№219.017.d54d

Солнечный отражатель на основе порошка baso, модифицированного наночастицами alo

Изобретение может быть использовано в космической технике, в оптическом приборостроении, в строительной индустрии. Пигмент для покрытий класса «солнечные оптические отражатели» приготовлен из порошка сульфата бария, который модифицирован наночастицами оксида алюминия в количестве 5 мас.%....
Тип: Изобретение
Номер охранного документа: 0002702688
Дата охранного документа: 09.10.2019
13.03.2020
№220.018.0b75

Пигмент для терморегулирующих покрытий космических аппаратов на основе порошка baso, модифицированного наночастицами sio

Изобретение относится к терморегулирующим покрытиям и может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности. Пигмент для терморегулирующих покрытий содержит порошок сульфата бария BaSО, модифициранный наночастицами диоксида...
Тип: Изобретение
Номер охранного документа: 0002716436
Дата охранного документа: 11.03.2020
+ добавить свой РИД