×
25.08.2017
217.015.bde0

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ НАЛИЧИЯ ГЛУБОКИХ ДЕФЕКТОВ МАТРИЦЫ GaAs, СВЯЗАННЫХ С ВСТРАИВАНИЕМ В НЕЁ СЛОЯ КВАНТОВЫХ ТОЧЕК InAs

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии контроля качества полупроводниковых гетероструктур с квантовыми точками и может быть использовано для обнаружения глубоких дефектов, создаваемых слоем квантовых точек InAs в матрице GaAs. Технический результат изобретения - расширение технологических возможностей и повышение точности контроля наличия глубоких дефектов матрицы GaAs в окрестности слоя квантовых точек InAs за счет надежной оценки захвата носителей заряда глубокими дефектами вблизи указанного слоя квантовых точек, обеспечивающей повышение технологичности указанного контроля в связи с достаточностью использования доступного исследовательского оборудования. Способ контроля наличия глубоких дефектов матрицы GaAs, связанных с встраиванием в нее слоя квантовых точек InAs, основанный на оценке захвата носителей заряда глубокими дефектами вблизи слоя квантовых точек InAs, в котором измеряют кривую изменения продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs в зависимости от напряжения импульсного поперечного монополярного электрического поля, инжектирующего носители заряда в поверхностную область указанной гетероструктуры, состоящей из полуизолирующей подложки GaAs, проводящего буферного слоя GaAs, выращенного на нем слоя квантовых точек InAs, и покровного слоя GaAs, образующего с указанным буферным слоем GaAs матрицу GaAs, затем при выявлении формы указанной кривой в виде петли гистерезиса повторяют это измерение в гетероструктурах с различной толщиной покровного слоя GaAs в пределах максимальной толщины, определяемой шириной области пространственного заряда поверхностного барьера при нулевом напряжении в данной гетероструктуре, и по увеличению ширины петли гистерезиса при увеличении толщины покровного слоя GaAs судят о наличии глубоких дефектов матрицы GaAs вблизи слоя квантовых точек InAs. 2 з.п. ф-лы, 3 ил.

Изобретение относится к технологии контроля качества полупроводниковых гетероструктур с квантовыми точками и может быть использовано для обнаружения глубоких дефектов, создаваемых слоем квантовых точек InAs в матрице GaAs.

Известно, что наличие дефектов в окрестности слоя квантовых точек может приводить к ухудшению эксплуатационных характеристик приборов на их основе и к деградации таких устройств (см., например работу на англ. яз. авторов , M. Hopkinson, H.Y. Liu et al. «Influence of structure and defects on the performance of dot-in-well laser structures» - Proc. SPIE, Photonic Materials, Devices, and Applications. 2005, v. 5840, p. 486-496).

О наличии дефектов в слоях с квантовыми точками обычно судят по люминесцентным и фотоэлектрическим характеристикам гетероструктур с квантовыми точками (см., например статью авторов Карповича И.Α., Аншона А.В., Байдуся Н.В. и др. «Применение размерно-квантовых структур для исследования дефектообразования на поверхности полупроводников» - Физика и техника полупроводников. 1994, т. 28, вып. 1, с. 104-112). В этом случае проявляются дефекты, являющиеся центрами рекомбинации неравновесных носителей с быстрыми временами релаксации, меньшими времени излучательной рекомбинации электронно-дырочной пары в квантовых точках (10-9 с), причем фотоэлектрическая спектроскопия выявляет дефекты, расположенные только в непосредственной близости от квантовых точек, а фотолюминесценция чувствительна также и к дефектам, расположенным в достаточно широкой приповерхностной области полупроводника (либо на характерной длине поглощения света, либо на длине диффузии).

Для исследования дефектов с медленной релаксацией может применяться метод нестационарной спектроскопии глубоких уровней (см., например статью на англ. яз. автора D.V. Lang «Deep-level transient spectroscopy: A new method to characterize traps in semiconductors» - J. Appl. Phys. 1974, v. 45, №7, p. 3023-3032), однако этим методом затруднительно определить располагается ли дефект в непосредственной близости от слоя квантовых точек.

Уровень техники в рассматриваемой области характеризуется отсутствием информационных источников, содержащих сведения о целенаправленных исследованиях глубоких уровней, типа центров прилипания, расположенных вблизи слоя квантовых точек, в связи с чем выбрана форма изложения предлагаемого изобретения в формуле и описании изобретения без прототипа.

Задачей предлагаемого изобретения является разработка способа контроля наличия глубоких дефектов матрицы GaAs, связанных с встраиванием в нее слоя квантовых точек InAs, с помощью которого можно изучать относительно медленные процессы захвата основных носителей заряда на ловушки типа центров прилипания, расположенные в непосредственной близости от слоя квантовых точек.

В соответствии с изложенной задачей технический результат предлагаемого изобретения заключается в расширении технологических возможностей и повышении точности контроля наличия глубоких дефектов матрицы GaAs в окрестности слоя квантовых точек InAs за счет надежной оценки захвата носителей заряда глубокими дефектами вблизи указанного слоя квантовых точек, обеспечивающей повышение технологичности указанного контроля в связи с достаточностью использования доступного (стандартного) исследовательского оборудования.

Для достижения указанного технического результата предлагается способ контроля наличия глубоких дефектов матрицы GaAs, связанных с встраиванием в нее слоя квантовых точек InAs, основанный на оценке захвата носителей заряда глубокими дефектами вблизи слоя квантовых точек InAs, при которой измеряют кривую изменения продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs в зависимости от напряжения импульсного поперечного монополярного электрического поля, инжектирующего носители заряда в поверхностную область указанной гетероструктуры, состоящей из полуизолирующей подложки GaAs, проводящего буферного слоя GaAs, выращенного на нем слоя квантовых точек InAs, и покровного слоя GaAs, образующего с указанным буферным слоем GaAs матрицу GaAs, затем при выявлении формы указанной кривой в виде петли гистерезиса повторяют это измерение в гетероструктурах с различной толщиной покровного слоя GaAs в пределах максимальной толщины, определяемой шириной области пространственного заряда поверхностного барьера при нулевом напряжении в данной гетероструктуре и по увеличению ширины петли гистерезиса при увеличении толщины покровного слоя GaAs судят о наличии глубоких дефектов матрицы GaAs вблизи слоя квантовых точек InAs.

В частном случае осуществления предлагаемого способа при измерении кривой изменения продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs на указанную гетероструктуру воздействуют импульсным поперечным монополярным электрическим полем, имеющим частоту 60 Гц, а оценку захвата электронов или дырок слоем квантовых точек InAs осуществляют с помощью схемы, выполненной на основе плоского конденсатора, одной обкладкой которого является изложенная выше гетероструктура на основе матрицы GaAs, а второй - управляющий электрод.

В известной статье авторов Карповича И.А. и др. «Влияние квантово-размерных слоев In(Ga)As на эффект поля в слоях GaAs» - Физика твердого тела. Вестник Нижегородского университета им. Н.И. Лобачевского. 2008, №1, с. 25-29, рассматривается эффект поля в условиях захвата носителей заряда слоем квантовых точек InAs без анализа захвата носителей заряда глубокими дефектами вблизи указанного слоя квантовых точек, а именно в данной статье, содержащей предпосылки разработки предлагаемого способа на уровне постановки задачи с предварительным подходом к ее решению без самого обоснованного решения, делается гипотетический вывод о возможности получения информации о наличии дефектов, связанных с встраиванием слоев квантовых точек в матрицу, при этом данный вывод носит декларативный характер без раскрытия контроля наличия глубоких дефектов матрицы GaAs, связанных с встраиванием в нее слоя квантовых точек InAs, в совокупности существенных признаков предлагаемого способа и основан на несоответствующем физическому механизму возникновения петли гистерезиса представлении о ее появлении в результате захвата носителей заряда слоем квантовых точек (краткое обоснование этого механизма см. ниже в настоящем описании изобретения).

В известном автореферате диссертации на соискание ученой степени кандидата физико-математических наук Истомина Л.А. в 2010 г. «Фотоэлектрические явления и эффект поля в квантово-размерных гетеронаноструктурах In(Ga)As/GaAs, выращенных газофазной эпитаксией» (см. на сайте в Интернет: http://www.unn.ru/pages/disser/742.pdf) раскрывается общая указанная тема без развития контроля наличия глубоких дефектов матрицы GaAs, связанных с встраиванием в нее слоя квантовых точек InAs, на основе захвата носителей заряда глубокими дефектами вблизи слоя квантовых точек и, также без раскрытия контроля наличия глубоких дефектов матрицы GaAs, связанных с встраиванием в нее слоя квантовых точек InAs, в совокупности существенных признаков предлагаемого способа.

На фиг. 1 представлена функциональная блок-схема устройства для (необходимого при осуществлении предлагаемого способа) измерения кривой изменения продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs со слоем квантовых точек InAs в зависимости от напряжения импульсного поперечного монополярного электрического поля; на фиг. 2 - схематическое изображение гетероструктуры на основе матрицы GaAs со слоем квантовых точек InAs на фиг. 1; на фиг. 3 - набор петель гистерезиса, полученных с помощью устройства на фиг. 1 для интервала толщин покровного слоя GaAs гетероструктуры на основе матрицы GaAs от 5 до 300 нм.

Предлагаемый способ контроля наличия глубоких дефектов матрицы GaAs со слоем квантовых точек InAs осуществляют с помощью устройства для измерения кривой изменения продольной поверхностной проводимости гетероструктуры на основе указанной матрицы GaAs в зависимости от напряжения импульсного поперечного монополярного электрического поля следующим образом.

Устройство для измерения кривой изменения продольной поверхностной проводимости гетероструктуры на основе указанной матрицы GaAs (см. фиг. 1) выполнено с узлом рабочей фиксации гетероструктуры 1 на основе матрицы GaAs со слоем квантовых точек InAs (см. фиг. 2), которая состоит из полуизолирующей подложки GaAs 2 (толщиной 400 мкм), проводящего буферного слоя GaAs 3 (толщиной 0.6 мкм), выращенного на нем слоя квантовых точек InAs 4, и покровного слоя GaAs 5 (с различными толщинами слоя 5 в интервале от 5 до 300 нм в изготовленных гетероструктурах 1), образующего с указанным буферным слоем GaAs 3 матрицу GaAs. При этом на верхней поверхности покровного слоя GaAs 5 последовательно размещены пластина слюды 6 и проводящая (металлическая) пластина 7, образующая с полупроводящим буферным слоем GaAs 3 плоский конденсатор.

Излагаемое устройство содержит также генератор синусоидального напряжения 8, подключенный через последовательно соединенные повышающий трансформатор 9 и высоковольтный диод 10 к затвору (3) - проводящей пластине 7, и источник постоянного напряжения 11, подключенный своим выходом к истоку (И) 12 - первому боковому омическому контакту гетероструктуры 1, причем сток (С) 13 - второй омический контакт гетероструктуры 1 присоединен к первому входу блока АЦП 14 для съема формируемого на магазине сопротивлений 15 напряжения, изменение которого пропорционально изменению продольной поверхностной проводимости гетероструктуры 1.

Для регистрации производимых измерений кривой изменения продольной поверхностной проводимости гетероструктуры 1 к выходу блока АЦП 14 подключен компьютер 16, а для уменьшения пульсирующего напряжения, подаваемого на блок АЦП 14 и необходимого для развертки напряжения на затворе (3) - пластине 7, выход диода 10 соединен через делитель напряжения 17 со вторым входом блока АЦП 14.

Для измерения кривой изменения продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs (Δσs) в зависимости от напряжения импульсного поперечного монополярного электрического поля, инжектирующего носители заряда в поверхностную область указанной гетероструктуры 1, выращивались и изготавливались образцы гетероструктур 1 на полуизолирующих подложках GaAs 2 размерами 7×5 мм и толщинами покровного слоя GaAs 5, составляющими 5, 20, 100 и 300 нм. Причем перед созданием слоя квантовых точек InAs 4 на подложках 2 выращивался буферный слой n-GaAs 3 с концентрацией доноров ~1016 см-3. На образцах гетероструктур 1 формировались два планарных омических контакта - исток (И) 12 и сток (С) 13. Ширина контактов и зазор между ними были 5 мм. После чего производили измерение продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs на образце гетероструктуры 1 с максимальной толщиной (300 нм) покровного слоя GaAs 5, для чего на указанный образец гетероструктуры 1 воздействовали с помощью генератора синусоидального напряжения 8, подключенного через последовательно соединенные повышающий трансформатор 9 и высоковольтный диод 10 к затвору (3) - проводящей пластине 7, импульсным поперечным монополярным электрическим полем, имеющим выбранную частоту 60 Гц.

Затем при выявлении формы указанной кривой «а» в виде петли гистерезиса (см. фиг. 3) повторяли это измерение в образцах гетероструктур 1 с убывающей толщиной покровного слоя GaAs 5 в интервале толщин 300-5 нм, получая соответствующие кривые «а», «б»-«г» и по увеличению ширины петли гистерезиса (от 110 до 600 В) при увеличении толщины покровного слоя GaAs 5 делали вывод о наличии глубоких дефектов матрицы GaAs вблизи слоя квантовых точек InAs 4.

Отсутствие петли гистерезиса при измерении кривой изменения продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs с максимальной толщиной ее покровного слоя GaAs 5 или ее наличие в указанном случае, но отсутствие уменьшения ее ширины при последующих измерениях кривой изменения продольной поверхностной проводимости гетероструктуры на основе матрицы GaAs с уменьшаемой толщиной ее покровного слоя GaAs 5 (при повторяемых измерениях) означает отсутствие глубоких дефектов матрицы GaAs вблизи слоя квантовых точек InAs 4.

Интервал выбора задаваемой частоты импульсного поперечного монополярного электрического поля преимущественно определяется удобными (доступными) для измерений частотами от 10 Гц до 1 МГц, что связано с отсутствием в широком интервале выбора указанной частоты проявления гистерезиса при комнатной температуре, связанного с захватом непосредственно слоем квантовых точек InAs 4 (квантово-размерными состояниями) носителей заряда, т.к. время выброса носителей заряда (электронов) с квантово-размерных состояний указанных квантовых точек меньше величины, составляющей 10-9 с.

Физический механизм захвата носителей заряда глубокими дефектами матрицы GaAs вблизи слоя квантовых точек InAs 4, лежащий в основе предлагаемого способа контроля (обосновывающий работоспособность предлагаемого способа), заключается в более медленном выбросе носителей заряда (электронов) с этих дефектов в сравнении с выбросом носителей заряда с квантово-размерных состояний указанных квантовых точек, и поэтому из этого физического механизма вытекает однозначная связь уширения петли гистерезиса при увеличении толщины покровного слоя GaAs 5 именно с захватом носителей заряда глубокими дефектами матрицы GaAs вблизи слоя квантовых точек InAs 4 в указанном широком интервале частот импульсного поперечного монополярного электрического поля при комнатной температуре.

В указанной выше статье Карповича И.А. и др. физический механизм захвата носителей заряда глубокими дефектами матрицы GaAs вблизи слоя квантовых точек InAs 4 не обоснован, поскольку уширение петли гистерезиса, указывающее на наличие глубоких дефектов, в приведенных источниках информации связывают и с захватом носителей заряда непосредственно слоем квантовых точек, что не позволяет связать уширение петли гистерезиса только с наличием глубоких дефектов в этом случае, т.к. указанное уширение может быть обусловлено захватом носителей заряда непосредственно слоем квантовых точек без наличия глубоких дефектов.

Таким образом, предлагаемый способ контроля наличия глубоких дефектов матрицы GaAs, связанных с встраиванием в нее слоя квантовых точек InAs, обеспечивает высокоточный надежный контроль наличия глубоких дефектов матрицы GaAs в окрестности слоя квантовых точек InAs в широком интервале выбора задаваемой частоты импульсного поперечного монополярного электрического поля (при комнатной температуре) при повышении технологичности указанного контроля в связи достаточностью использования доступного (стандартного) исследовательского оборудования.


СПОСОБ КОНТРОЛЯ НАЛИЧИЯ ГЛУБОКИХ ДЕФЕКТОВ МАТРИЦЫ GaAs, СВЯЗАННЫХ С ВСТРАИВАНИЕМ В НЕЁ СЛОЯ КВАНТОВЫХ ТОЧЕК InAs
СПОСОБ КОНТРОЛЯ НАЛИЧИЯ ГЛУБОКИХ ДЕФЕКТОВ МАТРИЦЫ GaAs, СВЯЗАННЫХ С ВСТРАИВАНИЕМ В НЕЁ СЛОЯ КВАНТОВЫХ ТОЧЕК InAs
СПОСОБ КОНТРОЛЯ НАЛИЧИЯ ГЛУБОКИХ ДЕФЕКТОВ МАТРИЦЫ GaAs, СВЯЗАННЫХ С ВСТРАИВАНИЕМ В НЕЁ СЛОЯ КВАНТОВЫХ ТОЧЕК InAs
Источник поступления информации: Роспатент

Showing 81-90 of 92 items.
18.10.2019
№219.017.d7a8

Способ получения низкомолекулярного олигомерного хитозана и его производных

Изобретение относится к области химии биополимеров. Способ получения низкомолекулярного олигомерного хитозана предусматривает растворение хитозана в водном растворе кислоты, в качестве которой используют или уксусную, или соляную, или янтарную, или аскорбиновую, или никотиновую, или бензойную...
Тип: Изобретение
Номер охранного документа: 0002703437
Дата охранного документа: 16.10.2019
02.11.2019
№219.017.ddd6

Способ проращивания семян сельскохозяйственных культур

Изобретение относится к области сельского хозяйства. Способ включает воздействие магнитного поля. Подготавливают подложку из нейтральных материалов, на которую помещают гигроскопический нецеллюлозный материал с водой, на поверхность которого насыпают порошок из минерала шунгита. Поверх шунгита...
Тип: Изобретение
Номер охранного документа: 0002704850
Дата охранного документа: 31.10.2019
15.11.2019
№219.017.e2b9

Способ управления работой мемристивной конденсаторной структуры металл-диэлектрик-полупроводник

Использование: для создания запоминающих и потребляющих малую мощность интегральных схем энергонезависимой памяти. Сущность изобретения заключается в том, что способ управления работой мемристивной конденсаторной структуры металл-диэлектрик-полупроводник, в котором диэлектрик и полупроводник...
Тип: Изобретение
Номер охранного документа: 0002706197
Дата охранного документа: 14.11.2019
15.11.2019
№219.017.e2da

Способ изготовления мемристора с наноконцентраторами электрического поля

Использование: для изготовления мемристоров с диэлектрической структурой. Сущность изобретения заключается в том, что предложен способ изготовления мемристора путем формирования расположенной между двумя электродами диэлектрической структуры, содержащей обеспечивающий филаментарный механизм...
Тип: Изобретение
Номер охранного документа: 0002706207
Дата охранного документа: 14.11.2019
20.12.2019
№219.017.efae

Способ культивирования каллусной ткани vaccinium myrtillus l.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ культивирования каллусной ткани Vaccinium myrtillus L. - продуцента фенольных соединений, и может быть использовано в медицине для получения сырья, богатого флавоноидами, вне зависимости от сезона, при...
Тип: Изобретение
Номер охранного документа: 0002709175
Дата охранного документа: 16.12.2019
21.12.2019
№219.017.efca

Способ определения скорости объекта в доплеровской радиолокации

Изобретение относится к дистанционному измерению скорости движения объектов доплеровской радиолокационной станцией (ДРЛС). Достигаемый технический результат - повышение точности определения скорости высокоскоростных объектов. Сущность способа состоит в облучении движущегося объекта сигналом...
Тип: Изобретение
Номер охранного документа: 0002709626
Дата охранного документа: 19.12.2019
22.12.2019
№219.017.f0fa

Стабильная клеточная линия карциномы молочной железы человека skbr-kat

Изобретение относится к области биотехнологии, а именно к стабильной клеточной линии карциномы молочной железы человека SKBR-kat, гиперэкспрессирующей онкомаркер HER2. Линия получена путем трансфекции клеток исходной линии SKBR-3 плазмидой, содержащей ген флуоресцентного белка Katushka....
Тип: Изобретение
Номер охранного документа: 0002709675
Дата охранного документа: 19.12.2019
09.02.2020
№220.018.00f9

Применение сложного оксида празеодима, молибдена и теллура prmoteo

Изобретение относится к неорганической химии и оптоэлектронике. Сложный оксид празеодима, молибдена и теллура, имеющий химическую формулу PrMoTeO, применяют в шихте для получения празеодимсодержащих теллуритно-молибдатных стекол, что позволяет использовать их в оптоэлектронных приборах. 3 ил.,...
Тип: Изобретение
Номер охранного документа: 0002713841
Дата охранного документа: 07.02.2020
23.02.2020
№220.018.05ec

Трехмерный пористый композитный материал и способ его получения

Группа изобретений относится к химии высокомолекулярных соединений и касается трехмерного пористого композиционного материала и способа его получения. Трехмерный пористый композитный материал характеризуется тем, что содержит композиционный каркас, имеющий в качестве полимерной матрицы соль...
Тип: Изобретение
Номер охранного документа: 0002714671
Дата охранного документа: 19.02.2020
27.03.2020
№220.018.10a4

Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты)

Предлагаемая группа изобретений относится к области химии, касается способа получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир в инертной атмосфере. Способ получения композитного термостабильного катализатора каркасного строения...
Тип: Изобретение
Номер охранного документа: 0002717686
Дата охранного документа: 25.03.2020
Showing 31-38 of 38 items.
20.01.2018
№218.016.1990

Дифракционный блок для управления сходимостью рентгеновского пучка

Изобретение относится к дифракционному блоку для управления сходимостью рентгеновского пучка. Дифракционный блок включает дифрагирующий элемент, выполненный в виде дифрагирующей монокристаллической пластины, и подложку, к которой приклеена указанная пластина с кривизной ее рабочей поверхности,...
Тип: Изобретение
Номер охранного документа: 0002636261
Дата охранного документа: 22.11.2017
13.02.2018
№218.016.1f3b

Способ формирования высокопрочной и коррозионно-стойкой структуры алюминиево-магниевого сплава

Изобретение относится к области металлургии, в частности к технологии термомеханической обработки алюминиевого сплава с содержанием магния не более 6 вес.% для изготовления деформированных полуфабрикатов и легковесных изделий из него, предназначенных для использования в авиакосмической,...
Тип: Изобретение
Номер охранного документа: 0002641211
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.1f6e

Способ формирования мелкозернистой высокопрочной и коррозионно-стойкой структуры алюминиевого сплава

Изобретение относится к области металлургии, в частности к технологии интенсивной деформационной обработки алюминиевого сплава АМг6, и может быть использовано при изготовлении деформированных полуфабрикатов и легковесных изделий из него, предназначенных для использования в авиакосмической,...
Тип: Изобретение
Номер охранного документа: 0002641212
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.2580

Способ получения линейных блок-сополимеров (мет)акриловых мономеров

Изобретение относится к синтезу линейных блок-сополимеров (мет)акриловых мономеров методом контролируемой радикальной полимеризации. Способ получения линейных блок-сополимеров метакриловых мономеров включает последовательный синтез первого и второго блоков сополимеров методом контролируемой...
Тип: Изобретение
Номер охранного документа: 0002642780
Дата охранного документа: 26.01.2018
13.02.2018
№218.016.25e9

Способ изготовления распыляемой композитной мишени из сплава гейслера cofesi

Изобретение относится к изготовлению распыляемой композитной мишени из сплава Гейслера CoFeSi. Способ включает механическое смешивание порошков компонентов сплава Гейслера CoFeSi с получением однородной порошковой смеси и ее спекание. Порошковую смесь готовят из высокочистых порошков кобальта,...
Тип: Изобретение
Номер охранного документа: 0002644223
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2604

Способ вакуумной очистки теллура от углеродсодержащих наноразмерных гетеровключений

Изобретение относится к плазмохимии. Может быть использовано при производстве полупроводниковых и оптических элементов для микроэлектроники, оптики и нанофотоники. Исходный теллур нагревают до температуры 600-680°С с получением газообразной фазы теллура. Взаимодействуют с помощью...
Тип: Изобретение
Номер охранного документа: 0002644213
Дата охранного документа: 08.02.2018
17.02.2018
№218.016.2b2d

Способ модуляции интенсивности рентгеновского пучка

Использование: для модуляции интенсивности рентгеновского излучения. Сущность изобретения заключается в том, что модуляцию интенсивности пучка рентгеновского излучения проводят путем изменения условий отражения рентгеновского излучения от пьезоэлектрического монокристалла в условиях приложения...
Тип: Изобретение
Номер охранного документа: 0002642886
Дата охранного документа: 29.01.2018
15.11.2019
№219.017.e2b9

Способ управления работой мемристивной конденсаторной структуры металл-диэлектрик-полупроводник

Использование: для создания запоминающих и потребляющих малую мощность интегральных схем энергонезависимой памяти. Сущность изобретения заключается в том, что способ управления работой мемристивной конденсаторной структуры металл-диэлектрик-полупроводник, в котором диэлектрик и полупроводник...
Тип: Изобретение
Номер охранного документа: 0002706197
Дата охранного документа: 14.11.2019
+ добавить свой РИД