×
25.08.2017
217.015.bfa5

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Использование: для оценки прочности элементов сварного корпуса подводных аппаратов сферической и кольцевой формы на основании акустического метода неразрушающего контроля. Сущность изобретения заключается в том, что осуществляют нагружение исследуемого объекта, регистрацию числа импульсов акустической эмиссии (АЭ) и их амплитуды, определение диагностического параметра W, связанного со степенью опасности дефектов, временем до разрушения, пределом прочности σ*, разрушающей нагрузкой F, и его сравнение с критическим значением [W] для определения степени опасности источника импульсов АЭ и работоспособности контролируемого объекта. Также данный способ оценки прочности позволяет производить оценку остаточного ресурса N. Технический результат: повышение точности контроля прочности кольцевых и сферических элементов сварного корпуса подводного аппарата. 6 ил., 2 табл.

Изобретение относится к акустическим методам неразрушающего контроля прочности и предназначено для оценки прочности элементов сварного корпуса подводных аппаратов сферической и кольцевой формы. Изобретение может применяться в машиностроении и строительстве.

Известен способ неразрушающей оценки прочности композитных материалов и изделий из них (Носов В.В., Носов С.В. Акустико-эмиссионный критерий прочности композитных материалов // Известия ВУЗов. М.: Машиностроение. - 1989. - №9, с. 25-29). Способ включает равномерное нагружение диагностируемого изделия, регистрацию при этом числа NΣ импульсов акустической эмиссии (АЭ) и прекращение нагружения в момент выхода временной зависимости натурального логарифма InNΣ числа импульсов АЭ на прямолинейный участок, определение углового коэффициента InNΣ=dlnNΣ/dt этого участка и расчет по его значению разрушающей нагрузки на изделие.

Недостатком способа является невысокая точность АЭ контроля изделия из-за применения расчетов параметров.

Известен способ неразрушающей оценки прочности корпусов двигателей, выполненных из композитных материалов (Носов В.В., Потапов А.И. Оценка прочности корпусных изделий при их гидроиспытаниях по результатам регистрации сигналов акустической эмиссии // Дефектоскопия - 1998, №5, с. 99-107), включающий ступенчатое гидронагружение корпуса путем непрерывного подъема давления в корпусе до уровня F1, выдержка в течение времени t1, подъем давления до второго уровня F2, выдержка в течение времени t2 и так далее до заданного максимального уровня давления. В ходе испытаний проводится регистрация числа N импульсов АЭ. По результатам АЭ испытаний строятся графики временных зависимостей числа импульсов АЭ при различных уровнях давления, в которых выделяли участки, близкие к прямолинейным, определяли угловые коэффициенты и этих участков. Определяли параметр состояния материала диагностируемого изделия YAE и рассчитывали величину разрушающей нагрузки Fp, которую впоследствии сравнивали с рабочей нагрузкой диагностируемого изделия. На основании данного сравнения делался вывод о состоянии диагностируемого изделия.

К недостаткам данного способа можно отнести отсутствие четкой классификации степени опасности выявленных в ходе контроля источников импульсов АЭ, ограниченные возможности, связанные с необходимостью создания ступенчатой равномерной нагрузки на контролируемое изделие.

Известен способ испытания кольцевых образцов на прочность при повторных нагрузках (авторское свидетельство SU №1739259, опубл. 07.06.1992 г.). Способ включает приложение нагрузки к наружной боковой поверхности образца, регистрацию параметров его деформации, по которым судят о прочности образца. Для имитации реальных условий нагружения кольцевых элементов подводных аппаратов кольцевые образцы изготавливают из двух частей, соединенных торцами через промежуточный элемент, свободные торцы выполняют в виде конических поверхностей с вершинами на оси колец, герметизируют их крышками с ответными коническими поверхностями, соосно устанавливают и нагружают в осевом направлении, а нагрузку к наружной боковой поверхности образцов прикладывают повторно статически монотонно изменяющимся гидростатическим давлением с различными скоростями, с учетом которых судят о прочности образцов.

Недостатком способа является трудоемкость нагружения исследуемых объектов. Для оказания давления на боковые поверхности образца необходимо наличие камеры высокого давления. Для крупногабаритных элементов сварного корпуса установка такой камеры нецелесообразна ввиду трудоемкости ее изготовления и высокой стоимости. Еще одним недостатком является то, что исследуемый элемент нагружают сжимающими напряжениями до его разрушения.

Известен способ неразрушающего контроля прочности металлоконструкций (патент РФ №2445616, опубл. 20.03.2012 г.), принятый за прототип, включает нагружение металлоконструкций, регистрацию числа импульсов АЭ и их амплитуды, определение параметра состояния материала контролируемой металлоконструкции YAE и расчет величины диагностического параметра YR. После определения данных параметров величину YAE сравнивают с величиной YR для определения степени опасности источника импульсов АЭ. Далее определяют коэффициенты снижения предела выносливости КПР.В и запаса выносливости S. В завершение определяют исходный ресурс Nc исследуемой металлоконструкции и находят остаточный ресурс Nост, после чего делают окончательный вывод о дальнейшем использовании металлоконструкции.

Недостатком способа является отсутствие указания направления нагружения исследуемого объекта, что в свою очередь не позволяет имитировать рабочие напряжения с высокой точностью.

Техническим результатом изобретения является снижение трудоемкости нагружения и повышение точности контроля прочности кольцевых и сферических элементов сварного корпуса подводного аппарата, выявление развивающихся и склонных к развитию дефектов, проявляющихся в процессе изменения нагрузки, определение пригодности элементов корпуса к дальнейшему использованию или необходимости проведения ремонта или замены данной металлоконструкции.

Технический результат достигается тем, что нагружение, необходимое для инициирования сигналов АЭ, производят по окружностям определенного диаметра или линиям определенной длины в направлении минимальной оси кольцевого сечения с двух взаимно противоположных сторон до напряжений ниже предела текучести материала, а контроль прочности производят посредством определения на основе регистрации числа импульсов АЭ или суммарной амплитуды сигналов АЭ диагностического параметра WAE, значение которого связано со степенью опасности дефектов, временем до разрушения, пределом прочности σ*, разрушающей нагрузкой Fp, где

WAE определяется по формуле

,

где ξ - информационный параметр, в качестве которого используют число NΣ импульсов АЭ или суммарную амплитуду сигналов АЭ, накопленных на этапе однородного разрушения;

- коэффициент нагрузки;

Fраб - величина осевой нагрузки диагностического нагружения, соответствующая рабочим напряжениям;

YAE - параметр состояния материала;

σ - напряжение;

после чего WAE сравнивается с его критическим значением, в результате чего делается вывод о дальнейшем использовании диагностируемого элемента, после которого, в случае работоспособного состояния, определяется остаточный ресурс

,

где - характеристический параметр материала и вида сварного соединения, температуры и частоты его нагружения;

NG - число циклов, соответствующих перегибу кривой усталости;

σR - предел выносливости при заданном коэффициенте асимметрии цикла рабочих напряжений;

m - показатель степени кривой усталости;

NnpNtПР - фактическое число циклов нагружения;

ωN - частота циклов нагружения;

tПР - фактически (предварительно) отработанный ресурс.

Способ оценки прочности элементов сварного корпуса подводного аппарата поясняется следующими фигурами:

фиг. 1 - вид испытываемых образцов;

фиг. 2 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №1;

фиг. 3 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №2;

фиг. 4 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №3;

фиг. 5 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №4;

фиг.6 - изменение нагрузки и логарифма числа импульсов АЭ от времени при испытании образца №5, где:

1 - места создания дефектов в сварных швах;

2 - зависимость логарифма числа импульсов АЭ NΣ от времени t;

3 - нагрузки от времени;

4 - участок упругого кинетически однородного разрушения.

Способ осуществляется следующим образом. Для инициирования сигналов АЭ необходимые рабочие напряжения в материале корпуса аппарата имитируют распределенным по окружностям или линиям определенного диаметра или длины приложением нагрузки в направлении минимальной оси кольцевого сечения с двух взаимно противоположных сторон до напряжений ниже предела текучести материала. В процессе нагружения с помощью диагностической акустико-эмиссионной системы фиксируются число импульсов АЭ, амплитуда сигналов, величина нагрузки, время, длительность импульсов и другие параметры. По полученным данным строятся графики изменения нагрузки и логарифма числа импульсов АЭ или же суммарной амплитуды сигналов АЭ от времени (зависит от того, что берется за информационный параметр). Для оценки прочности определяем значение диагностического параметра WAE на участке упругого кинетически однородного разрушения.

Значение рассматриваемого диагностического параметра вычисляется по формуле

,

где ξ - информационный параметр, в качестве которого используют число NΣ импульсов АЭ или суммарную амплитуду сигналов АЭ, накопленных на этапе однородного разрушения;

- коэффициент нагрузки;

Fраб - величина осевой нагрузки диагностического нагружения, соответствующая рабочим напряжениям;

YAE - параметр состояния материала;

σ - напряжение.

Далее, зная величину параметра WAE, можно сделать вывод о работоспособности элемента сварного корпуса, сравнив его с критическим значением [WAE]=YR[σ], где YR - показатель кривой усталости lnNc-σ, Nc - число циклов до разрушения, [σ] - допускаемые напряжения (из проектных расчетов). В случае отсутствия данных значение [WAE] принимается равным единице (данное значение обоснуется результатом проведения множества экспериментов). Вывод составляется на основании следующей классификации:

Здесь [S] - это требуемый коэффициент запаса статической прочности ([S]=1,4÷4 в зависимости от объекта контроля и срока его эксплуатации).

Также есть возможность оценки остаточного ресурса контролируемого объекта:

,

где - характеристический параметр материала и вида сварного соединения, температуры и частоты его нагружения;

NG - число циклов, соответствующих перегибу кривой усталости;

σR - предел выносливости при заданном коэффициенте асимметрии цикла рабочих напряжений;

m - показатель степени кривой усталости;

NnpNtПР - фактическое число циклов нагружения;

ωN - частота циклов нагружения;

tПР - фактически (предварительно) отработанный ресурс.

Главным преимуществом параметра WAE является то, что он не теряет диагностическую ценность в условиях сложного нагружения и неопределенности напряженного состояния реальных статически неопределимых конструкций ввиду того, что он не зависит напрямую от напряжения.

Испытания способа проводились на пяти образцах, которые представляли собой замкнутые кольца. Каждый образец был изготовлен из четырех сегментов, сваренных между собой электродом марки 08Г2С, материал сегментов - сталь марки Ст3. В сварных швах четырех используемых образцов путем высверливания отверстий диаметром 4 мм различной глубины были искусственно созданы дефекты (фиг. 1). Для удобства образцы с различными дефектами были пронумерованы следующим образом:

- образец №1 - дефекты отсутствуют;

- образец №2 - два сквозных отверстия;

- образец №3 - два несквозных отверстия: внутри 3,5 мм, снаружи 3 мм;

- образец №4 - свищ 1 мм и два несквозных отверстия снаружи: 2,4 мм и 3,2 мм;

- образец №5 - два несквозных отверстия внутри: 4 мм и 3 мм.

Образцы имели следующие размеры: диаметр 150 мм ширина 40 мм, отклонение от круговой формы 1 мм на радиус. Наблюдение за процессом разрушения проводилось с помощью автоматизированной диагностической акустико-эмиссионной системы СДАЕ-16(2).

Посредством анализа напряженного состояния было установлено, что для создания напряжений, аналогичных напряжениям, возникающим на глубине 420 м, к образцу необходимо приложить усилие в 1800 Н.

В процессе эксперимента фиксировалось число импульсов АЭ, амплитуда сигналов, величина нагрузки, время, длительность импульсов и другие параметры. По полученным данным были построены графики изменения нагрузки и логарифма числа импульсов АЭ от времени (фиг. 2-6).

Разберем подробно расчет диагностического параметра на участке кинетически однородного разрушения для дефектного образца №2:

Величина Fраб=1310 Н рассчитана по методу конечных элементов для максимально допустимых рабочих напряжений:

σрабт/n=215 МПа/1,4=153 МПа,

где σт=215 МПа - предел текучести материала корпуса, n=1,4 - коэффициент запаса прочности.

Зная величину WAE, можно сделать вывод о работоспособности исследуемого образца в соответствии с таблицей №1. Имея значение коэффициента запаса прочности, рассчитываем значение [S]⋅[WAE]=1,4⋅1=1,4. Таким образом, исходя из диагностического признака WAE≥[S][WAE] определяем класс опасности источника АЭ-IV, что говорит о его катастрофической активности и означает, что образец является неработоспособным.

По аналогии с расчетами, представленными выше, была проведена обработка экспериментальных данных для образцов №1, №3, №4 и №5. Полученные результаты по всем пяти образцам сведены в таблицу №2.

Значение коэффициента корреляции между значениями WAE и рассчитанными на основе МКЭ максимальными напряжениями σmax вблизи искусственных дефектов превышает 0.9, что говорит об информативности представленного диагностического параметра. Также стоит отметить, что расчет напряжений в сложных условиях весьма приблизителен и осуществляется с существенной погрешностью, оценка же параметра WAE не составляет особых затруднений.

Таким образом, применение данного способа оценки прочности элементов сварного корпуса подводного аппарата позволяет выявлять опасные дефекты, дает возможность определить классы опасностей дефектов, выявленных в ходе контроля, а также оценить работоспособность и остаточный ресурс элементов сварного корпуса.


СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
СПОСОБ ОЦЕНКИ ПРОЧНОСТИ ЭЛЕМЕНТОВ СВАРНОГО КОРПУСА ПОДВОДНОГО АППАРАТА
Источник поступления информации: Роспатент

Showing 121-130 of 205 items.
15.02.2019
№219.016.baaf

Шахтная телекоммуникационная система

Изобретение относится к радиотехническим системам и сетевым технологиям и может быть использовано в подземных выработках в качестве автоматизированной шахтной телекоммуникационной системы связи и мониторинга фоновой обстановки шахты, в том числе для своевременного оповещения об опасности....
Тип: Изобретение
Номер охранного документа: 0002679777
Дата охранного документа: 12.02.2019
08.03.2019
№219.016.d2f5

Сухая строительная смесь

Изобретение относится к составам сухих строительных смесей для выравнивания поверхностей бетонных изделий. Технический результат - повышение прочности на растяжение при изгибе, прочности на сжатие, снижение водопоглощения и водопоглощения при капиллярном подсосе. Сухая строительная смесь...
Тип: Изобретение
Номер охранного документа: 0002681321
Дата охранного документа: 06.03.2019
17.03.2019
№219.016.e2d9

Лигатура для жаропрочных магниевых сплавов

Изобретение относится к литейному производству и может быть использовано при получении жаропрочных сплавов на основе магния марок МЛ10, МЛ19 и в системах: Mg-Y-Sm-Zn-Zr, Mg-Sn-Zn-Y, Mg-Gd-Y-Zn-Mn, Mg-Y-Zn-Zr, Mg-Gd-Y-Zn-Zr. Лигатура содержит, мас. %: цинк 10-40, иттрий 15-40, магний -...
Тип: Изобретение
Номер охранного документа: 0002682191
Дата охранного документа: 15.03.2019
23.03.2019
№219.016.ec98

Способ изготовления катодного блока для алюминиевого электролизера

Изобретение относится к изготовлению катодного блока для алюминиевого электролизера. Способ включает подготовку исходных материалов, формование заготовки, ее карбонизацию, графитацию и охлаждение с получением катодного блока. Подготовка исходных материалов включает прокалку антрацита и...
Тип: Изобретение
Номер охранного документа: 0002682732
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ed59

Способ переработки нефелинового концентрата

Изобретение относится к получению цеолитов из нефелинового концентрата. Предложен способ переработки нефелинового концентрата, являющегося отходом обогатительной фабрики по переработке апатит-нефелиновых руд. Нефелиновый концентрат измельчают до размера частиц менее 250 мкм, проводят спекание...
Тип: Изобретение
Номер охранного документа: 0002683102
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ed66

Способ пылеподавления на открытых угольных складах

Изобретение относится к горной промышленности, а именно к способам закрепления пылящих поверхностей открытых угольных складов. Техническим результатом является повышение эффективности пылеподавления на пылящих поверхностях. Способ включает нанесение на пылящие поверхности открытых угольных...
Тип: Изобретение
Номер охранного документа: 0002683014
Дата охранного документа: 25.03.2019
29.03.2019
№219.016.ed95

Способ получения кальцийалюмосиликатного неорганического коагулянта

Изобретение относится к технологии получения неорганического коагулянта, используемого для очистки сточных вод. Способ получения кальцийалюмосиликатного неорганического коагулянта включает смешение кальцийсодержащего материала с кремнеземсодержащим минералом и последующую термообработку....
Тип: Изобретение
Номер охранного документа: 0002683082
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee85

Маятниковый копер для испытания образцов материалов при ударном нагружении

Изобретение относится к испытательной технике, в частности к маятниковым копрам. Маятниковый копер содержит станину, размещенные на ней маятник в виде жесткой штанги, один конец которой шарнирно соединен поворотной платформой со станиной, упругий элемент, консольно закрепленный на другом конце...
Тип: Изобретение
Номер охранного документа: 0002682845
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.ee97

Автономный пункт сбора данных для системы обнаружения утечек жидких углеводородов

Изобретение относится к нефтегазовой промышленности и может быть использовано для обеспечения автономной работы нижнего (средств измерений) и среднего (системы телемеханики) уровней систем обнаружения утечек (СОУ) жидких углеводородов. Автономный пункт сбора данных для СОУ жидких углеводородов...
Тип: Изобретение
Номер охранного документа: 0002682767
Дата охранного документа: 21.03.2019
08.04.2019
№219.016.febf

Способ добычи торфа и устройство для его реализации

Предлагаемый способ добычи торфа и устройство для его реализации относится к горнодобывающей отрасли и может быть использовано в торфяной промышленности для добычи торфа на натуральной залежи. Отличительной особенностью способа является то, что добыча торфа осуществляется путем проведения как...
Тип: Изобретение
Номер охранного документа: 0002684269
Дата охранного документа: 04.04.2019
Showing 71-76 of 76 items.
13.02.2018
№218.016.20d5

Способ механической обработки стальной заготовки с дроблением стружки

Способ включает предварительную подготовку обрабатываемой поверхности путем нагрева непрерывным лазерным лучом на глубину снимаемого припуска. Лазерный луч перемещают по прямой траектории с линейной скоростью и с постоянными мощностью излучения и длиной волны под углом наклона к обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002641444
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.2167

Способ очистки сточных вод от ионов молибдена

Изобретение в металлургической и горнодобывающей промышленности для очистки сточных и шахтных вод от ионов молибдена. Для осуществления способа проводят обработку реагентом-отходом производства, в качестве которого используют железосодержащий суглинок с содержанием железа от 2 до 20% или отход...
Тип: Изобретение
Номер охранного документа: 0002641826
Дата охранного документа: 22.01.2018
17.02.2018
№218.016.2a0c

Способ механической обработки заготовки из титанового сплава

Изобретение относится к способу механической обработки заготовки из титанового сплава. Осуществляют предварительное локальное пластическое деформирование вращающейся заготовки и ее лезвийную обработку путем снятия припуска. Локальное пластическое деформирование заготовки осуществляют непрерывно...
Тип: Изобретение
Номер охранного документа: 0002643022
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2a12

Способ рекультивации хвостохранилищ

Изобретение относится к области охраны окружающей среды и может быть использовано для изоляции поверхностей хвостохранилищ, слагающихся из токсичных отходов, с целью восстановления нарушенных земель. Способ включает проведение в первый год технического этапа рекультивации путем создания...
Тип: Изобретение
Номер охранного документа: 0002643038
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2ac2

Способ открытой разработки месторождений полезных ископаемых

Изобретение относится к горной промышленности, в частности к разработке открытыми горными работами пологих пластов месторождений полезных ископаемых. Техническим результатом является сокращение объемов работ по вскрытию месторождения и продолжительности периода, предшествующего началу...
Тип: Изобретение
Номер охранного документа: 0002642903
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2cac

Брикет для получения кремния восстановительной плавкой

Изобретение относится к получению кремния. Брикет содержит микросилику, углеродосодержащее сырье, отходы деревообрабатывающей промышленности и связующее вещество. В качестве углеродосодержащего сырья брикет содержит сланцевую пыль, в качестве отходов деревообрабатывающей промышленности -...
Тип: Изобретение
Номер охранного документа: 0002643534
Дата охранного документа: 02.02.2018
+ добавить свой РИД